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Abstract: With the rapid development of technologies such as wireless communications and the
Internet of Things (IoT), the proliferation of IoT devices will intensify the competition for spectrum
resources. The introduction of cognitive radio technology in IoT can minimize the shortage of
spectrum resources. However, the open environment of cognitive IoT may involve free-riding
problems. Due to the selfishness of the participants, there are usually a large number of free-riders in
the system who opportunistically gain more rewards by stealing the spectrum sensing results from
other participants and accessing the spectrum without spectrum sensing. However, this behavior
seriously affects the fault tolerance of the system and the motivation of the participants, resulting
in degrading the system’s performance. Based on the energy-harvesting cognitive IoT model, this
paper considers the free-riding problem of Secondary Users (SUs). Since free-riders can harvest
more energy in spectrum sensing time slots, the application of energy harvesting technology will
exacerbate the free-riding behavior of selfish SUs in Cooperative Spectrum Sensing (CSS). In order
to prevent the low detection performance of the system due to the free-riding behavior of too many
SUs, a penalty mechanism is established to stimulate SUs to sense the spectrum normally during the
sensing process. In the system model with multiple primary users (PUs) and multiple SUs, each SU
considers whether to free-ride and which PU’s spectrum to sense and access in order to maximize
its own interests. To address this issue, a two-layer game-based cooperative spectrum sensing and
access method is proposed to improve spectrum utilization. Simulation results show that compared
with traditional methods, the average throughput of the proposed TL-CSAG algorithm increased by
26.3% and the proposed method makes the SUs allocation more fair.

Keywords: cognitive IoT; cooperative spectrum sensing; dynamic spectrum access; game theory;
energy harvesting

1. Introduction

In recent years, there has been widespread interest in the automation revolution in
the industrial, infrastructure, and healthcare fields through the implementation of the
Internet of Things (IoT) [1]. However, available wireless spectrum resources are extremely
limited, and the large-scale deployment of IoT devices will greatly exacerbate the shortage
of spectrum resources and the problem of interference between devices. A large amount
of data shows that the utilization of spectrum in the communication field is not high, and
many authorized spectrums are not fully utilized, resulting in a huge waste of spectrum
resources [2]. To address these challenges, Cognitive Radio (CR) provides an effective
solution. In a CR system, Secondary Users (SUs) can access the authorized spectrum
of Primary Users (PUs) with little impact on the PUs. Applying CR technology to IoT
networks can effectively improve their spectrum utilization efficiency. Therefore, the design
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and optimization of Cognitive IoT (CIoT) networks based on CR have received considerable
attention [3].

Spectrum sensing is a key technology in CR to address the problem of insufficient
spectrum resources by reusing underutilized spectrum. However, the detection perfor-
mance of spectrum sensing may deteriorate significantly due to uncertainties such as noise
and channel conditions [4]. Cooperative Spectrum Sensing (CSS) can improve the sensing
performance of fading and shadowed channels by combining the results of multiple SUs’
global sensing [5]. Specifically, due to factors such as obstruction, SUs may be located in
the shadow of PU transmission signals and unable to detect their signals, which results
in interference with PU’s communication. CSS can effectively address the hidden termi-
nal problem by allowing multiple SUs to cooperate and greatly reducing the impact of
shadowed areas on sensing. Furthermore, dynamic spectrum access can greatly improve
the spectrum utilization efficiency between SUs and PUs [6]. Dynamic spectrum access
technology allows SUs to effectively utilize spectrum resources by “leasing” or “sharing”
idle spectrum resources, improving spectrum utilization, and also having significant ad-
vantages in fairness and efficiency. This technology can be used either in the overlay mode,
where the SUs opportunistically utilize the unused spectrum of the PUs, or in the underlay
mode, where both PUs and SUs transmit simultaneously under SINR constraints in the
same frequency band [7].

