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Convincing evidence supports a role for oxidative stress in the pathogenesis of many chronic diseases. The model includes 

the formation of radical oxygen species (ROS) and the misassembly and aggregation of proteins when three tiers of cellular 
defence are insufficient: (a) direct antioxidative systems, (b) molecular damage repairing systems, and (c) compensatory 
chaperone synthesis. The aim of the present overview is to introduce (a) the basics of free radical and antioxidant metabolism, 
(b) the role of the protein quality control system in protecting cells from free radical damage and its relation to chronic diseases, 
(c) the basics of the ultraweak luminescence as marker of the oxidant status of biological systems, and (d) the research in human 
photon emission as a non-invasive marker of oxidant status in relation to chronic diseases. In considering the role of free 
radicals in disease, both their generation and their control by the antioxidant system are part of the story. Excessive free radical 
production leads to the production of heat shock proteins and chaperone proteins as a second line of protection against damage. 
Chaperones at the molecular level facilitate stress regulation vis-à-vis protein quality control mechanisms. The manifestation of 
misfolded proteins and aggregates is a hallmark of a range of neurodegenerative disorders including Alzheimer’s disease, 
Parkinson’s disease, amylotrophic lateral sclerosis, polyglutamine (polyQ) diseases, diabetes and many others. Each of these 
disorders exhibits aging-dependent onset and a progressive, usually fatal clinical course.  

The second part reviews the current status of human photon emission techniques and protocols for recording the human 
oxidative status. Sensitive photomultiplier tubes may provide a tool for non-invasive and continuous monitoring of oxidative 
metabolism. In that respect, recording ultraweak luminescence has been favored compared to other indirect assays. Several 
biological models have been used to illustrate the technique in cell cultures and organs in vivo. This initiated practical 
applications addressing specific human pathological issues. Systematic studies on human emission have presented information 
on: (a) procedures for reliable measurements, and spectral analysis, (b) anatomic intensity of emission and left-right 
symmetries, (c) biological rhythms in emission, (d) physical and psychological influences on emission, (e) novel physical 
characteristics of emission, and (f) the identification of ultraweak photon emission with the staging of ROS-related damage and 
disease. 

It is concluded that both patterns and physical properties of ultraweak photon emission hold considerable promise as 
measure for the oxidative status.  
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Introduction 
In 1954 Gerschman and Gilbert proposed that most 

of the damaging effects of elevated oxygen 
concentrations in living organisms might be attributed 
to the formation of free radicals1. In 1956, Harman 
proposed the “free radical theory of aging” which 
suggested that free radical damage on cellular 
macromolecules is responsible for the aging process. 
However, this idea did not capture the interest of many 
biologists and clinicians until the discovery in 1969 of 

the enzyme, superoxide dismutase (SOD) with the 
function of catalytically removing a specific free 
radical2,3. During the 70’s and 80’s, many scientists, 
unfamiliar with free radicals, regarded the field as 
highly specialized or irrelevant to mainstream biology, 
biochemistry and medicine. In fact, however, it is just 
the opposite.  

Much experimental data emphasizes that aerobic life 
is connected with the continuous production of free 
radicals, particularly reactive oxygen species (ROS) 
that may be dangerous for the living organism4-12. The 
reactive species attack biomolecules producing 
alterations in DNA, proteins and lipids, and were 
implicated in the pathogenesis of age-related disease13. 
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In recent years a wealth of experimental data was 
collected to clarify mechanisms that are critically 
involved in free radical damage resulting in 
pathologies. The data emphasize the role of heat stress 
proteins (HSP’s) in protection against damage by free 
radicals. The HSP’s are also named as to their 
function, such as “chaperone proteins”, since they 
form complexes with proteinaceous structures in 
order to prevent deleterious interactions between 
proteins. Understanding the molecular mechanisms of 
cellular protection and recovery from damage in 
injured cells had steadily increased. In particular, how 
chaperones at the molecular level facilitate stress 
regulation vis-à-vis protein quality control 
mechanisms, and have become critical in 
development of a range of chronic diseases. 
 

To record ROS, many techniques have been made 
available. Most of these techniques are invasive; they 
require the destruction of living cellular or tissue 
structures to estimate either specific ROS species or 
products derived from reactions between ROS and 
macromolecules, mostly lipids. Although these 
techniques are available to measure the progress of 
oxidation, none is applicable to all circumstances. In 
the present study, attention is drawn to the method of 
low-level chemiluminescence to detect electronically-
excited states in biological systems. Low-level 
chemiluminescence was related to the direct 
utilization of molecular oxygen14,15 and the production 
of electronically-excited states in biological 
systems16; in particular, the oxygen dependent chain 
reactions involving biological lipids17-19. This earlier 
research on low-level chemiluminescence was largely 
unnoticed in America and Europe, notwithstanding 
the reports by Stauff and Ostrowski on the 
chemiluminescence of mitochondria20 as well as 
Howes and Steele on the chemiluminescence of 
microsomes21,22, both from rat liver. This hesitation 
probably evolved because of earlier reports of the so-
called “mutagenic radiation”23,24 from living tissue 
which could not be observed with the then 
contemporary photon counting equipment25.  
 

In the meantime, data have demonstrated that 
spontaneous (natural) ultraweak photon emission 
originating from living organisms may be considered 
to reflect the state of oxidative stress in vivo. The aim 
of the present overview is to introduce (a) the basics 
of free radical and antioxidant metabolism, (b) the 
role of the protein quality control system in protecting 
cells from free radical damage and its relation to 

chronic diseases, (c) the basics of the ultraweak 
luminescence as marker of the oxidant status of 
biological systems, and (d) the research in human 
photon emission as a non-invasive marker of oxidant 
status in relation to chronic diseases. Perspectives in 
future research is presented that allow the evaluation 
of ultraweak luminescence as a method for recording 
in vivo and noninvasively the state of oxidative stress 
in human subjects vis-à-vis the development of 
chronic disease.  
 

Free radicals and antioxidants 
A “free radical” is defined as any atom, group of 

atoms or molecules containing one unpaired electron 
within an outer orbit. Molecular oxygen (O2) is a 
triplet in its ground state because it contains two 
unpaired electrons within its outer orbits having 
parallel or unpaired spins. Singlet oxygen, by 
definition, is not a free radical; both electrons occupy 
the same orbit and the electron spins are paired. In O2, 
parallel electron spin prevents the direct addition of 
electron pairs (this would include electron spins in 
both parallel and anti-parallel directions) unless an 
electron spin inversion occurs. A number of 
enzymatic systems have evolved that are capable of 
circumventing electron spin restriction by a one-
electron reduction of O2. This intermediate univalent 
pathway is an essential biological process that 
provides the pairing electron. The cytochrome oxidase 
complex localized at the inner mitochondrial 
membrane tetravalently reduces the majority of O2 
used by aerobic cells. It appears to be a major 
intercellular source of both O2

- and H2O2.  
Apart from the mitochondrial respiratory chain, all 

the monooxygenases, several dehydrogenases, cyto-
chrome-P450, prostaglandin synthetase, leucotri-ene 
synthetase, vitamin K-dependent enzymes and many 
other enzymes normally generate radicals. The body 
not only produces radicals during normal metabolism 
but it also purposefully produces radicals, designed to 
be toxic, during immune and inflammatory responses. 
These radicals are deliberately generated during the 
respiratory burst of a macrophage in order to kill 
invading organisms.  

In considering the role of free radicals in disease, 
their generation is only part of the story; the other part 
is their control, containment and safe disposal. 
Because radicals and their products are continuously 
generated and are so reactive chemically, they must 
physiologically be closely controlled and they must be 
released in an orderly fashion to avoid damage of vital 
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components. To maintain cell and tissue integrity, the 
“antioxidant system” maintains a “check and balance” 
with the production of reactive free radicals regarding 
their use in essential pathways and their effective 
clearance.  
 

In their definition of antioxidant, Halliwell and 
Gutteridge26 state, “any substance that, when present 
at low concentrations compared to that of an 
oxidizable substrate, significantly delays or inhibits 
oxidation of that substrate”. The “antioxidant system” 
includes a number of enzymes and low molecular 
weight compounds, many dependent on essential 
nutrients including vitamin E (tocopherol), vitamin C 
(ascorbic acid), beta-carotene, zinc (Zn), copper (Cu), 
manganese (Mn), iron (Fe), and selenium (Se). The 
vitamins are not dependent on other factors that allow 
them to participate in free radical defence. However, 
the metals exert their action as antioxidants primarily 
via incorporation into specific enzymes. Most 
significant biologically reactive oxygen intermediates 
are superoxide radical, hydroxyl radical, lipid 
hydroperoxides and hydrogen peroxide. These oxygen 
intermediates are regularly discussed in the following 
paragraphs and, therefore, will be shortly introduced.  
 

Superoxide radicals can be generated as part of 
many biological redox reactions. Approximately 1-
4% of the total oxygen utilized by mitochondria is 
converted to superoxide and released from the 
mitochondria27. Thus, tissues such as muscle which 
increase their oxygen uptake during exercise generate 
larger amounts of superoxide28. The superoxide anion 
is also produced by several cellular redox systems 
including xanthine oxidase and membrane-associated 
NADPH oxidase. Phagocytic cells in particular 
demonstrate increased oxygen uptake and utilize 
NADPH oxidase to release large amounts of the 
superoxide anion into extracellular fluid29. Superoxide 
also appears to be produced during ischemia and 
reperfusion in tissues containing xanthine oxidase30.  
 

The accumulation of the superoxide anion is 
prevented by enzymes called superoxide dismutases 
which contain manganese or copper-zinc at their 
active site31. The superoxide radical is not very 
reactive. It is capable of slowly inactivating a number 
of essential macromolecules (including catalase and 
glutathione peroxidase). Since hydroxyl radical 
scavengers are capable of protecting damage induced 
by superoxide generation systems, hydroxyl rather 
than superoxide radicals are responsible for the 
damaging effect. Transformation of superoxide 

radical into a hydroxyl is possible because the 
superoxide radical is capable of diffusing throughout 
relatively large distances in the cell and undergoes, in 
the presence of iron or copper, a metal-catalysed 
Haber-Weiss reaction with the actual formation of the 
highly reactive hydroxyl radical (OH’)31,32.  
 

The hydroxyl radical is very reactive33. It is the key 
radical species damaging tissue31. It readily reacts 
with almost every type of molecule (e.g., sugar, 
amino acid, phospholipids, nucleotides, and organic 
acids). On the other hand, hydroxyl radicals may be 
too reactive (see half life below) to survive collisions 
with compounds adjacent to the site of formation.  
 

Lipid hydroperoxides are associated with the 
process of lipid peroxidation. In the presence of some 
transition metals, lipid hydroperoxides may also be 
cleaved homolytically to form more free radicals and 
thus accelerate peroxidation of membrane lipids. A 
variety of hydrophobic scavengers such as 
tocopherols, intercollated into cellular membranes, 
may prevent chain-propagating reactions33. Lipid 
hydroperoxides are injurious to cells; they may be 
detoxified and/or metabolized by glutathione 
peroxidase systems. 
 

Hydrogen peroxide can be produced by (a) the 
enzymatic dismutating action of superoxide dismutase 
and (b) many other biological reactions involving 
molecular oxygen, including the divalent reduction of 
O2 by enzymes such as urate oxidase, D-amino acid 
oxidase and xanthine oxidase. The majority of the 
divalent enzymes that result in H2O2 generation are 
localized in specialized organelles called 
peroxisomes34. Mitochondria are major intracellular 
sources of H2O2 generation although any intracellular 
source of O2

- can result in H2O2 production. Hydrogen 
peroxide is decomposed to H2O by catalase and a 
variety of peroxidases. Glutatione peroxidase (GSH-
Px) has been the most intensely studied enzyme of 
this group35. Hydrogen peroxide is a weak oxidizing 
agent. However, it can inactivate sulfhydryl enzymes. 
Whereas the peroxide is not very reactive, it can cross 
biological membranes. Because of the possible 
involvement of hydrogen peroxide in the generation 
of hydroxyl radicals, this property places hydrogen 
peroxide in a more prominent role to initiate 
cytotoxicity than its chemical reactivity indicates.  
[ 

The half life times of the major reactive oxygen 
species are vastly different. The highest rate constant 
for the reaction with target molecules is correlated 
with the hydroxyl radical; its reactions are diffusion 
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limited; i.e., they take place practically at the site of 
generation36. In contrast, other radicals are relatively 
stable with enzyme dependent half lives in the range 
of seconds. Such molecules may diffuse away from 
their site of generation and transport the radical or 
oxidant function to other target sites37. 

The repertoire of antioxidant protection constitutes 
antioxidants, protective enzymes, coenzymes and 
regenerating pathways. There are many essential 
nutrients involved. Table 1 overviews some of the 
antioxidants of biological interest38. 
Properties of an ideal free radical scavenger can be 
easily summarized as:  
 
(a) it must be present in adequate amounts in the 

body;  
(b) it must accumulate within compartments where a 

need for protection exists;  
(c) it must be versatile in order to combine with a 

wide variety of free radicals. For example, a 
limitation of SOD in eliminating free radicals is 
its lack of versatility; it can interact with only one 
substrate; 

(d) if some organisms are devoid of synthetic 
capability (such as ascorbic acid in primates), the 
compound must be eaten; therefore, it must exist 
in plant products and be stable for periods of days 
or weeks after harvest; and  

(e) it might be suitable for regeneration. That is, the 
process of neutralizing a free radical results in the 
scavenger becoming oxidized. Thus, a scavenger 
would be particularly useful if it actually can be 
recycled. It must have a biologically convenient 
reducing mechanism, either a specific enzyme or 
a direct chemical reaction (Table 1). 