Due to the limited battery capacity of IoT devices, it is difficult for them to run for a
long time. Energy Harvesting (EH) allows devices to harvest energy from the environment
to refill batteries [8]. For any type of energy source, the amount of energy transferred
from the energy source to the energy harvester is not deterministic but random. Collecting
energy through Radio Frequency (RF) signals can avoid the influence of harsh environ-
ments and light, and compared with solar energy and wind energy, the energy harvesting
process is more stable. Therefore, RF EH technology has become an important direction
for researchers to study the energy efficiency of CIoT [9]. However, since selfish SUs can
harvest more energy for system consumption by free-riding during spectrum sensing slots,
the application of EH will exacerbate the free-riding behavior of selfish SUs, leading to
degraded system detection performance. Therefore, the application of EH technology needs
to consider how to deal with the free-riding problem to ensure more stable and reliable
system performance.

In recent years, people have been more committed to developing distributed intelligent
collaboration systems due to reasons of scalability and high performance [10]. These
systems consist of distributed processing nodes with autonomous learning capabilities
and usually include a large number of free-riding nodes [11]. However, these free-riding
nodes will result in fewer nodes providing resources, and the entire system will face the
problem of insufficient utilization of resources, and the purpose of sharing will gradually
disappear. In CSS, SUs report their sensing results to the FC by control channel and the final
channel state is determined by the FC. However, SUs may be selfish, and they may adopt
a free-riding strategy when multiple SUs occupy different sub-bands of a PU’s spectrum
and can occasionally overhear the sensing results of other SUs. Free-riders tend to wait
for other SUs to sense them first and take advantage of other SUs’ results so that they
can reserve more time for their own data transmission. Therefore, due to the existence
of free-riding behavior, there are two types of SUs with different sensing attitudes in the
system: Contributing Users (CUs) who participate in cooperative sensing and Free-riding
Users (FUs) who are dishonest. CUs increase the amount of information, but regardless of
how much they contribute, the added information is shared equally among participants.
However, if the cost of contribution exceeds the marginal benefit, SUs will be tempted
not to contribute. Free-riders severely reduce the fault tolerance and content availability
of the peer-to-peer system. In cooperative systems, the key to solving this problem is
to establish incentive mechanisms that aim to improve utility by incentivizing nodes to
become more cooperative. Ref. [12] proposed a game-theoretic framework for participating
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in cooperation and free-riding in federated learning to support spectrum sensing for
NextG communications.

2. Relate Work

Spectrum sensing is the basis and key to achieving spectrum sharing, improving
the efficiency of spectrum utilization, and ensuring the security of spectrum resources in
CR technology. So far, many papers have applied spectrum sensing technology in IoT
field. For the issue of energy efficiency in spectrum sensing, Ref. [13] investigated how
to use spectrum sensing technology to improve the energy efficiency of CIoT networks,
and proposed a new two-way information exchange algorithm and optimal transmit
power allocation technique to achieve higher dynamic spectrum sensing capability and
data throughput. In addition, cooperative spectrum sensing has been studied extensively.
Ref. [14] proposes an integrated CSS and access control model to maximize the throughput
of the cognitive industrial IoT by jointly optimizing the sensing time, the number of
sensing nodes, and the transmit power of each node. Dynamic spectrum access is an
important research direction in CIoT networks. It provides an effective way for existing
radio networks to optimize system performance, enhance resource utilization, and improve
system reliability. In ref. [15], the benefits of cooperative communication and cognitive
radio networks (CRN) are merged to meet IoT networks’ needs. In this work, the hybrid
overlay-underlay CRN is employed to guarantee both SU stability and an acceptable
total throughput. In ref. [16], spectrum aware Ad hoc on-demand distance vector routing
protocol is proposed without fixed base stations, aiming to address the routing needs in
future IoT environments.