 
Free radicals and medical implications 

The free radical “hype” often alluded to medical 
implications. Thus, based on research begun in the 
80’s, free radicals were implicated in ischemic-
reperfusion damage and pathogenesis of cancer, 
atherosclerosis, and other chronic diseases. Some of 
the earlier experimental evidence will be shortly 
introduced. 
 
Hypoxia, ischemia and reperfusion  

Oxygen free radicals are important mediators of 
hypoxic or anoxic cell death in heart, lung, kidney, 
gastrointestinal tract and brain9, 39-44. Hypoxic injury 
can occur during respiratory failure, systemic 
hypotension and regional hypoperfusion of organs. 

A simple model of hypoxia utilizes in vitro cell 
cultures wherein ATP depletion and the stress of 
hypoxia is mimicked by exposing cells to inhibitors of 
mitochondrial respiration and glycolysis, cyanide and 
iodoacetate, respectively45-49. Hepatocytes under the 
impact of such metabolic inhibition generate 
hydroperoxides and other reactive oxygen species both 
during hypoxia and before the onset of cell death. In 
this model, the loss of viability was delayed by 
antioxidants in an oxygen-dependent manner50.  
 

During severe hypoxia or ischemia, the reperfusion 
of the ischemic tissue can suffer additional injury. For 
instance, in the treatment of acute coronary thrombosis, 
reperfusion of ischemic myocardium tissue (a major 
therapeutic aim) can produce injury51. Such effects of 
temporary ischemia-reperfusion have also been 
documented during organ transplantation52,53. Direct 
and spin-trapping EPR (electron paramagnetic 
resonance) and other techniques including 
chemiluminescence54-56 have demonstrated that there is 
a burst of oxygen free radical generation after post-
ischemic reperfusion of the heart57-67. 
 

During severe hypoxia or ischemia, oxidation-
reduction components that are normally oxidized in the 
aerobic state become reduced. When oxygen is 

Table 1—Condensed list of antioxidant compounds and 
enzymes38 

Non-enzymic Enzymic (direct) 

α-Tocopherol (Vitamin E) 
(radical chain-breaking) 

Superoxide dismutase (CuZn 
enzyme, Mn enzyme) 

β-Carotene (singlet oxygen 
quencher) 

GSH peroxidases (GPx, 
PHGPx) 

Lycopene (singlet oxygen 
quencher) 

Catalase (heme protein, 
peroxisomes) 

Ubiquinol-10 (radical scavenger) Ancillary enzymes 
Ascorbate (vitamin C) (diverse 
antioxidant function) 

Conjugation enzymes 
(glutathione-S-transferases; 
UDP-glucuronosyl-transferases)

Glutathione (GSH) (diverse 
antioxidant function) 

NADPH-quinone 
oxidoreductase (two-electron 
reduction) 

Urate (radical scavenger) GSSG reductase (maintaining 
GSH levels) 

Bilirubin (plasma oxidant) NADPH supply (NADPH for 
GSSG reductase) 

Flavonoids (plant antioxidant e.g. 
rutin) 

Transport systems (GSSG 
export; thioether (S-conjugate) 
export) 

Plasma proteins (metal binding 
e.g. coeruloplasmin) 

Repair systems (DNA repair 
systems; oxidized protein 
turnover; oxidized phospholipid 
turnover) 

Chemical (food additives, drugs) 
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restored, the components that are reduced may promote 
intracellular formation of ROS that can then attack 
lipids, thiols and other cellular components culminating 
in lethal cell injury28,53. Both oxygen-derived free 
radicals and radicals produced by xanthine oxidase (the 
other major source of such radicals) have been studied.  

Many studies have focused on myocardium “reflow” 
injury producing cell death as well as mechanical 
dysfunction. Illustrative are in vivo studies of 
myocardium, either isolated or perfused. Reflow during 
reperfusion can cause either “stunning”68 or arrhythmias69.  

The myocardium possesses a number of free radical 
scavenging systems (superoxide dismutase, catalase 
and glutathione peroxidase) that protect against injury 
under normal cellular conditions70. However, in 
presence of excessive radical formation, these systems 
become saturated and the cells become vulnerable to 
oxidative injury. Supplementing scavengers or other 
antioxidant agents, therefore, may enhance cellular 
protection against free radical injury. The role of 
oxygen-free radicals has been demonstrated with this 
indirect approach, utilizing xanthine oxidase inhibitor 
and radical scavengers such as SOD and catalase68-70.  

It is concluded from these earlier studies that: (a) 
hypoxia and ischemia followed by reperfusion results 
in free radical generation; (b) a variety of ROS sources 
exists, and (c) that the range of produced free radical 
species depends on the cellular or tissue complexity of 
the biological system.  
 
Cancer and cancerogenesis 

The metabolism of ROS in cancer cells is drastically 
altered. There is evidence favoring at least two 
mechanisms: (a) cancer cells produce larger amounts of 
ROS compared to non-neoplastic cells, and (b) 
suppression of the antioxidant system in cancer cells. 
Early evidence demonstrated diminished amounts of 
Mn superoxide dismutase of all tumors examined at 
that time71. Less Cu/Zn superoxide dismutase has also 
been documented in many, but not all tumors. Other 
studies have demonstrated that tumor cells frequently 
exhibit low catalase activity72. Therefore, the amount of 
superoxide or hydrogen peroxide (H2O2) contained in 
tumor cells should also be elevated. Indeed, most, if not 
all, hepatic tumours that were evaluated in vivo did 
exhibit more peroxidation then normal livers. In fact, in 
several human carcinoma cells including colon, 
pancreatic, breast and ovarian plus malignant 
melanoma and neuroblastoma demonstrated large 
amounts of hydrogen perioxide produced in vitro 
without exogenous stimulation73. 

However, the early studies with isolated cell 
fractions demonstrated that antioxidant systems are 
very complicated. Mitochondrial or microsomal 
suspensions prepared from cancer cells exhibited slow 
peroxidation74-78 with some exceptions79. Data suggest 
that circuits might be differently regulated during 
tumor progression with a variety of patterns all 
characterized by persistent oxidative stress. The 
significance of such persistent oxidative stress in 
cancer has been debated. Perhaps, it may activate 
transcription factors80 and induce expression of proto-
oncogenes81,82. It may also induce damage such as 
modified base products and strand breaks that lead to 
further genomic instability83. 
 

Much research has been directed at clarifying the 
relationship between ROS and the development of 
neoplasias. If one considers the three-stage model of 
carcinogenesis (initiation, promotion, progression), 
the first phase is ROS mediated induction of several 
types of DNA damage including strand breakage, 
base modification and DNA-protein cross-linkage. 
Oxidative DNA damage can also be indirect; e.g., the 
action of peroxyl radicals freed by endogenous lipid 
peroxidation or derived from the metabolism of 
classical chemical carcinogens. Some chemicals are 
directly carcinogenic, but most require metabolic 
activation before they can react with genetic material. 
Free radicals are involved in these activation 
reactions. Metabolic activation of carcinogens in 
P450-mediated reactions is known to produce a 
variety of activated species. The formation of these 
free radicals is in the endoplasmic reticulum.  
 
 

It is important to remember that highly reactive 
free radicals are essentially trapped in the immediate 
vicinity of their formation as a consequence of rapid 
interaction with neighbouring molecules. Therefore, 
their radius of diffusion is frequently small from 
cellular perspective. Reactive free radicals formed in 
the endoplasmic reticulum are unlikely to diffuse far 
enough to react with nuclear DNA. It has been 
postulated84, therefore, that metabolically activated 
free radicals must involve an intermediate chemical 
reactivity to directly impact DNA with covalent 
adducts.  
 

Therefore, the issue of location has led to the 
hypothesis that most cancer may originate in the 
mitochondrion rather than in the cell nucleus85. 
Mitochondria are self-regulating and contain their 
own DNA that directs the synthesis of some of the 
mitochondrial proteins. Mitochondrial DNA is a 
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single, circular molecule, much less protected than the 
coiled and chromatin-packaged nuclear DNA86. 
Mutagens bind to mitochondrial DNA up to 1,000 
times more strongly than to nuclear DNA87. Also, 
DNA repair mechanisms are much less efficient in the 
mitochondrion87,88. Thus, both mitochondrial DNA 
and the organelle’s inner and outer membranes, high 
in polyunsaturated fatty acids, are susceptible to 
attack by free radicals and electrophilic metabolites 
despite the impressive multilayer free radical defence 
system87, 89,90. It has been suggested that the damage to 
the mitochondrion by oxygen free radicals leaking 
from the electron transport chain may cause a baseline 
level of cancer (“natural” cancer), whereas damage 
resulting from mutagenic metabolites of chemicals 
may account for the remainder91. 
 

In the multi-step process of carcinogenesis, cell 
division is another critical factor92-94. When the cell 
divides, an unrepaired DNA lesion can give rise to a 
mutation. It is of interest that oxidants form one 
important class of agents that stimulate cell 
division95-97. This may be related to the stimulation of 
cell division that occurs during the inflammatory 
process, accompanying wound healing92. The idea of 
oxygen free radical involvement in tumor promotion 
is mostly supported by indirect evidence such as the 
ability of tumor promoters to induce the respiratory 
burst in phagocytic cells, the anti-promotor efficiency 
of antioxidants and free radical scavengers and the 
capacity of oxygen free radical generating compounds 
to promote tumors98-106.  
 

The relationship between chronic infection, 
inflammation and cancer is also of interest. 
 

Leukocytes and other phagocytic cells combat 
bacteria, parasites and virus-infected cells by 
destroying them with a powerful oxidant mixture of 
NO, O2, H2O2, and OCl- 107,108. These oxidants protect 
humans from immediate death vis-à-vis infection and 
simultaneously cause oxidative damage to DNA plus 
mutation109,110 thereby contributing to the 
carcinogenic process. It is estimated that chronic 
infections contribute to about one-third of the world’s 
cancer. Hepatitis B and C viri infect about 500 million 
people and are a major cause of hepatocellular 
carcinoma111-113. A chronic parasitic infection, 
schistosomiasis, may lead to cancer. It is prevalent in 
China and Egypt. It lays eggs in the colon producing 
inflammation that often leads to colon cancer114. It can 
also promote bladder cancer115. Helicobacter pylori 
bacteria infecting the stomachs of over one-third of 

the world population appear to be the major cause of 
gastritis, ulcers and stomach cancer116-121. Chronic 
inflammation resulting from non-infectious sources 
also contributes to various pathological conditions 
ultimately leading to cancer. For example, asbestos 
exposure causing chronic inflammation may be a 
significant risk factor in the development of lung 
cancer122,123. 
 
Atherosclerosis 

The predominant role of atherosclerosis in causing 
human disease and death justifies a short discussion 
of the possible role played by ROS in such 
pathogenesis (for review see refs. 124, 125). The view 
that peroxidative processes are involved in the 
etiology of cardio-vascular diseases, particularly 
atherosclerosis was suggested by early experimental 
and clinical data39,126-132. Epidemiological studies have 
demonstrated an association with low plasma 
concentrations of ascorbate, tocopherol, and  
B-carotene133-142. Within this context, the pathogenetic 
role of lipid peroxidation in myocardial infarction and 
stroke was repeatedly discussed. However, evidence 
also was considered at that time as  
circumstantial8,143-145. The strongest evidence in favour 
of this assumption was the protective effect of radical 
scavengers, particularly enzymes or drugs. 

Different mechanisms have been postulated 
wherein lipid peroxidation is involved in the 
development of artherosclerotic plaques causing 
thrombotic events including stroke or myocardial 
ischemia146. Lipid peroxidation especially that 
achieved via the production of ROS by activated 
monocytes/macrophages adhering to the arterial 
endothelium147 could make an early and significant 
contribution to the development of atherosclerotic 
plaques148.  

It has been demonstrated that one of the earliest 
events, which occurs in atheroma formation is the 
accumulation of cholesterol-laden foam cells in the 
subendothelial space. Most of the cholesterol 
deposited in the cells is derived from low-density 
lipoproteins (LDL). Human LDL is not only rich in 
cholesterol but also in polyunsaturated fatty acids 
(PUFA) which are susceptible to lipid peroxidation 

Free radical oxidation of LDL, is one of the 
biological modifications occurring in vivo that 
increases the rate at which LDLs are scavengered by 
macrophages; nonoxidized LDL is not scavengered at 
an increased rate149-157. Macrophages, the main 
precursors of the foam cells, do not take up low-
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density lipoproteins at a rate rapid enough to cause 
lipid loading149,158,159. However, presence of Fe2+ in 
plaques following entry of blood through plaque 
fissures and subsequent local hemolysis enhances the 
oxidation of LDL and thus promotes the accumulation 
of foam cells. In addition, toxic products of lipid 
peroxidation favour local necrosis, which may, in 
concert with other factors, initiate an inflammatory 
process. Furthermore, oxidative modifications of LDL 
can, in conjunction with cytokines promote the 
attachment of even more monocytes to the 
endothelium. In line with this thinking, SOD has been 
found to inhibit the oxidation of LDL suggesting that 
the superoxide radical is responsible for the process. 
However, metal ion chelators and other general free 
radical scavenger can also prevent this oxidation160-162. 
 
Brain pathologies 

A third field of early interest came from 
biochemical studies suggesting that ROS is important 
in a number of brain pathologies163-169. The brain 
consumes a disproportionate amount of the body’s O2. 
It derives its energy, almost exclusively from the 
oxidative metabolism of the mitochondrial respiratory 
chain. Mitochondria are found in neuronal cell bodies 
but are also distributed throughout the neuritic 
structures.  
 

Apart from high oxygen consumption, the brain is 
rich in oxidizable substrates, mainly unsaturated lipids 
and catecholamines. This initiated early interest 
regarding “oxygen radicals” as mediators of the action 
of certain neurotoxins, in the role of vitamin E in the 
nervous system and in the possible use of anti-
oxidants in treating degenerative diseases of the 
nervous system as well as the consequences of 
ischemia.  
 

The discovery of enzymes that specifically 
scavenge superoxide in aerobic cells (superoxide 
dismutases) led to the proposal that O2 is a major 
agent of O2 toxicity. This superoxide theory of O2 
toxicity170-173 is based upon a mass of evidence 
demonstrating that superoxide dismutases are 
important for survival in the presence of O2. SOD 
enzymes co-operate with other enzymes such as 
catalase and glutathione peroxidase that destroy H2O2 
173. Catalase decomposes H2O2 directly. Very little 
catalase is present in brain as compared with liver, 
kidney and erythrocytes. Catalase in tissues is located 
in small subcellular particles known as 
“peroxisomes”. The peroxisomes found in brain are 
very small as compared with liver peroxisomes and 

are often called “microperoxisomes”174. Most H2O2 
generated in brain in vivo is probably disposed of by 
glutathione peroxidase175. This enzyme removes H2O2 
by using it to oxidize glutathione (GSH). Glutathione 
peroxidase requires selenium for its action. Oxidized 
GSH (GSSG) is reconverted to GSH by a 
gluthathione reductase enzyme. Both glutathione 
peroxidase and reductase are present in all parts of the 
brain and nervous system. A role of GSH in 
neurodenegeneration is suggested by the observation 
that inborn defects in the ability to synthesize GSH 
produce severe mental and motor retardation and 
seizures176. It was also suggested that GSH depletion 
is involved in the Parkinson’s disease-like syndrome 
induced by the meperidine analogue, MPTP177. 
 

Particular attention has been focused on a role of 
oxygen radicals in Alzheimer’s disease. Alzheimer’s 
disease is a progressive neurodegenerative disorder 
affecting >5% of the population over the age of 65. It 
is characterized pathologically by cortical atrophy, 
neuronal loss, glial proliferation, excessive 
neurofibrilary tangles, and deposition of B-amyloid in 
neuritic plages178-181. One hypothesis is that cellular 
events involving oxidative stress may lead to 
neurodegeneration182-189. Indeed, ROS may be 
involved in the production, aggregation and toxicity 
of B-amyloid190 which is thought to contribute to 
neuronal damage in Alzheimer’s disease191. 
 

Recently, attention has been focused on proteins 
exposed to reducing sugars. These proteins undergo 
nonenzymatic glycation and oxidation, which 
ultimately form irreversible advanced glycation end 
products (AGEs). AGEs-modified proteins form 
cross-links which result in aggregation and 
insolubility; they are also a continuing source of 
potentially damaging reactive oxygen species. The 
longstanding protein aggregates in Alzheimer’s 
disease such as paired helical filament (PHF) tau and 
amyloid B-protein192-194, could form AGEs and 
contribute to the development of neuronal 
dysfunction. It has been demonstrated that PHF tau 
contains AGEs. Other evidence emanates from a 
study comparing the levels of oxidative damage to 
proteins, lipids and DNA bases from seven different 
brain areas of Alzheimer’s disease along with 
matched control tissues. No differences in levels of 
lipid peroxidation were found in any of the brain 
regions by using two different assay systems. 
However, both protein carbonyl levels and oxidized 
DNA bases were increased in Alzheimer’s in several 
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areas. The documentation of increased damage to 
protein and DNA strengthens the possibility that 
oxidative damage may play a role in the pathogenesis 
of Alzheimer’s disease. 

A few epidemiological studies are consistent 
regarding a protective effect by fruits, vegetables or 
antioxidants195-197 in a number of neurological 
pathologies including cerebral ischemia, Parkinson 
disease, familial amylotrophic lateral sclerosis (a 
chronic motor neuron degenerative disorder)198,199.  

The previous diseases are examples; data have 
demonstrated that many other diseases and clinical 
disturbances involve ROS reactions in mammalian 
systems. A list of such diseases is presented in  
Table 2200.  
 
 

Protein control quality and chronic disease development: Free 
radical damage and heat shock c.q. chaperone proteins 
 

In this section a survey is presented regarding the 
mechanisms underlying the defence reactions 
following increased oxygen radical production. Stress 
conditions, including excessive free radical production, 
lead to the production of heat shock proteins (HSPs), 
able to protect against damage. The HSP or stress 
proteins are also named as to their function, such as 
“chaperone proteins”, since they form complexes with 
proteinaceous and other cellular structures in order to 
prevent deleterious interactions between proteins. 
Understanding the molecular mechanisms of cellular 
protection and recovery from damage in injured cells 
had increased greatly in recent years. In particular, how 
chaperones at the molecular level facilitate stress 
regulation vis-à-vis protein quality control 
mechanisms, and have become hallmarks of a range of 
chronic diseases including neurodegenerative 
disorders, diabetes, atherosclerosis and many others. 
 

ROS damage protected by heat stress 
The suggestion that heat stress provides myocardial 

protection against ischemic-reperfusion injury has 

been extensively studied vis-à-vis cell cultures. When 
cells are exposed to a few degrees above their normal 
growth temperatures, inhibition of protein synthesis 
and cell death can occur201. However, when the 
treatment is sub-lethal, the cells exhibit a heat shock 
response202. The dramatic feature of this response is 
the massive and selective increase in synthesis of a 
small number of heat shock proteins203,204.  
 

Lee et al.205 observed that heat shock and oxidative 
stress share a common effect on cells. Heat shock can 
increase levels of lipid peroxidation as determined by 
the formation of TBA-products. The supporting 
evidence was obtained from studies on the induction 
of heat shock proteins and increased antioxidant 
enzyme activity by heat shock and oxidant  
stress206-208. Furthermore, it was observed that (a) 
inhibition of antioxidant defences induce the 
production of heat shock proteins and increase lethal 
susceptibility to heat shock209,210; and (b) augmenting 
antioxidant defences decrease tissue damage that 
occurs during reoxygenation following a period of 
hypoxia211.  
 

Similar conclusions were derived from studies with 
lung slices exposed to oxidant and hyperthermic 
stresses. Heat and oxidants as well as reoxygenation 
following hypoxia at normal temperatures induced 
heat shock proteins. Heat shock protein synthesis was 
also induced in lung slices exposed to the Cu chelator 
diethyldithiocarbamate which decreases the activity of 
Cu/Zn superoxide dismutase212. 
 

In isolated rat213 and rabbit214 hearts, heat stress can 
provide myocardial protection against ischemic-
reperfusion injury, reducing infarct size. In addition, 
heat stress can lead to an increase in cardiac catalase 
activity in the rat213 providing an important pathway 
for hydrogen peroxide detoxification160. Inhibition of 
catalase abolishes the protection against post-ischemic 
dysfunction afforded by prior heat stress215. It has, 

Table 2—List of diseases and clinical disturbances that involve ROS reactions in mammalian systems200 

Adult respiratory distress syndrome 
Aging 
Alcoholism 
Allergic encephalomyelitis 
Alzheimer disease 
Arteriosclerosis 
Autoimmune vasculitis 
Bronchopulmonary dysplsia 
Cancer 
Cataract 
Chronic autoimmune gastritis 
Cirrhosis 

Contact dermatitis 
Dermatomyositis 
Emphysema 
Favism 
Glomerulonephritis 
Gout 
Haemachromatosis 
Ischemia-reperfusion injury 
Lypofuscinosis 
Malaria 
Multiple sclerosis 
Muscular dystrophy 

Myasthenia gravis 
Pancreatitis 
Parkinson disease 
Psoriasis 
Retrolental fibroplasias 
Rheumatoid arthritis 
Senile dementia 
Sickle cell anemia 
Stroke 
Systemic lupus erythematosis 
Thalassemia 
Ulcerative colitis 
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therefore, been proposed that the benefit afforded by 
heat stress is due to an enhancement of cardiac anti-
oxidant status215 and HSP in facilitating cellular 
repair216. It can be concluded that both the induction 
of the anti-oxidant enzymes and the induction of 
HSP’s may be considered as part of the second tier of 
defense that takes place at the level of gene 
expression. Its significance has become very clear 
nowadays. 
 

Earlier work was perplexing in the way that many 
different agents were able to lead to the so-called 
‘stress response’ which started as a molecular 
curiosity in fruit flies in the early sixties217. Following 
the nomenclature first used for fruit flies, various heat 
shock proteins in animal cells are referred to on the 
basis of their mode of induction and apparent 
molecular mass in kDa. Hence their designation as 
HSP70 or grp78 for example refers to heat shock 
proteins of 70kDa and glucose regulated proteins of 
78kDa, respectively. Over the last 25 years, a number 
of observations provided support for the so-called 
abnormal protein or proteotoxicity hypothesis put 
forward to explain the induction of the heat shock 
response by a large variety of stress conditions218,219. 
When cells have been exposed to heat shock or to 
toxic substances such as ethanol, cadmium, arsenite or 
oxidative stress, the structure of many proteins is 
damaged. These abnormally shaped proteins become 
functionally inactive. Moreover, there is also a high 
risk that these abnormal protein molecules aggregate 
not only with other damaged proteins but also with 
still functional proteinaceous cellular structures.  
 

Proteins, with their structural and functional 
complexity are fragile macromolecules. Already 
during their growth, when polypeptides mature stage 
by stage, the chains cannot fold correctly until a 
complete folding domain has been created raising the 
possibility that incomplete domains may misfold. 
These developments take place within highly crowded 
compartments. Such conditions compete with normal 
folding and may cause the phenomenon of 
misassembly. Misassembly is defined as the 
misguided association of two or more polypeptide 
chains to form nonfunctional structures220. These 
structures may be as small as dimers or large enough 
to be insoluble. The emphasis on function serves to 
distinguish misassembly from the formation of 
functional oligomers termed oligomerization. 
Misassembly should be distinguished from misfolding 
which is defined as the formation of a conformation 

which cannot proceed to a functional level within a 
biologically relevant time scale. Misassemblies are by 
definition misfolded. 
 
 

Each protein in the cell has its own intrinsic 
propensity to unfold and misfold spontaneously, a 
tendency which increases with variations of 
environmental conditions. Thus, a continuous flux of 
toxic, misfolded proteins is spontaneously formed 
during the lifetime of a cell. Depending on their 
cellular concentration, misfolded species tend to 
assemble into stable protein aggregates in the 
cytoplasm which is also extremely crowded and 
viscous. The term ‘crowded’ is preferred to 
‘concentrated’ because, generally no single, 
macromolecular species occurs at a high 
concentration. However, taken together, 
macromolecules occupy approximately 8-40% of the 
total volume221. The cytoplasm is a space, in which 
densely crowded proteins, each with a different 
complementary function, must be able to move 
randomly to meet and timely interact with rare 
specific partners. Most proteins native to a living 
system contain repulsing, negative charges on their 
surfaces and thus refrain from exposing hydrophobic 
segments; these proteins can optimally maneuver and 
avoid each other in the highly promiscuous 
environment of the cytoplasm. In this context, the 
spontaneous conversion of a functional native protein 
into a misfolded one, exposing positive charges and 
new hydrophobic surfaces, will greatly increase both 
the friction between the macromolecules and the 
viscosity of the cytoplasm. Increased cytoplasmic 
viscosity reduces freedom of movement and 
consequently impairs the function of many 
cytoplasmic proteins in addition to the above-
mentioned cytotoxic effects of aggregates222-224.  
 

Bacteria and eukaryotes have developed defence 
mechanisms against “toxic” protein aggregation, 
utilizing two protein types: the molecular chaperones 
(typically HSP90, HSP70, HSP60, HSP27) and the 
ATP-dependent proteases (typically Lon, ClpC/X/P, 
FtsH, KslU/V, and the 26S proteasome)225. Laskey 
first proposed the term “molecular chaperone” for 
nucleoplasmin226. Ellis expanded the definition of 
molecular chaperone: a fully developed (stable) 
protein that escorts still developing proteins to prevent 
improper associations227. Presently, this definition of a 
protein with a simple escorting role is still applicable 
regarding some simple, binding chaperones such as 
the small HSP’s. However, it has since been 
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demonstrated that chaperones228 possess many active 
functions229: they convert part of the energy of ATP 
hydrolysis to repair structural damages in stable, 
misfolded, dysfunctional proteins. These chaperones 
forcefully disentangle stable dysfunctional aggregated 
proteins, unfold, refold and re-stabilize them into “re-
educated and born again” native, functional proteins 
in the cell. 
 