There are now numerous papers focusing on free-riding behavior. In ref. [17], Adar
et al. analyzed the user traffic in the Gnutella system and found that there were a large
number of free-riding users in the system, with only about 28% of the users sharing files.
To address the problem of the behavior of free-riders in the system, Ref. [18] proposes a
peer-to-peer protocol with adaptive and self-organizing topology to punish malicious peers
and free-riders by considering the trustworthiness. In ref. [19], machine learning based
malicious signal detection is employed for cognitive radio networks. In [20], To enhance
cooperation among agents, one of the main goals of the multi-agent system is to solve
the possible free-riding problem. To address this problem, the authors propose a novel
strategy that allows agents to manipulate the utility of each adversary simultaneously,
further promoting mutual cooperation among all agents. Although the above literature has
emphasized the users’ free-riding problem, it does not consider the scheduling problem of
dynamic spectrum access techniques for SUs to further improve the system’s utility.

Game theory [21] is an effective tool for analyzing optimal behavior among rational de-
cision makers. Game theory has been widely used in distributed CR networks to effectively
improve system performance and to help SUs make better use of spectrum resources. With
the increasingly complex interaction behavior of IoT devices [22], single-layer networks can
no longer meet the needs of the system, and the study of multilayer networks has become a
key to the development of many fields. To explore the cooperative behavior among rational
individuals, researchers have combined complex networks and game theory [23], which is
more helpful to study the interaction behavior problem among users in complex networks.
Ref. [24] explored an important tradeoff of CSS among SUs in cognitive radio networks
and proposed a distributed coalition formation game based on genetic algorithms to select
the optimal coalition leader to motivate SUs to actively participate. Ref. [25] proposed a
potential game-based spectrum access and power control method to solve the problem
of how to achieve optimal throughput in a multibeam cognitive satellite communication
network. Furthermore, game theory is also widely applied to solving the free-rider problem.
In ref. [26], the free-riding problem was first modeled as a public goods game. In ref. [27],
the authors considered an evolutionary game model that allows SUs to choose between
free-riding and normal sensing strategies.
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Although [12,26,27] considered two sensing attitudes of SUs, they did not address
the scheduling problem of SUs when sensing multiple PU channels, which did not work
well in multi-channel cooperative spectrum sensing. In the case where SUs cooperatively
sense multiple PU channels, most SUs may tend to sense the same PU channel due to
geographical location and other factors, resulting in a serious shortage of SUs sensing other
PU channels, which greatly affects the detection performance. This may lead to a waste
of spectrum resources and even affect the normal communication of PUs. Therefore, it is
necessary to consider using dynamic spectrum access to solve the scheduling problem of
SUs in this case.

Different from past research, this paper focuses on the problem of SUs’ free-riding
behavior in Energy Harvesting CIoT (EH-CIoT) networks. A punishment mechanism is
established to stimulate SUs to sense the spectrum normally during the sensing process.
For the system model with multiple PUs and SUs, a two-layered game-based cooperative
spectrum sensing and access method is proposed to dynamically coordinate the strategies
of SUs. Simulation results show that the proposed method significantly improves the
overall throughput of the system, and the allocation of SUs in the coalition is more fair
compared with traditional methods.

The rest of this paper is organized as follows: Section 3 describes the system model and
time slot structure for cooperative spectrum sensing and access and gives the optimization
problem modeling of this paper. Section 4 proposes a two-layer game to solve the proposed
problems in Section 3. In Section 5, simulation results are presented. Finally, the conclusion
is made at last in Section 6.

3. System Model and Problem Description
3.1. System Models

Consider an EH-CIoT network covered by M PU bands, which share channels with N
SUs in overlay mode. When the PU bands are not occupied, each SU can only sense and
access one band in the same time slot due to the hardware limitation. As shown in Figure 1,
when SUs upload their sensing results, there is a possibility that the sensing results will be
listened to by other users, and the listeners will decide to become CUs or FUs according to
their utility. In each time slot, PU bands are sensed simultaneously. The SUs are divided
into M coalitions for sensing different PU bands, and each SU can freely choose the sensing
attitudes (to become CU or FU) and the band of which PU to access. In each coalition, the
SU with the highest detection probability is considered the Coalition Head (CH). CH plays
the role of FC in the coalition.

Figure 1. System model.