When there is no appreciable stress, molecular 
chaperones and the proteases exist in cytoplasm at 
low concentrations. This is sufficient to perform 
physiologic housekeeping functions and to remove 
sporadically misfolded proteins. However, during 
extreme situations such as oxidative stress or heat 
shock, chaperone and protease systems become 
overloaded by toxic protein forms. Cells synthesize 
then massive amounts of molecular chaperones and 
proteases 230. The stress-inducible nature of many 
molecular chaperones had led to early classification 
among the heat shock proteins (HSPs). They are 
categorized by molecular weight: HSP100, HSP90, 
HSP70 (HSP40, HSP20), HSP60 (HSP10) and 
HSP22/27 in eukaryotes (co-chaperones in brackets); 
and correspond to bacteria: ClpB, HtpG, DnaK (DnaJ, 
GrpE), GroEL (GroEs) and IbpA/B. Different 
chaperones display mutually non-exclusive properties. 
Some “binding” chaperones, e.g., HSP90, HSP70, 
HSP60, HSP40 and HSP22/27 can provide adhesive 
surfaces, which, upon interaction with partially 
denatured polypeptides or oligomerizing subunits, can 
passively reduce the extent of aggregation231,232. 
Unfolding chaperones, such as HSP100, HSP70 and 
HSP60 (possibly also HSP90) are involved in ATP-
dependent unfolding (followed by the spontaneous 
native refolding) of denatured polypeptides233, 234.  
 

The literature regarding the roles of various 
chaperone types suggests two functionally different 
classes. Small chaperones (less than 20 kDa) bind 
transiently to short hydrophobic sequences on 
polypeptide chains and prevent them from both 
folding prematurely and misassembling by binding to 
these sequences for a period of time. Large 
chaperones, exemplified by GroEL, function basically 
by providing a molecular cage composed of one 
oligomer of GroEL capped by one oligomer of GroES 
235. Single, partly folded chains are encapsulated one 
at a time inside this cage. The enclosed chain 
continues to fold in the absence of other folded chains 
until the hydrophobic surfaces that cause misassembly 
are buried within the final folded structure. The time 

of folding inside this cage is set by the slow ATPase 
activity of the GroEL subunits and results ultimately 
in the release of the folded chain into the cytosol220. 
These data demonstrate that during one’s lifetime, 
cells maintain a battery of defense that reduces the 
concentration of toxic, misfolded protein species, 
maintaining them below critical toxic concentrations. 

As we age molecular chaperones and proteases are 
insufficiently produced. We may react poorly to 
environmental stress236. The levels of molecular 
chaperones and proteases are significantly decreased. 
Simultaneously, irreversibly damaged proteins 
accumulate237, 238 due to decline in functional 
proteasomes and lysosomes. In addition to their general 
cytotoxic effect, irreversibly damaged proteins can 
inhibit the activity of the remaining minority of 
functional chaperones and proteases. At this stage, old 
cells often choose suicide, which may at times, be 
advantageous, for example with cancer cells. HSP70 
has been shown to protect against cell death by directly 
interfering with the mitochondrial apoptosis 
pathway239. 

The occurrence of protein damage as the origin of 
cellular disorder is increasingly recognized as a main 
biomedical focus of interest since its occurrence not 
only has been observed as a result of physical and 
chemical stress but also upon exposure to pathogens 
as bacteria and viruses, during ischemia, 
inflammation, transplantation and upon 
neurodegenerative and other chronic diseases (see 
further in this chapter). The overproduction of 
molecular chaperones following treatments with 
various non steroidal anti-flammatory drugs 
(NSAIDs, e.g., sodium salicylate230, ibuprofen240), and 
less classical HSP-inducers such as celastrol241, 
resveratrol (french paradox)242 and 
geranylgeranylacetone243, may be responsible for the 
reduction of damages related to reactive oxygen and 
induced programmed cell death in various damaging 
contexts. Examples include ARDS244, and post-
ischemic reperfusion245. 

 
Regulation at gene expression level  

A simple model for the regulation of availability of 
protector proteins in defense following damage is 
regulated at cell’s DNA level. The quantity of free 
protector proteins available in the cell decreases under 
these adverse circumstances. As long as these 
essential proteins are available, damage is reduced to 
a minimum. However, when a shortage arises in the 
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case of an overload of damage, the originated 
abnormal protein molecules are capable of 
complexing with other cell structures. Cell damage 
can then only be avoided by production of new 
protector proteins. The replenishment of these 
protector proteins starts with activation of associated 
protector protein gene promoters on the cell’s DNA. 
This highly specific event occurs by binding of 
specific DNA-binding factors, called heat shock 
transcription factors (HSF’s) on specific (promoter) 
DNA-sites246. This binding constitutes the signal that 
triggers transfer of information from DNA into 
mRNA, leading eventually to synthesis of new 
protector proteins. 

Whether or not these DNA-binding factors interact 
with the DNA depends on the existing quantity of 
protector proteins in the cell. The genome is only 
specifically activated to trigger this synthesis of 
additional protector proteins when their quantity falls 
below a certain threshold. Normally, at least one type 
of protective protein HSP70, forms a complex with 
HSF, which provides the basis for this regulation. If 
protector proteins are required to neutralize abnormal 
proteins, this complex dissociates, causing release of 
HSF which then binds to the promoters and induces 
mRNA production with the ensuing synthesis of new 
protector proteins. When sufficient new protector 
proteins have been produced, i.e. when their amount 
is raised above the threshold value, HSP70 will again 
form a complex with HSF molecules, uncoupling it 
from DNA, with a concomitant halt of mRNA 
production. This molecular reaction cycle can be 
indicated, in terms of systems theory, as the 
autoregulation loop which is the basis of damage-
induced recovery processes. 

However, cells do not use only one type of 
transcription factor (HSF) in response to stress 
conditions; they use multiple signalling pathways and 
transcription factors to fine-tune their response to 
specific circumstances. In addition to the heat shock 
factor, also nuclear factor-kB, nuclear factor 
erythroid-2 and activator protein-1 families have been 
recognized as important regulators of the cellular 
stress response. These different families of 
transcription factors are generally activated by 
different stress conditions. Although there is a 
functional overlap between these individual families 
and a given stimulus can activate members of more 
than one (and even all four) of these transcription 

factors, they broadly regulate different aspects of the 
cellular stress response by modulating specific target 
genes. As was described above, HSF is activated 
under stress conditions characterized by significant 
intracellular accumulation of non-native proteins and 
consequently activates genes whose products are 
capable of alleviating this condition and restoring the 
integrity of damaged proteins. NF-kB is an important 
regulator of cytokines and other mediators of the 
immune and inflammatory response that provides 
protection against bacterial and viral infections. Nrf2 
is activated by various xenobiotics and oxidants and 
therefore regulates genes encoding proteins with 
xenobiotic detoxification and antioxidant activities. 
Finally, AP-1 factors control cellular fate by 
regulating production of proteins that mediate cell 
growth or cell death, the latter being the most drastic 
decision by a cell under extreme stress. Various 
stimuli may simultaneously cause multiple types of 
‘molecular’ stress and therefore may activate two or 
more of the transcription factors, leading to a 
differential stimulus-specific gene expression. It has 
indeed been observed that a unique pattern of stress 
proteins is induced when cells are exposed to different 
stress conditions247. 

Heme oxygenase-1 (HO-1 or HSP32) appears to be 
the only protein which is induced by all four of the 
stress-responsive factors248. Upregulation of the HO-1 
gene is associated with marked cytoprotection. 
Studies using HO-1 deficient cells and mice249 have 
confirmed that the HO-1 system is indispensable to 
survival and, in particular, to protection from oxidant 
stress250-252. HO-1 is the rate-limiting enzyme in the 
breakdown of heme with bile pigments (biliverdin and 
bilirubin), iron and the gas CO as catalytic end 
products. Although initially viewed as obscure waste 
products with potential toxicological implications, 
they are currently seen as serving a critical 
physiological role in cytoprotection during cellular 
stress and organ pathology. Bilirubin is considered to 
be the most potent antioxidant molecule in serum253. 
CO also serves a clear physiological (hormetic) role 
in cellular defence ameliorating inflammatory and 
ischemic injuries254, whereas iron stimulates the 
upregulation of the iron-binding ferritin protein which 
helps to prevent Fenton reactions leading to the highly 
damaging hydroxyl radical. A number of review 
papers have emphasized the importance as well as the 
clinical relevance of heme oxygenase since an 
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upregulation of HO-1 leads to an enhanced resistance 
against a broad range of (oxidative) stress conditions 
and alleviates a number of pathological conditions 
including cardiovascular disease, neurodegenerative 
diseases and inflamm-ation251,252,254,255.  

The unique pattern of stress proteins induced in 
cells that are exposed to different stress conditions has 
other highly interesting consequences. A brief and 
moderate heat shock to Reuber H35 hepatoma cells 
causes a rapid increase in the synthesis of heat shock 
proteins (HSP) and initiates the development of 
thermotolerance, which results in an increased ability 
to survive exposure to otherwise lethal temperatures. 
Low doses of various chemical stressors [arsenite, 
cadmium, mercury, lead, copper, menadione and 
diethyldithiocarbamate (ddtc)], at concentrations that 
do not exert any effect in control cultures, are able to 
enhance the synthesis of HSP’s and to stimulate the 
development of thermotolerance when applied to 
cultures which were pretreated with a mild heat 
shock256. The degree of stimulation appears to be 
stressor-specific, which is not only observed in the 
ensuing development of thermotolerance but also in 
the enhancement of the heat shock-induced synthesis 
of stress proteins. The different HSP’s that show an 
enhanced induction when heat shocked cultures are 
exposed to the various secondary applied low doses of 
chemical stressors, were found to resemble the HSP 
pattern that is characteristic for the secondary stressor 
and not for the initial heat shock. In other words, the 
nature of the post-treatment determines the observed 
pattern of enhanced synthesis of HSP’s. In order to 
analyze the origin of the stimulation of survival 
capacity by low doses of the mentioned stressors, it 
was studied whether the degree of stimulation is 
determined by the degree of similarity between the 
overall stress response to heat shock and to the second 
stress condition when applied singly. The degree in 
which low doses of chemical stressors stimulate 
tolerance development and enhance the synthesis of 
HSP’s in cells that were previously heat shocked, 
appears to be related to the degree of similarity in the 
HSP pattern induced by both stressors. The results 
support the notion that low doses of toxic compounds 
may, under certain conditions, have beneficial effects 
related to a stimulation of endogenous cytoprotective 
mechanisms. 
 
Misfolded proteins and aggregates in disease 

Misfolded proteins and aggregates are hallmarks of 
a range of neurodegenerative disorders including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), 
amylotrophic lateral sclerosis (ALS), polyglutamine 
(polyQ) diseases that include Huntington’s disease 
and related ataxias257-259 as well as diabetes260. Each of 
these disorders exhibits aging-dependent onset and a 
progressive, usually fatal clinical course. Despite 
differences in the underlying genes and clinical 
presentation, similarities observed have led to the 
proposal that cellular protein quality control is the 
underlying common denominator of these diseases261. 
In this section this is first illustrated for a clinical 
situation, type 2 diabetes mellitus, and subsequently 
illustrated with basic research utilizing a model for 
polyQ pathogenesis. 
 
Type 2 Diabetes mellitus (T2DM) 

One of the most important cellular stressors in 
T2DM that contribute to protein misfolding and 
aggregation is redox stress. ROS may impact disulfide 
bond formation262 and subsequently influence the 
development of Islet amyloid polypeptide (IAPP) 
misfolding. IAPP oligomers precede islet amyloid 
deposition. Disulfide bonds formed in newly 
synthesized proteins are important for proper protein 
folding, protein structure, biological activity, and 
stability of many secreted and membrane 
proteins258,263,264. Protein folding in eukaryotes takes 
place in the ER with assistance from many redox-
sensitive chaperones and oxidoreductases (e.g., 
protein disulfide isomerase, Erp44, Erp57, Erp72, 
GRP58, HSP33)264. Growing evidence implicates both 
ROS and RNS (radical nitrogen species, such as the 
reaction of superoxide anion (O2

–) with nitric oxide 
(NO) to form peroxynitrite and other RNS) could 
contribute to protein misfolding265, and are important 
in the development of diabetes266-270. When the 
protein quality control system is overwhelmed and 
IAPP is not capable of being correctly refolded, this 
protein can become a soluble toxic monomer. Soluble 
IAPP oligomers have been shown to be cytotoxic and 
possibly responsible for beta cell apoptosis in 
T2DM271-273. Accumulation of mature islet amyloid is 
responsible for the space-occupying lesion with 
associated secretory and absorptive defects within the 
islet. 

Thus, type 2 diabetes mellitus (T2DM) is an 
example of a conformational disease featuring a 
protein that aggregates in beta-pleated sheets that are 
linked by hydrogen bonding between their aligned 
pleated structures260. The contribution of islet 
amyloidosis to disease pathogenesis has been 
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vigorously debated 274. IAPP oligomers that precede 
islet amyloid deposition are likely more toxic to beta 
cells than islet amyloid itself. The misfolded, soluble 
oligomeric proteins promote apoptosis271,275. 
Clinically, it is clear that aggregates of misfolded 
IAPP are a prominent pathological feature in the 
development of T2DM (reviewed by Hayden and 
Tyagi276). Islet amyloid is present at autopsy in as 
many as 96% of patients with T2DM277. In case of 
T2DM, amyloid fibrils are formed with subsequent 
stabilization by accessory molecules, such as serum 
amyloid P, perlecan, and apolipoprotein E 274. 

An additional factor in disease development is that 
mitochondrial respiratory function has been 
demonstrated to decline in various human tissues 
during the aging process278,279. Mitochondria are the 
major intracellular source and primary target of ROS, 
which are generated under normal conditions as by-
products of aerobic metabolism in animal and human 
cells. It has been established that defects in the 
respiratory chain lead to increased production of ROS 
and free radicals in mitochondria280-282. Mitochondrial 
biology is one of the fastest growing areas in 
molecular genetics and medicine. Mitochondrial 
diseases are very numerous and different. Apart from 
diseases definitely caused by abnormalities in 
mitochondrial DNA, many diseases are suspected to 
be caused in part by dysfunction of mitochondria, 
such as diabetes mellitus, forms of cancer and 
cardiovascular disease, lactic acidosis, specific forms 
of myopathy, osteoporosis, Alzheimer’s disease, 
Parkinsons’s disease, stroke, and many more. The 
decline in functioning is caused, at least partly, by 
oxidative damage and mutation of mitochondrial 
DNA (mtDNA) and lipid peroxidation in somatic 
tissues of aged individuals279, 283-287. Recently, it was 
found that mtDNA copy number is increased in the 
tissues of elderly human subjects283. Taken together, 
these findings suggest that the increase in 
mitochondrial mass and mtDNA content are the early 
molecular events of human cells in response to 
endogenous or exogenous oxidative stress through 
cell cycle arrest and it was thought to compensate for 
respiratory function decline during the aging 
process288,289. 
 
PolyQ disease: Caenorhabditis elegans in basic research 

There is growing evidence for genes involved in 
protein folding and degradation that modulate onset, 
development and progression in models of multiple 
neurodegenrative disease290-292. Some of the disorders, 

including the polyQ diseases, exhibit familial 
inheritance that facilitates the identification of single 
gene alterations underlying the disorders293-296. Other 
diseases are sporadic and yet, they too have helped to 
identify candidate genes that could reveal insights into 
pathology. These include mutations of amyloid 
precursor protein in Alzheimer’s disease, parkin and 
alpha-synuclein in Parkinson’s disease and superoxide 
dismutase in amylotrophic lateral sclerosis297-302. 
Identification of these genes has led to the 
development of transgenic mouse, cell culture models 
as well as models using Drosophila and C. elegans to 
study neurodegenerative disease303-307. 

In a few animal models it can be demonstrated that 
aggregation is accompanied by cellular dysfunction 
and formation of polyQ aggregates visible by light 
microscopy308,309. An illustrative research line is the 
study of polyQ-length-dependent aggregation in 
neuronal dysfunction by Morimoto and colleagues 
utilizing C. elegans. Behavioral phenotypes of C. 
elegans were examined to test whether polyQ 
aggregation in neurons was accompanied by 
neurotoxicity. There was a polyQ length-dependent 
loss of coordinated movements leading to nearly 
complete paralysis. Animals with no visible polyQ 
aggregates (Q0 animals) demonstrated rapid 
movements similar to wild type animals. Animals 
with visible aggregates, Q67 and Q86, had limited 
capacity for coordinated movements. Animals with 
intermediate polyQ length, for instance Q19, showed 
an intermediate situation with slight decrease of 
movement. These data suggest that formation of 
visible polyQ aggregates correlates with neuronal 
dysfunction. Studies on the influences of aging 
regarding the threshold for polyQ aggregation and 
toxicity focused on the behavior of polyQ proteins309. 
Individual animals were examined daily for the 
appearance of protein aggregates and motility. Q40 
and Q82 animals quickly accumulated aggregates of 
protein and exhibited a rapid decline in motility; Q33 
and Q35 animals exhibited an initial lag prior to the 
gradual accumulation of aggregates demonstrating 
ultimately lower levels. This data reveal that the 
threshold for polyQ aggregation and toxicity is age-
dependent309. The molecular link between these 
pathways is regulated, in part, by factors that detect 
and respond to misfolded proteins: namely, heat 
shock transcription factor (HSF) and molecular 
chaperones/heat shock proteins. For example, it has 
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been shown that inhibition of HSF-1 function leads to 
decreased lifespan and an accelerated aging 
phenotype in C. elegans310-312. Conversely, 
overexpression of HSF-1 in C.elegans extends 
lifespan311,312. 

In summary, there is convincing evidence to 
support a role for oxidative stress in the pathogenesis 
of many chronic diseases. The model includes 
misassembly and aggregation of proteins when three 
major tiers of defense are insufficient: (a) direct 
antioxidative systems, (b) molecular damage repair 
systems (like chaperones), and (c) capacity of the 
compensatory chaperone synthesis. Aggregates of 
amyloid proteins are commonly novel producers of 
ROS.  

This has resulted in the hypothesis that during life 
time depending on both, predisposition and stressful 
conditions, the defence system can fail and an 
increase of ROS occurs in the early period of 
development of chronic diseases. The implications of 
this hypothesis for diagnostic purposes has raised 
interest in the use of noninvasive procedures to record 
human oxidative in relation to development of 
pathology of chronic diseases (such as Alzheimer’s 
disease and diabetes) that are supposed to be linked to 
non-linear progression in ROS production. A number 
of patients with these diseases are also taking 
antioxidant therapy on the recommendation of their 
caregivers or physicians in the belief that such therapy 
may offer some protective benefit. Along this line, the 
development of a noninvasive tool for detection of 
human emission and its validation is crucial.  

The next section reviews the current status and 
future issues of the human photon emission 
techniques and protocols for recording the human 
oxidative status, i.e., recent knowledge regarding 
uniformity and variation in anatomical pattern of 
photon emission, its dynamics in vis-à-vis internal 
physiology and psychophysiology, and its relation to 
health and disease. 
 
Low level luminescence as marker of oxidant status of 
biological systems 

Many techniques are available to measure the 
progress of oxidation, but none is applicable to all 
circumstances. A summary of techniques as 
biomarkers of oxidative stress in tissue damage, 
focusing predominantly on the measurement of 
biological lipid peroxidation has been reviewed by 
Gutteridge and Halliwell313 and summarized in  
Table 3. The table contains the techniques to detect 

lipid peroxidation as evidence most frequently cited to 
support the involvement of free-radical reactions in 
toxicology and disease. However, no single method is 
adequate for all stages of lipid peroxidation in a 
biological system and few have the desired 
specificity. Although most techniques have focused 
on lipids, it is evident that proteins are also targets for 
oxidation in biological systems under oxidative stress. 
Both aspects of oxidative stress can be recorded with 
the chemiluminescence method. Both lipid314 and 
protein oxidation315 are accompanied by spontaneous 
light emission that may be easily detected with 
sensitive photomultipliers316. 

Luminescence of living organisms has fascinated 
scientists since antiquity313,317,318. Until 1961 it was 
thought to be restricted to organisms with “light 
organs” containing luciferin-luciferase systems. At that 
time, Tarusov et al.17 used photon counting to identify 
a weak blue-green light emission from mouse liver 
in situ. This observation was later extended to brain, 
muscle, intestine, tissue homogenates and lipid 
extracts17-19, 319-321. The existence of such light emission 
was labeled "low-level” chemiluminescence or “dark” 
chemiluminescence to differentiate it from the more 
effective photoemission of the luciferin/ luciferase 
systems which is 103-106 times brighter16,19. In early 
studies, yeast cells322, 323, phagocytosing leukocytes/ 
macrophages324-326 and hepatocytes327 exhibited “low 
level” luminescence16. This luminescence cannot be 
seen by the dark adapted human eye because retinal 
illumination of 3 × 103 photons sec-1 cm-2 is required to 
perceive a luminous signal328.  
 
Low level chemiluminescence in production of electronically-
excited states 

Low-level chemiluminescence was soon related to 
the direct utilization of molecular oxygen and the 
production of electronically-excited states in 
biological systems; in particular, the oxygen 
dependent chain reactions involving biological 
lipids14,15,17-19,321. This earlier research on low-level 
chemiluminescence was largely unnoticed in America 
and Europe, but reports by Nakano and colleagues on 
light emission during lipid peroxidation, both in 
isolated microsomes and during other oxidative 
reactions, revived the interest in chemiluminescence 
and suggested its use as a tool for the investigation of 
the radical reactions of lipid peroxidation under 
physiological conditions329-331. The simplified systems 
employed in these earlier studies demonstrated  
a   remarkable  rule:  during  the  early  stage  of  lipid 
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Table 3—Methods used to detect and measure biological lipid peroxidation. 

What is measured  Method Remarks 

Loss of unsaturated 
fatty 

Analysis of fatty acids by 
GC or HPLC 

Very useful for assessing lipid peroxidation stimulated by different metal complexes that 
give different product distributions. 

Uptake of oxygen by 
carbon-centered 
radicals  

Oxygen electrode Dissolved oxygen concentration is measured. Useful in vitro when spectrophometric 
interference occurs or when chemicals interfere. Not very sensitive. 

Lipid peroxides Iodine liberation Lipid peroxides oxidize I- to I2 for titration with thiosulfate. Useful for bulk lipids, e.g., 
foodstuffs. H2O2 also oxidizes I- to I2. In the presence of excess iodine the triiodine anion 
(I3

-) can be measured at 353 nm. 
Lipid peroxides Heme degradation of 

peroxides  
Heme moiety of proteins can decompose lipid peroxides with formation of reactive 
intermediates. Radicals produced can be reacted with isoluminol to produce light. 

Lipid peroxides GSHPx GSHPx reacts with H202 and hydroperoxide, oxidizing GSH to GSSG. Addition of 
glutathione reductase and NADPH to reduce GSSG back to GSH results in consumption 
of NADPH, which can be related to peroxide content. Cannot measure peroxides within 
membranes; they must first be cleaved out by phospholipases. 

Lipid peroxides Cyclooxygenase Stimulation of cyclooxygenase activity can be used to measure trace amounts of 
peroxide in biological fluids. This assay cannot be used to identify specific peroxides. 

Lipid peroxides/ 
aldehydes 

GC-MS Extraction, reduction (e.g., by borohydride) to alcohols, separation by GC, identification 
by MS. Several variations of these methods exist. 

Pentane and ethane Hydrocarbon gases GC measurement of gases formed during lipid peroxide decomposition. Only a minor 
reaction pathway but can be used as a noninvasive in vivo measure of peroxidation. 
Results in practice have been variable. Rigorous controls are required. 

Excited carbonyls, 
singlet oxygen 

Light emission Reaction of peroxyl radicals can produce excited-state carbonyls and singlet 02. Both 
species emit light as they decay to the ground state. Measurement of low-level 
chemiluminescence is a method for measuring generation of reactive oxygen species in 
whole organs, but the light appears to arise from several sources. 

Aldehydes Fluorescence Aldehydes such as malondialdehyde can react with amino groups to form Schiff bases 
(at acid pH only). At neutral pH, fluorescent dihydropyridines may be formed. 
Formation of fluorescent products is a minor reaction pathway and has very complex 
chemistry. It should never be assumed, without detailed characterization, that fluorescent 
products accumulating in vivo are end products of lipid peroxidation. 

TBARS TBA test The test material is heated at low pH with TBA, and the resulting pink chromogen is 
measured by absorbance at ~532 nm or by fluorescence at 553 nm. The chromogen can 
be extracted into butan-1-ol. Most of the aldehydes that react with TBA are derived from 
peroxides and unsaturated fatty acids during the test procedure. Simple and nonspecific 
assay, rigorous controls required. 

Aldehydes Antibody techniques, GC-
MS, HPLC 

Hydroxyalkenals such as 4-hydroxynonenal are products of lipid peroxidation that are 
cytotoxic at nanomolar concentrations. They can be measured by HPLC or GC-MS. 
Several techniques have been developed that involve antibodies to detect proteins 
modified by lipid peroxidation products. 

Diene conjugation UV spectrophotometry Oxidation of unsaturated fatty acids is accompanied by an increase in UV absorbance at 
230-235 nm. Useful for bulk lipids. Requires extraction or separation techniques for 
biological use. Serious problems can arise when used on human body fluids. 

Octadeca-9,11-
dieonic acid 

Linoleic acid isomer This isomer accounts for most of the diene conjugation present in human plasma and 
tissues but has not been produced in oxidatively stressed animal and model lipid systems. 
A single isomer of one polyunsaturated fatty acid is more indicative of an enzymic 
reaction than random free radical attack. 

Nitrone adducts of 
reactive short-lived 
free radicals 

Spin trapping Spin traps allow the formation of stable nitroxides, which can be examined by electron 
spin resonance. Spin traps can be used in animal experiments in vivo to detect carbon-
centered radicals as well as alkoxyl and peroxyl radicals. 

F2-isoprostanes GC-MS HPLC Peroxidation of polyunsaturated fatty acids produces a complex mixture of non-specific 
rostaglandin isomers.  

GC, gas chromatography; MS. mass spectrometry; GSH, glutathione; GSHPx, glutathione peroxidase; GSSG, oxidized glutathione; UV, 
ultraviolet; TBARS, thiobarbituric acid-reactive substance. 
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peroxidation, the intensity of chemiluminescence is 
proportional to the square of the concentration of lipid 
peroxide, suggesting that singlet oxygen and a 
compound in the triplet state (probably a carbonyl 
compound) are both generated by a self-reaction of 
lipid peroxy radicals330. 
 

Other reports on chemiluminescence directed 
attention to mitochondria as the second important 
contributor to cellular chemiluminescence. Data 
collected in experiments with perfused liver, isolated 
liver mitochondria and isolated submitochondrial 
particles suggested that (a) intensity of light emission 
by mitochondria was dependent on the metabolic 
state, (b) singlet molecular oxygen was mainly 
responsible, and (c) chemiluminescence integratively 
measures radical reactions involved in lipid 
peroxidation and related processes332. 
 