Due to its simplicity and low cost, the energy detector is chosen in this paper as
the spectrum sensing technique to sense the PU. The noise is assumed to be an indepen-
dent, identically distributed random process with a zero mean and a variance σ2. In the
Rayleigh fading environment, the detection probability and false alarm probability of the
i-th secondary user SUi detecting the state of the j-th primary user PUj channel are:
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where θj is the detection threshold of PUj, m is the time-bandwidth product, and γ̄i,j
denotes the average signal-to-noise ratio of the received signal from PUj to SUi, Γ(., .) is
the incomplete gamma function, and Γ(.) is the gamma function. When detecting the PU
channel, the probability of missing detection is:

Pm,i,j = 1− Pd,i,j (3)

In the coalition Ω, since the control channel transmits sensing results of 0 and 1, the
corresponding error reporting probability [28] can be expressed as follows:

Pe,i,k =
1
2

(
1−

√
γ̄i,k

1 + γ̄i,k

)
(4)

where γ̄i,k is the average SNR for bit reporting between SUi and CHk. The decision fusion
criterion at CHs is the OR verdict criterion. By cooperative sensing, the detection probability
and the false alarm probability of the coalition Ω are respectively given as follows:

Por
d,e = 1−∏

i∈Ω
[Pm,i(1− Pe,i,k) + (1− Pm,i)Pe,i,k] (5)

and

Por
f ,e = 1−∏

i∈Ω

[(
1− Pf

)
(1− Pe,i,k) + Pf Pe,i,k

]
(6)

where Pf , Pm,i and Pe,i,k are given by Equations (2)–(4).

3.2. Time Slot Structure

In this paper, the harvested energy is derived from the RF energy transmitted by
the PU. As shown in Figure 2, the sensing result of the sensing phase directly affects the
action of the SU in the next phase. If the PU is present, the SU harvests energy in the
data transmission phase, and if the PU is not present, the SU transmits data in the data
transmission phase.

CUs follow the time frame structure shown in Figure 2a, which can be divided into
three phases: energy harvesting phase, the spectrum sensing phase, and the data transmis-
sion phase. FUs follow the time frame structure shown in Figure 2b and can be divided
into two phases, energy harvesting phase and the data transmission phase. Compared with
CUs, FUs are not involved in spectrum sensing, so they have more time to harvest energy
and transmit data.
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Figure 2. Time slot structure of the proposed method.

If the PU is present, according to the time slot structure, the energy harverted by CUs
and FUs can be calculated separately as follows:

Ei
hc(C) =

M

∑
j=1

(
1− Pj

H1

)
Qj

i(Th1 + Tt1)

=
M

∑
j=1

(
1− Pj

H1

)
Qj

i(βT) (7)

and

Ei
hc(F) =

M

∑
j=1

(
1− Pj

H1

)
Qj

i(Th2 + Tt2)

=
M

∑
j=1

(
1− Pj

H1

)
Qj

i T (8)

If the PU is absent, according to the time slot structure, the energy harvested by CUs
and FUs can be calculated separately as follows:

Ei
hc(C) =

M

∑
j=1

Pj
H1

Qj
i Th1

=
M

∑
j=1

Pj
H1

Qj
i(βαT) (9)

and

Ei
hc(C) =

M

∑
j=1

Pj
H1

Qj
i Th1

=
M

∑
j=1

Pj
H1

Qj
i(βαT) (10)

where Pj
H1

is the probility of the presence of PUj, α and β are the weights, and 0 < α, β < 1 ,

T is the duration of a time slot, Qj
i is the energy arrival rate at SUi, given by:

Qj
i = Ppj hj,i (11)

where Ppj is the transmission power of PUj and hj,i is the path loss of PUj and SUi.
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When PUj is absent, and not detected by SUi , the average throughput of SUi is

RH0 = Tt(1− Pf ) log2

(
1 +

Psi hj,i

σ2

)
(12)

When PUj is present, and not detected by SUi, the average throughput of the SUi is

RH1 = Tt(1− Pd) log2

(
1 +

Psi hj,i

∑M
j Ppj g0 + σ2

)
(13)