In this sense, mitochondrial and microsomal 
fractions332, 333 behave similarly with respect to light-
emission: in both cases, singlet molecular oxygen 
appears mainly responsible for the observed 
chemiluminescence. The experimental evidence for 
the generation of singlet oxygen was obtained mainly 
through the effect of specific quenchers329,333,334 or 
spectral analysis329. In mitochondria, microsomes and 
submitochondrial particles, optimization of light 
emission requires (a) a membrane-bound electron 
transfer system, (b) added hydroperoxide and (c) the 
presence of O2 

332,333. Oxygen containing species (O2
-, 

H2O2, HO-, RO΄, ROO΄ and singlet oxygen) were 
generated either by an interaction of oxygen with the 
components of the respiratory chain or by the 
homolytic scission of hydroperoxides by 
hemeproteins 332,333,335-337. These species were able to 
initiate free radical reactions, primarily through 
increased HO' and RO΄ formation, ending in lipid 
peroxidation28,338-341. 
 

Despite many experiments demonstrating that 
spontaneous chemiluminescence increases when 
using extracellular stimuli such as hydroperoxides or 
increased oxygen tension342, it took more time to 
understand how chemiluminescence is affected when 
changes in the intracellular steady-state concentration 
of hydroperoxides occur. However, this problem was 
eventually addressed with additional knowledge about 
inhibitors of enzymatic and nonenzymatic 
intracellular defences against partially reduced 
oxygen species that, as a consequence, could lead to 
an increased intracellular concentration of oxygen 
radicals. The intracellular steady-state concentrations 

of hydrogen peroxide or the superoxide anion were 
increased by inhibiting either catalase, glutathione 
peroxidase or superoxide dismutase activities. This 
information explained the increased spontaneous 
chemiluminescence after inhibition of any antioxidant 
enzyme343.  
 

The most important aspect of organ 
chemiluminescence is that it provides, on a non-
invasive basis, a signal of oxidative metabolism and the 
(overall) free radical, steady-state concentration that is 
readily and continuously detectable. It is possible to 
continuously monitor the metabolism of organs in vivo 
with chemiluminescent techniques. In that respect, 
chemiluminescence has been favored compared to 
other indirect assays of lipid peroxidation such as 
glutathione release28, evolution of hydrocarbons344,345 
or malondialdehyde accumulation327,346.  
 

Many comparative studies on different assays have 
been completed utilizing chemiluminescence compared 
to other assays regarding lipid peroxidation. One study 
focused on doxorubicin (DXR), a widely used 
antineoplastic agent that is known to induce 
cardiotoxicity. This toxicity is mediated by reactive free 
radicals produced by DXR. DXR undergoes NADH 
dehydogenase-catalyzed one-electron reduction to a 
semiquinone free radical in mitochondria347,348. 
Subsequently, these free radicals participate in DXR 
induced lipid peroxidation of mitochondrial membranes. 
DXR induced lipid peroxidation is generally evaluated 
by TBARS formation. However, fluorescent substances 
and high molecular weight protein aggregates, both non-
specific indicators of lipid peroxidation, have also been 
employed349. ESR measurements have been used to 
specify the molecular nature of reactive oxygen species 
generated during DXR redox cycling350,351. An 
additional chemiluminescence study confirmed an 
increased free radical generation utilizing noninvasive, 
continuous monitoring of chemiluminescence produced 
during DXR redox cycling and its analysis with 
chemiluminescence spectroscopy. 
 

Both chemiluminescence and one other type of 
assays for detecting free radical generation were 
utilized to study ischemia and reoxygenation 
(reperfusion) in heart and liver. 
 

In the late 80’s and early 90’s, the rapidly growing 
interest in oxygen toxicity and free radical reactions in 
biology and medicine led to the hypothesis that 
reoxygenation damage may be produced by increased 
free radical generation352-355. The possibility that 
myocardial ischemia followed by an attempt to 
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therapeutically reoxygenate, generates free radicals 
was, in fact, supported by the direct Electron Spin 
Resonance (EPR) technique59,356-358. An additional 
chemiluminescence study confirmed an increased free 
radical generation rate during post ischemic 
reoxygenation of the heart utilizing non-invasive, 
continuous monitoring of ultra-weak chemilumine-
scence at the surface of the heart359. 

A similar involvement of oxygen radicals was 
proposed in the pathogenesis of hepatic ischemia-
reperfusion injury360. One related potential practical 
clinical application is when a liver has been preserved 
for transplantation and in the process subjected to a 
prolonged period of anoxia361. Reperfusion 
(reoxygenation) is required for the graft to function; 
however, paradoxically, a sequence of events may 
occur during reimplantation that leads to increased 
injury (reperfusion injury). The major support for this 
theory was first based on experiments that 
demonstrated protective effects of superoxide 
dismutase, catalase or other oxygen radical 
scavengers362,363. However, a sensitive biochemical 
methodology to measure free radical formation in the 
liver is not easily available. The short half-lives and 
broad line widths of many of the oxygen radicals 
make direct measurement with ESR within 
physiologic conditions difficult, if not impossible. 
The use of spin traps such as 5,5-dimethyl-1-pyrroline 
N-oxide (DMPO) have been used in biological 
systems to study oxyradical formation, but they may 
alter the very processes that are being measured. 
Other commonly used parameters such as lipid 
peroxidation or efflux of oxidized glutathione in the 
bile316 lack sensitivity; the latter situation is limited by 
a dearth of biliary effect during hypoxia / anoxia. 
Monitoring oxygen radicals in a continuous and non-
invasive manner by the chemiluminescence technique 
in an isolated liver perfusion model has, in fact, 
provided the essential data361,364. It has clearly 
demonstrated superoxide radical formation during 
hepatic reperfusion.  

Summarizing these developments, 4 points can be 
made: 

(1) Substantial information has been gathered 
regarding what reactions lead to increased light 
emission. Several models have been used to 
characterize the nature of the emissive species in 
in vitro systems. In vivo, antioxidant enzymes are 
commonly utilized to manipulate spontaneous 
light emission. 

(2) Spontaneous light emission is useful as a non-
invasive technique to monitor changes in the 
steady-state oxidative conditions of intact cells and 
organs without adding reagents that could interfere 
with the process343,365-368. Chemiluminescence 
seems to be one of the earliest physiologic 
responses to oxidative stress367. It precedes other 
parameters of oxidative stress, other parameters 
being based on metabolic end products of 
oxidative reactions (i.e. carbonyls, lipoperoxide 
derivatives, pentane and ethane release, capillary 
permeability, etc). 

(3) A few factors have limited the application of the 
technique. (a) The low intensity of emitted light 
limits the use of interference filters to better 
characterize emission wavelength and provide 
information on chemical nature of specific 
oxidized intermediates369; (b) Moreover, photo-
multipliers are not equally sensitive to light 
emitted at different wavelengths. Most sensitive 
photomultipliers detect light between approxi-
mately 350 and 850 nm, with maximal quantum 
efficiency around 24% at 400–500 nm. However, 
knowledge about species specificity is more 
interesting for scientific purposes than for 
diagnostic purposes. It is also interesting to 
observe the increasing interest to develop these 
methods as part of biophotonics research 
methodology370. 

(4) Taking the technical limitations into account, 
spontaneous (natural) ultraweak photon emission 
originating from living organisms offers significant 
information on physiological and functional 
conditions of vital systems and may be considered 
to reflect the state of oxidative stress in vivo. 

 
Technical developments in low-level luminescence recording 

The spontaneous chemiluminescence technique 
offers additional perspectives since such a system can 
also be developed for highly sensitive imaging and 
spatiotemporal analysis. A two-dimensional photon 
counting imaging of a rat’s brain was technically 
achieved in 1999371. The equipment used in this first 
experiment consisted of a two-dimensional photon-
counting tube with a photocathode measuring 40 mm 
in diameter, a highly efficient lens system, and an 
electronic device to record time series of a 
photoelectron train with spatial information. Utilizing 
the imaging system, regional time courses of emission 
intensity have been demonstrated, indicating the 
potential usefulness of spatiotemporal characterization 
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regarding physiological information on oxidative 
stress. Spontaneous photon emission was further 
imaged from a rat’s cortex in vivo during cardiac arrest. 
The intensity after cardiac arrest was depressed to 
approximately 60%. This technology constitutes a 
novel method with the potential to extract 
pathophysiological information from the central 
nervous system372. 

Another application has been in the field of 
transplanted tumors, both with photomultipliers and 
imaging equipment. Early interest focused on the liver 
of tumor-bearing animals. The liver of tumor-bearing 
animals is subjected, during the early phase after 
tumor implantation, to an increased oxidative stress. 
The increased steady-state levels of peroxyl radicals 
are essentially responsible for the increased 
photoemission observed in vivo. Utilizing integrative 
studies on tumor-bearing animals, the in situ liver 
chemiluminescence316 was measured simultaneously 
along with the activity of antioxidant enzymes and the 
content of endogenous antioxidants. The increased in 
situ liver chemiluminescence in the early phase after 
tumor implantation in tumor-bearing mice is 
associated with (a) decreased activity of the protective 
antioxidant enzymes in the liver and with (b) 
increased hydroperoxide initiated chemiluminescence 
in the homogenates and mitochondria of the liver373. 
Other data demonstrate that spontaneous light 
emission was not only enhanced within in situ liver 
but also within in situ brain in tumor bearing 
animals374, an observation that was reminiscent of the 
decrease in catalase activity found in most tumors375. 
 

In the first report of a two-dimensional imaging 
and photon counting of ultraweak light emission from 
transplanted cancer, attention was focused on bladder 
cancer transplanted into the feet of nude mice. The 
photon emission of the developing cancer was 
followed. During the early log phase of cancer cell 
growth, necrosis, hemorrhage, leukocyte infiltration 
or crusta formation are not observed376. Observations 
in that early period suggested that increased photon 
emission was soon observed in the implanted tumor 
region indicating development of the actively 
proliferating cancer. In other studies, ultraweak 
photon intensity from different transplanted malignant 
tumors was recorded377-379.  
 

Recently, ultraweak photon detection was reported 
utilizing a novel technique for cancer imaging380, a 
highly sensitive and ultra-low-noise charge-coupled 
device (CCD) camera system that records two-

dimensional biophoton images from tumors 
transplanted in mice. In addition, a procedure for 
whole body scanning of mice was developed utilizing 
a small, mobile and sensitive photomultiplier tube 
(PMT) operated at room temperature in a dark box. 
The investigations focused on scanning, ultraweak 
photon emission from mice that were transplanted 
with ovarian cancer cells. This scanning procedure is 
a potentially cost effective method for detecting 
tumors compared to the cooled CCD system. Data 
confirm the increased photon emission of tumors. 

This, then, begins to initiate discussion regarding 
practical applications addressing specific pathological 
issues. Unsolved is the depth from which photons are 
able to penetrate tissue. In some papers it is suggested 
that a recorded value of 10 cps/cm2 corresponds to 
approximately 20 cps/cm3.sec if the light originates 
through a 5 mm thick tissue. However, studies on 
transparency of tissue are required. Photon emission 
seems to transfer through rather large tissue distances 
as documented by studies utilizing paraquat, tumor 
transplants, and the recording of emissions through 
the skull. Furthermore, two-dimensional data show 
more gradient-like pictures without sharp boundaries. 
Data suggest chemiluminescence spreads from areas 
of high emission. These data might help to explain (a) 
the observed patterns of oxidative activity and (b) the 
quantitative evaluation of oxygen radical activity. 
 

Human photon emission 
In recent years, there has been increasing interest in 

the use of human luminescence to record ROS in the 
development of pathology of chronic diseases (such 
as Alzheimer’s disease and diabetes) that are 
supposed to be linked to non-linear progression in 
ROS production. The method is also interesting for 
recording the status of patients with these diseases 
that are taking antioxidant therapy. Along this line, in 
particular the development of a noninvasive tool for 
detection of human photon emission and its validation 
is crucial. This section reviews the current status of 
human photon emission recording techniques and 
protocols, the knowledge regarding both uniformity 
and variation in the anatomical pattern of photon 
emission, its dynamics in internal physiology and 
psychophysiology, and its relation to health and 
disease. Future perspectives deal with applications in 
physiologic and patho-physiologic conditions where 
the technique can be rapidly and easily implemented. 
Such conditions can be found in (a) extreme exercise 
(in sports physiology), (b) shift work that leads to 
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alteration of the circadian rhythm e.g., jet lag or 
alternating work schedules (in industrial/company 
medical office), and (c) during development of 
chronic diseases (in clinical practice). 
 
Historical aspects  

Research in human photon emission with single 
photon counting devices started about three decades 
ago381,382, utilizing a setup consisting of a photon 
detection system mounted in a darkroom in which 
subjects placed different anatomical part under the 
photomultiplier opening. Shortly after these reports, the 
first publications appeared utilizing more advanced 
devices to deal with large anatomic surfaces. In the 
Inaba Biophoton Project (funded by Research 
corporation of Japan (presently, Japan Science and 
Technology Corporation) human photon emission was 
investigated with two-dimensional photomultipliers in 
order to record the two-dimensional pattern of ultra 
weak photon emission (UPE) from human body 
surfaces. In Germany, Popp started pioneering research 
in human biophoton emission in 1993 by building a 
darkroom for the installment of a detector head that by 
hanging on runners, could be moved over the whole 
body of a subject lying on a bed underneath.  
 

In the next 10 years, only a few systematic studies 
were performed and published. Cohen and Popp383 
considered long-term periodicity in a systematic study 
on photon emission from hands and forehead using the 
moveable photon detector. The authors examined both 
the palms of the hands and the forehead of one subject, 
daily, over a period of 9 months. Recordings 
demonstrate a clear preference for left and right hand 
correlation. Long-term biological rhythms of 
spontaneous emission of that subject became evident 
with Fourier analysis. Influence of age on photon 
emission of hands was investigated384. Spontaneous 
photon emission was increased in elderly subjects. A 
few studies have focused on photon emission from the 
hands in relation to disease. A study with 7 hemiparesis 
patients demonstrated that left and right differences of 
photon emission rates from the palm and the dorsum of 
the hands were large for 4 out of those 7 patients, 
compared to 20 healthy subjects385.  
 

The limited number of studies did not allow hard 
conclusions about the implications and significance of 
biophotons in relation to health and disease or mental 
state. Still, the presented experimental data make clear 
that these aspects need attention and were the reason 
for a large systematic study that started in 2003 and 

was supported by Samueli Institute for Information 
Biology. At present, the studies contain information on: 
(a) procedures for reliable measurements, and spectral 
analysis, (b) anatomic intensity of emission and left-
right symmetries, (c) biological rhythms in emission, 
(d) physical characteristics of emission, (e) physical 
and psychological influences on emission, and (f) 
emission in health and disease. 
 
Reliable multi-anatomical site recording of UPE and spectral 
analysis  

The goal of the initial studies was to describe a 
protocol for management of subjects that (a) avoids 
interference with light-induced (long-term) delayed 
luminescence, and (b) includes the time slots for 
recording photon emission. The protocol was utilized 
to discriminate photon emissions from anatomical 
locations within a subject and to complete spectral 
analysis of emission from different body locations. 
The accuracy was sufficient: photon counts ranged 
between 6 and 40 counts per second (cps) wherein a 
difference of 1.1 cps is significant. The thorax-
abdomen region demonstrates the lowest emission. 
The upper extremities and head region emit the 
highest levels 386-389. Spectral analysis in the 200-650 
nm range was possible with cut-off filters and 
repetitive measurements. Analysis documents major 
spontaneous emission at 470–570 nm. This indicates 
specific electron-excited states386.  

In subsequent studies, a newly developed and 
highly sensitive charge-coupled device (CCD) 
imaging system was utilized in collaboration with 
Kobayashi and coworkers to fundamentally 
characterize spatial distribution of ultra-weak photon 
emission. The CCD images from the upper frontal 
torso, head and neck and upper extremities 
corresponded with the data of multi-site recordings 
utilizing the moveable photomultiplier system390-392. 
Systematic, multi-site recording with a group of 60 
healthy males of ultra weak photon emission over 
high- and low anatomic emission locations presented 
evidence for a “common” human anatomic intensity 
emission pattern391,392. The common pattern opened a 
possibility to measure photon emission characteristics 
utilizing a few representative anatomic locations. 
Attention was focused on the hands. The hands emit 
high strength photon signals. CCD images of hand 
UPE were statistically analysed (manuscript in 
preparation). The study demonstrated that UPE was 
equally distributed over the palm and dorsum of the 
hand. To learn about the anatomic origin of UPE, the 
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patterns of UPE are currently compared with 
anatomic characteristics of the corresponding 
locations. 
 
(Diurnal) fluctuations 

The stability of UPE at a single anatomic location 
was studied. Recording of 29 selected, body sites 
demonstrated that emission over the body is 
systematically lower in the morning than in the 
evening at all locations386-388. Data registered during 
daytime hours demonstrated anatomic locations on 
the right side had higher photon strength than 
corresponding locations on the left. The right-left 
asymmetry was subsequently confirmed with a larger 
number of male (n=20) and female (n=20) subjects by 
recording over a smaller number of locations 
(manuscript in preparation).  

In a subsequent study fluctuations in UPE were 
studied during 24 hr by recording ventral and dorsal 
sites of both right and left hands every 2 hr in 5 
separate experiments. Data demonstrated that 
intensity as well as left-right symmetry varies 
diurnally. Emission intensity is low during the day, 
rises during the evening and is high at night. Time 
patterns for left and right hand are different. Although 
the fluctuations in UPE during the course of 24 hr 
were more over dorsal than ventral sites, all were 
highly significant. Correlations of fluctuations over 
ventral and dorsal sides are not apparent. During the 
24 hr period, a change in left-right symmetry occurred 
at night. Photon emission over left locations was high 
at night, whereas the right sides emitted primarily 
during the day. Specific parameters have been 
developed to represent laterality393-395.  
 
Temperature and photon emission 

Human photon emission is a product of 
biochemical processes. Therefore, environmental 
temperature is expected to influence photon emission 
when it originates from anatomic layers that are not 
kept at 37°C and instead depends on environmental 
temperatures. Indeed, as temperature of hand declines, 
the intensity of UPE decreased, whereas UPE 
increased at increasing temperature396.  

Another study led to a similar conclusion. In the 
study, subjects participated in cold exposure 
experiments after being dark-adapted. They lay in 
supine position to stabilize their body temperatures in 
a dark room at temperature of 17°–18°C for 15 min. 
Subsequently they disrobed for 30 min to only  
T-shirts, shorts and sport shoes. Both skin temperature 

and photon emission were recorded from several 
anatomic locations. Temperature decrease during 
cooling roughly correlated with the photon emission 
of a specific location397. 

Initially, the question was whether anatomic 
locations with different photon emission intensities 
reflected different skin temperature. Multi-site 
recordings of both photon emission intensities and 
skin temperature demonstrated that temperature at 
different anatomic locations ranged between 26° and 
34°C. However, a relationship with photon emission 
was not observed397. In a second study, both UPE and 
temperature were recorded at the body location in 
different subjects in order to evaluate whether 
differences between subjects correlate with 
temperature. Between subjects, temperature of any of 
the recorded anatomic sites was not correlated with 
the UPE397.  

It was concluded that differences between both 
anatomic locations and subjects could not be 
explained by differences in temperatures. At a given 
location, however, photon emission intensity is 
temperature-sensitive, suggesting that temperature 
recording at anatomic locations concomitant with 
photon emission is an improvement in comparative 
studies between different subjects and within a 
subject.  
 

Hypoxia, exercise and photon emission 
In three types of experiments the effect of hypoxia 

on photon emission was investigated. In the first study 
a tourniquet was placed around the upper arm to 
depress the supply of oxygen and nutrients to the 
hand. Photon emission of the hand was recorded 
during periods of increasing degree of tourniquet 
tightness. Data demonstrate that photon emission 
progressively decreased during blood flow limitation. 
After removing the tourniquet, photon emission 
returned to the former level within minutes. Data 
confirm that photon emission is oxygen 
dependent386,388,398. Direct exposure of the hand also 
resulted in some decreased photon emission396. Data 
suggest that generation mechanisms of photons 
emitted from the hand are both from interior sources 
and from skin. 
 

Daily tasks and photon emission  
Subjects engaged in cognitive tasks, e.g., filling out 

forms and addressing mathematical challenges, were 
also recorded for ultra weak photon emission. These 
tasks did not influence photon emission of hands. The 
results led to the selection of a new, more difficult 
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challenge in a second study. The more sophisticated 
mathematical challenges were addressed in the dark. 
Data demonstrated that cortisol levels were higher after 
the completion of the challenges, and decreased after 
relaxation. However, statistical significant changes in 
ultra weak photon emission during the challenges were 
not observed. It was concluded that common daily 
tasks had no statistically significant effect on photon 
strength and related parameters. 
 
Procedure for advanced photon count analysis of human ultra 
weak photon emission 

Spontaneous photon signals demonstrated that 
variance was higher than the mean suggesting that 
photocount distributions were not normal. Skewness 
was not zero implying a skewed distribution. Kurtosis 
was non-zero and large, thus also ruling out normal 
distribution of photon counts. However, this was true 
for both photon signals and background. To find the 
appropriate correction for background signals, a novel 
method to physically characterize UPE was utilized. 
The procedure was based on quantum optics399 and 
has been applied in studies on non-human living 
systems400-402. The procedure describes the 
fluctuations in the signals by assuming the signal in a 
quantum squeezed state of photons. This state is 
specified by four real parameters (magnitude of 
displacement, |α|; magnitude of squeezing, r; and 
phase angles θ and Φ)399. Utilizing this approach, a 
procedure for correcting background noise was 
developed.  

A novel method was utilized to characterize human 
photon signals of low, intermediate and high 
intensities. Fluctuations in these signals are measured 
utilizing probabilities of detecting different numbers 
of photons in a bin, and establishing the optimal bin 
size. These measurements suggested that this set of 
parameters is quite useful. The subsequent study 
utilizing the measurements parameter compared 
additional anatomic locations between subjects. 
Photon count distribution over 12 different locations 
in 20 male subjects was examined. The fluctuation of 
each signal was characterized by the parameters |α|, r, 
θ and Φ. The possibility of systematic differences of 
squeezed state parameters between different locations 
was studied. There were differences between the 12 
locations for |α|, r and Φ, but not for θ. The question 
then arose for each parameter whether correlations 
existed between locations within subjects. Anatomical 
locations were grouped in three regions: (a) torso 
region, including abdomen right and left, stomach 

region and heart; (b) head region, including throat, 
cheeks right and left and forehead and (c) hand 
regions, including ventral right and left and dorsum 
right and left. Data demonstrated for the parameters 
|α| and r significant correlations (with a trend for Φ) 
between hand regions and the anatomic region of 
torso plus head 403. It was concluded that the novel 
analysis was able to discover a squeezed state 
structure in the fluctuating photon emission; the 
squeezed state parameters can be expressed for each 
individual subject as mean values of measurements at 
all anatomic sites. Correlations in signals of different 
locations implied that squeezed states can differ 
between subjects. Differences between individuals in 
the fluctuations of the photon emission can thus be 
expressed by utilizing the combination of these 
parameters. The relationship between the structure in 
the fluctuating photon emission and the underlying 
elementary biochemical processes is part of the basic 
studies403.  
 
Application of photon emission in health research 

There is mounting evidence indicating that reactive 
free radical species are involved in initiation and 
development of many different forms of human 
pathologies, including psychiatric disorders. The 
utilization of ultraweak photon detection to evaluate 
the oxygen radical activity has increased the interest 
in a study on human photon emission in health and 
disease. In this section, preliminary data of two types 
of studies are presented: 
 
a.  Comparative studies on subjects ranging from 

healthy to clinically diseased. 
b.  Influence of long-term meditation on intensity 

and pattern of ultra weak photon emission. 
 
Ultraweak photon emission in disease 

Several studies suggest that the intensity of photon 
emission changes in a state of disease. Japanese 
studies of the two-dimensional pattern from the index 
and middle finger indicated that intensities could be 
used to differentiate hypothyroidism, lower state of 
metabolic activity404-406. Ultraweak photon emission 
in patients with hyperthyroidism was less intense than 
normal. The lower emission was also found in 
patients whose thyroid glands had been removed. 
Another study reported of several multiple sclerosis 
patients who emitted more photons than ordinary 
healthy subjects383,407,408. In this study, the authors 
introduced a second parameter for disease, e.g., 
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percentage of difference in emission between left and 
right hand. They suggested that in certain diseases 
left-right symmetry was broken. In another study, left-
right symmetry of photon emission from the palm and 
the dorsum of the hands of hemiparesis patients was 
compared with similar data from the hands of 20 self-
reportedly healthy subjects. The variation in left-right 
symmetry among healthy subjects was not large. In 
hemiparesis patients though, the left and right 
differences were reported very large in 4 out of 7 
patients both for the palm and dorsum of the hand. In 
the 3 other patients the differences were within 
normal range409.  
 

Quantitative data on ultraweak photon emission of 
ROS-related diseased state require a study design with 
at least three defined stages from health to disease: (a) 
healthy state, (b) early state of disregulation in which 
an impaired cell function is detectable, and (c) overt 
diseased state. The putative model is that 
accumulation of aggregates increased in subsequent 
stages with corresponding oxygen radical activity. 
Well-defined markers for most chronic diseases are 
available only for the stage that the disease is overt 
and the subject has contacted the medical circuit for 
specific symptoms. Relative few markers are 
available for earlier stages. An extra difficulty is that 
the many ROS-related chronic diseases are final 
manifestations of early stages of a common 
disregulation (increased ROS activity).  
 

As a first approach we have chosen for a 
descriptive, explorative study, in which no treatments 
are provided. The aim is to describe photon emission 
of 150 subjects divided into three groups. The two 
extreme groups are the (a) healthy young subject 
without severe disease history, and (b) chronic disease 
subject that ask for CAM after long-term disease 
history. The intermediate group are pre-diabetic 
subjects. Each group will include 50 subjects. The 50 
healthy subjects participated in the study according to 
the inclusion criteria (a) healthy (assessed by 
questionnaires), (b) normal Dutch eating habits, (c) 
age > 20 and < 30 years.  
 

The 50 chronic diseased subjects are included 
according to the criteria (a) chronically diseased with 
a history of medical events and having a general 
practitioner, (b) normal Dutch eating habits, (c) age > 
30 and < 65 years. The inclusion criteria for the pre-
diabetic group of 50 subjects are: (a) healthy 
(assessed by questionnaires and physical 
examination), (b) normal Dutch eating habits, (c) age 

> 30 and < 65 years, (d) body mass index >26 and 
<35 kg/m2, and (e) pre-diabetic as established by 
fasting glucose blood values >6.0 to < 7.0.  