Let PH0 denotes the probability that the PU is absent, then the total throughput of
SUi is

Ri =PH0 Rj
H0

+
(

1− Pj
H0

)
RH1

=Tt

[
Pj

H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)

+
(

1− Pj
H0

)
(1− Pd) log2

(
1 +

Psi hj,i

∑M
j Ppj g0 + σ2

i

)]
(14)

In dynamic spectrum access, it is required that the SUs’operation should not conflict
or interfere with the PUs, and Pd should be very close to one. Moreover, we usually have
∑M

j Ppj g0 + σ2
i > σ2

i due to the interference from the PUs to the SUs, the second term on
the RHS of (14) is much smaller than the first term on the RHS of (14). To simplify the
formulation, the total throughput of SUi access PUj channel can be expressed as follows:

Ri = Pj
H0

RH0

= TtP
j
H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)
(15)

where Pj
H0

denotes the probability that the PUj is not present and RH0 denotes the average
throughput of SUi when PUj is not present. Tt is the duration of the data transmission
phase in a time slot. According to Equation (15), the throughput RC

i of CUi can be expressed
as follows:

RC
i = Tt1Pj

H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)
(16)

where Tt1 = β(1− α)T, Psi is the transmission power of SUi. Similarly, the throughput of
FUi can be expressed as follows:

RF
i = Tt2Pj

H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)
(17)

where Tt2 = (1− α)T.

3.3. Optimization Problem Modeling

The SUs aim to accomplish a joint task, which is to protect the PU from interference,
achieve a required detection threshold for fusion detection probability through CSS, and
obtain high throughput by accessing the PU spectrum. CUs can eavesdrop on sensing
results and have more time for their own data transmission. However, if a sufficient number
of SUs do not sense the PU channel, all of them may get very low throughput. Therefore,
the SUs need to try different strategies in each time period and learn the optimal strategy
from their strategic interactions.
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The utility of SUs consists of four components: the benefit obtained based on through-
put, the benefit obtained from harvesting energy, the cost of consuming energy during data
transmission, and the penalty for free-riders based on the coalition detection probability.
Considering that FUs do not contribute to the coalition detection probability, a penalty
needs to be imposed on them. The penalty function can be expressed as follows:

χ(Pj
d) = λ min

{
1,− log S

(
Pj

d

)}
(18)

where λ is a predetermined parameter defining the harshness of the penalty, and Pj
d is the

detection probability of detecting PUj. The sigmoid function for the satisfaction degree of
the detection performance is calculated as follows:

S
(

Pj
d

)
=

1

1 + e−ρ
(

Pj
d−P̃d

) (19)

where P̃d is the predefined requirement for the uncertainty, and ρ decides on the steepness
of the satisfactory curve. The utility functions of CUs and FUs can be defined as follows:

Ui(C) = fc

(
RC

i

)
− Et1 + Ei

hc(C) (20)

and
Ui(F) = fc

(
RF

i

)
− Et2 − χ

(
Pj

d

)
+ Ei

hc( F) (21)

where the first term fc(x) on the RHS of Equations (20) and (21) is the satisfaction function
of each SU with respect to the achievable throughput, and for simplicity we choose to set
fc(x) = µx, where µ is the uniform unit parameter for the SUs to convert the throughput
into the corresponding benefit, Et1 and Et2 are the energy consumed by CUs and FUs
during data transmission. Then Equations (20) and (21) can be expressed as follows:

Ui(C) = µβ(1− α)TPj
H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)
− Pj

H0
Psi β(1− α)T

+
M

∑
j=1

[
Pj

H0
Qj

i(βT) +
(

1− Pj
H0

)
Qj

i(βαT)
]

(22)

and

Ui(F) = µ(1− α)TPj
H0

(
1− Pf

)
log2

(
1 +

Psi hj,i

σ2
i

)
− Pj

H0
Psi (1− α)T − λ min

{
1,− log S(Pd,i)

}
+

M

∑
j=1

Qj
i

[
Pj

H0
T +

(
1− Pj

H0

)
(αT)