For this study a new mobile device was 
constructed, since the original scientific equipment for 
human research is too large and bound to a specific 
research sites. The new equipment is smaller and 
more appropriate for laboratories and clinical 
practices. It is built in such manner that both hands 
can be recorded simultaneously, if required. Data 
collection protocol allows the analysis for: (a) 
strength of photon signal, (b) squeezed state 
parameters, and (c) left right symmetry. The selection 
for hand recordings was based on data discussed 
above. Such data have demonstrated that ventral and 
dorsal surfaces commonly demonstrate high 
emissions compared to other anatomical locations. A 
higher signal results in more reliable estimations of 
squeezed state parameters, whereas mean values for 
the four locations can be considered as representative 
for the subject.  

The preliminary data support the hypothesis that 
photon strength (|α|) in chronic diseased subjects has 
increased compared to healthy subjects, whereas 
mean photon emission for the pre-disease group was 
intermediate. The squeezing parameter (r) is small in 
chronic diseased subjects compared to healthy 
subjects. It has an intermediate value for the pre-
disease group (manuscript in preparation).  
 
Long-term meditation and free radicals 

It is generally accepted that meditation, if practiced 
for a long time, induces a greater state of self-
awareness and inner calm in its practitioners. 
Techniques of meditation include attention to one’s 
breath, repeating a mantra and detaching from various 
thought processes in order to focus one’s attention. 
The resulting “inner calm” implies reduction of stress 
which may have prophylactic and therapeutic health 
benefits. The hypothesis suggesting a possible link 
between meditation and its therapeutic effect utilizes 
the information about the initiating role of free 
radical-mediated oxidations in disease and proposes 
that oxidized lipids may reflect free radical induced 
damage that may contribute to pathophysiology410,411. 
The hypothesis has stimulated considerable curiosity 
in the scientific community. The measurement of 
serum lipid peroxide fluctuations indicates that 
chronic psychosocial stress probably does increase 
oxidative stress412,413. In addition, findings suggest the 
presence of lower lipid peroxide levels in the plasma 
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of practitioners of transcendental meditation (TM)414, 
Zen meditation415 and yoga practitioners416. 

Recent studies have focused on ultraweak photon 
emission of long-term practitioners of meditation. The 
studies utilized the system that is capable of multi-site 
recordings407 according to a defined protocol386. The 
comparison between 10 TM practitioners and 10 
subjects without experience in meditation indicated an 
intensity discrimination of ultraweak photon emission 
in meditation practitioners compared to control 
subjects417. 

A follow up study examined the ultraweak photn 
emission from the hands of three groups of subjects: 
control group having no experience in meditation, TM 
group practicing Transcendental meditation, and a 
different group practicing a form of meditation other 
than TM (OTM). Each group consisted of 20 healthy, 
non-smoking subjects. Data demonstrated that the 
intensity of ultraweak photon emission by subjects of 
both meditation groups is lower by 15-33% for the 
TM group and 4-15% for the OTM group compared 
to the control group. All subjects demonstrated a high 
degree of symmetry418. Additionally, the photon 
signal was described according to a quantum optical 
approach utilizing the four parameters (|α|, φ, r, θ) that 
determine the signal419. Both the squeezed state 
parameters and asymmetries suggest that the control 
group is different from both meditation groups. The 
difference between TM and control group is more 
than that between OTM and control group. The data 
support the conclusion that persistent meditation 
influence metabolic activities responsible for photon 
emission.  
 

Conclusion and future perspectives 
In the present review both the emergence and 

development of two separate lines of research and 
their convergence into one model have been 
discussed. The first line focused on biochemical 
hallmarks of ROS related chronic diseases: the 
biological defence tiers that, if overwhelmed, result in 
persistent conformational changes and the progression 
of ROS-related chronic diseases. The second line 
focused on ultraweak photon emission as an overall 
measure to monitor the oxidative status from enzyme 
level to man. The review illustrates the wealth of 
experimental data for both lines of research. The 
convergence of both lines has resulted in research on 
the application of ultraweak photon emission to 
monitor the oxidative status in human subjects both 
under physiologic and pathophysiologic conditions.  

The wide array of recognized ROS related and 
conformational diseases have in common that they 
arise from secondary or tertiary structural changes 
within constituent proteins, with subsequent 
aggregation of those altered proteins. Examples are 
the systemic amyloidosis, neurodegenerative diseases 
and type 2 diabetes mellitus as discussed before. A 
human study focusing on the ultraweak photon 
emission in the development of these diseases can 
thus be performed with any of these diseases. 
Empirical foundations that make the application of 
ultraweak photon emission research in health and 
disease transitions possible have already been 
discussed and can be shortly summarized: 
 

1. Components and origins of ultraweak photon 
emission. Variability in photon emission has been 
defined and parameters to describe the non-
classical aspects of photon emission have been 
given. Technical requirements for recording have 
been established and both dynamic and steady state 
characteristics of the ultraweak photon emission 
have been studied. The significance of additional 
measures (e.g., temperature) has been discussed.  

2. Guidelines, recommendations and caveats. 
Meaningful analysis of ultraweak photon emission 
is dependent on the integrity of the basic photon 
signal corrected for (technical) background. With 
modern methods the fluctuations in the signal is 
analyzed to identify the integrity of the signal, to 
identify abnormal peaks and for artefact editing. 
Artefacts from a variety of sources may 
contaminate the photon signal. Therefore, it is 
generally preferable to use a distribution-based 
artefact-detection algorithm. In practice, a 
combination of both automated and visual 
approaches is optimal. Detection and processing of 
abnormal gross fluctuations in the signal are more 
problematic in individuals. This happens not very 
often (less than 2% of the cases).  

3. Deriving inferences from ultraweak photon 
emission. Current scientific interest in ultraweak 
photon emission emphasizes the potential relation 
of photon signal components to functional 
dimensions that presently cannot be measured 
directly in a non-invasive manner. Given this, it is 
essential to identify reference criteria against which 
these measures may be validated. The relevant 
functional dimension may very from discipline to 
discipline. In biochemistry, reference criteria have 
included molecular reactions involving ROS. In 
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medicine, reference criteria have included organ 
(e.g., cardiovascular) damage and risk stratification 
for disease. In human health and sports, ultraweak 
photon emission has been proposed as markers of 
physical and psychological stress and workload. 
Whatever the focus of the study is, however, 
putative autonomic mechanisms are generally 
invoked as mediators of this relationship. 
Consequently, false interferences about ROS 
mediation, based on inadequate evaluation of 
validity, can hamper a valuable line of research. In 
fact, the pattern of ROS control is often the primary 
interest in many biomedical studies of ultraweak 
photon emission. It is at this most fundamental 
level that ultraweak photon emission measures 
must be further validated.  

Unfortunately, most chemical measures of ROS 
activity have limited applicability and are associated 
with methodological and interpretative problems of 
their own. The invasiveness of the procedures, 
indirectness of the reactive processes, and limited 
applicability to broader functional contexts (from 
blood to tissues) restrict the utility of these 
approaches. Despite the technical difficulties of the 
non-invasive luminescence procedure, confirmatory 
approaches are now available and applicable to 
humans. These approaches can utilize the adequate 
recording and data processing procedures, control or 
correction for temperature, and the appropriate 
selection of squeezed state parameters, that provide a 
selective index of ROS.  

As is with most (psycho-) physiological measures 
ultraweak photon emission is a more accurate index 
of a change than in absolute level. Consequently, 
within-subject differences among experimental 
conditions are likely to be more accurate than of 
absolute level of ROS. Potential contributions of age, 
sex, stress, and diet parameters and other individual 
characteristics need to be considered carefully in 
interpreting between-subject differences in ultraweak 
photon emission. In such aggregate, the findings 
suggest caution in inferring absolute levels across 
individuals. The identification of ultraweak photon 
emission with the staging of ROS-related damage 
and. disease fosters the development of different 
experimental approaches. This convergence must 
offer perspectives for (a) basic research utilizing 
appropriate models that increase our understanding, 
and (b) applied research including possibilities and 
limitations of the application of human ultraweak 

photon emission as a tool. To illustrate this, several 
lines of research are proposed. 
 
Basic research: Caenorhabditis elegans 

The C. elegans model for studying loss of 
coordination in neurodegenrative diseases is a 
promising tool. Both coordination in movement and 
ultraweak photon emission can be monitored. In a 
previous paragraph the utilization of C. elegans in 
polyQ aggregation is discussed. PolyQ diversity and 
corresponding loss of coordination of movement 
(from normal movement to nearly complete paralysis) 
can be studied using a variety of strains. The model 
allows a parallel study in time (e.g., duration of lag 
period and rate of development) of loss of 
coordination and ultraweak photon emission. The 
resulting data allow the testing (or present crucial 
arguments) on non-linear development of ROS 
production. The model can be further used to study 
the influence of ROS scavenging system. 
 
Biophoton emission in health and disease (Type 2 diabetes) 

Diabetes mellitus is a complex syndrome of 
hyperglycaemia in association with metabolic and 
vascular abnormalities. Despite problems identifying 
the cause of these diseases, the concept that free 
radicals mediate pancreatic B-cell destruction and 
retinal vascular damage was already debated since the 
early 1980’s. Several lines of evidence suggested that 
plama lipid peroxide levels are significantly higher in 
diabetic patients than in control subjects and that the 
levels in diabetic patients with vascular complications 
were markedly raised as compared to diabetics 
without angiopathy420-423. Interestingly, studies on 
ultraweak photon emission of plasma of Type 2 
diabetes patients showed that emission increased with 
the duration of overt diabetes424. In the meantime 
hardly any additional data were collected utilizing 
ultraweak photon emission.  

In diabetic patients, the observed risk for 
complications in the vascular system exceeds that 
expected from the classic risk factors, which are 
known also as metabolic syndrome Experimental and 
clinical findings have suggested that enhanced levels 
of free radicals found in Type 1 as well as in Type 2 
diabetic patients could be the risk factor explaining 
the excess of mortality in these individuals. The 
disease can be considered as a good model to explore 
the role of oxidative stress in the development of late 
diabetic complications and the implications for 
therapy425.  
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We propose a subject (patient)-oriented research in 
which not the fulfilments of inclusion criteria are 
central. All patients are considered to provide 
valuable extra information and patients enrol in the 
study by the basic criteria for diabetes 2. Patients are 
not too old or too young, too illiterate, or suffer from 
co morbidity or concurrent psychiatric disturbances. 
Normally, these subjects are excluded from the study 
if it is disease-oriented in random clinical trials 
(RCT). Without wanting to undermine the enormous 
relevance RTC has for scientific development, the 
major drawback is that it does not allow maximum 
insight in the ROS production under conditions that 
the disease pattern becomes more and more 
complicated.  

The patient-centered approach means that health 
care providers are directed to the illness, rather than to 
the disease, and have to explore and value – 
predominantly by questionnaires – the patients’ 
relevant history (age, duration of diabetes, 
development of complications), biopsychosocial 
context in which biological (exercise, food, etc), 
psychological (stress coping, etc.) and social elements 
as important as the strictly biomedical (blood glucose, 
fructosamine, HbA1c, lipid peroxide, etc) elements.  
 
Exercise in sport and revalidation medicine 

There are limited data in literature concerning 
oxidative stress in hypokinesia and hyperkinesia. 
Extreme hypokinesia occurs with spaceflight, chronic 
bed rest, and immobilization. Extreme hyperkinesia 
occurs with extreme, long-duration, exercises.  

Non-damaging habitual exercise using resistive or 
endurance regimens provides some protection against 
age-related contractile function and risk of muscle 
injury 426-428.  

A potential mechanism that would trigger increased 
protein degradation and atrophy in skeletal muscle is 
oxidative stress, where antioxidant proteins and 
scavenger protection are overwhelmed by oxidant 
production. The problem is particular interesting in 
relation with heart failure and corresponding anoxia.  

Growing evidence indicates that impaired stress 
protein (e.g., antioxidant enzymes, heat shock 
proteins and other chaperones, IGF-1) may play a role 
in regulating muscle dysfunction that occurs in heart 
disease and chronic heart failure (CHF)429-431. 
Exercise training improves work capacity, tolerance 
to fatigue, reduces risk of myocardial infarction in 
cardiac patients, and reduces the risk of heart disease 
in healthy adults432-434. In contrast with healthy peers, 

heart disease patients respond to endurance exercise 
training with primarily peripheral adaptations, rather 
than changes in central (i.e., cardiac) function. In 
healthy adults, exercise training increases protective 
stress proteins in skeletal muscle including 
antioxidant enzymes and chaperones435,436. Other data 
indicate that exercise results in a partial reversal of the 
reduction in antioxidant activity in heart failure 
patients430. Therefore, an interesting focus of 
application of non-invasive ultraweak recording to 
test free radical status is research in hypo- and 
hyperkinesias in healthy and heart patients, in 
particular a study of the combined effects of coronary 
ischemia and subsequent exercise training on free 
radical levels. It is evident that such measurements 
will be conducted in combination with the common 
techniques (e.g., heart beat rate measurements, 
oxygen consumption, body temperature).  

In summary, patterns of ultraweak photon emission 
hold considerable promise as measure for the 
oxidative status. Further developments in 
measurement and analysis and advances in concepts 
and metrics of ROS-related diseases would foster 
further biomedical applications of ultraweak photon 
emission. A multifactorial interdisciplinary approach, 
at both biomedical and psychosocial levels, would 
undoubtedly contribute to this development of the 
field.  
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