]
(23)

To improve the utility of SUs, it is crucial to increase the system throughput and en-
hance the cooperative detection probability to reduce penalties, as indicated
Equations (20) and (21), and it can be inferred that system throughput is primarily in-
fluenced by the false alarm probability. Increasing the false alarm probability can improve
the system’s throughput. In order to improve SUs’ throughput, the problem of whether SUs
participate in cooperative sensing and which coalitions SUs choose to access is formulated
as an optimization problem. Equations (22) and (23) need to be optimized simultaneously,
and the problem formulation is given as follows:
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max
{Pj

d},{P
j
f }

U i(C), U i(F) ∀i = 1, 2, . . . , N (24a)

s.t. 0 ≤ β ≤ 1 (24b)

0 ≤ α ≤ 1 (24c)

4. Two-Layer Cooperative Sensing and Access Game (TL-CSAG)

As shown in Figure 3, based on evolutionary game and hedonic coalition game models,
an iterative algorithm for solving the game problem mentioned above is proposed in this
section. In this paper, the cooperative spectrum sensing and access mechanism is modeled
as a two-layer game, where the problem of whether SUs participate in cooperative sensing
is modeled as an evolutionary game and the problem of which coalitions SUs choose
to access is modeled as a hedonic coalition game. In this game, the SUs are considered
participants, and Ui is considered a utility function of SUi. The SUs’ sensing attitude
preference in the coalitions can be described as follows:

ooo(t) =


ooo1(t)
ooo2(t)

...

oooN(t)

 =


o1,1(t) o1,2(t) . . . o1,M(t)
o2,1(t) o2,2(t) . . . o2,M(t)

...
...

. . .
...

oN,1(t) oN,2(t) . . . oN,M(t)

 (25)

where oi,j(t) denotes the sensing attitude preference of SUi in coalition Ωj in the t-th time
slot, oi,j(t) ∈ {0, 1}. oi,j(t) = 1 indicates that SUi will choose to sense PUj channel in
coalition Ωj, and oi,j(t) = 0 indicates that SUi will choose to be a free-rider in coalition Ωj.
The SUi’s strategy is denoted by si = (oooi, ωi,j) and ωi,j denotes the SUi choose the coalition
Ωj. To provide a clearer depiction of how SUs can modify their utility through specific
actions, its utility function can be rewritten as follows:

Ui(si) = Ui
(
oooi, ωi,j

)
=

{
Ui(C), if oi,j = 1
Ui(F), if oi,j = 0

(26)

Figure 3. The structure of TL-CSAG model.

Each SU maximize its utility by optimizing its sensing attitude and then enter a
coalition. Thus, the optimization problem is formulated as follows:

max{oooi},{ωi,j} Ui
(
oooi, ωi,j

)
∀i = 1, . . . , N; ∀j = 1, . . . , M

s.t.
{

0 6 β 6 1
0 6 α 6 1

(27)

From Equations (24)–(27), it can be seen that the strategies of both problems are
interdependent. Therefore, the interaction of SUs can be formulated as a noncooperative
game. Under the condition of Nash Equilibrium (NE), each SU’s strategy cannot get
better utility without changing the strategy of other SUs. To comprehensively consider the
feasibility and convergence of the two-level game algorithm, the definition of NE is given
as follows:
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Definition 1. Let ooo∗ = (ooo∗1 , . . . , ooo∗N) and ωωω∗ = (ω∗1 , . . . , ω∗N) be the NEs of the sensing attitude
strategy and the coalition formation strategy derived by the proposed TL-CSAG, respectively.
sss∗ = ((ooo∗1 , ω∗1 ), . . . , (ooo∗N , ω∗N)), is an NE of TL-CSAG, and it can be given by:

Ui
(
s∗i , s∗−i

)
≥ Ui

(
si, s∗−i

)
, ∀s∗i ∈ s∗, i ∈ N (28)

where s∗i = (ooo∗i , ω∗i ), s∗−i is the stable strategy for all SUs except SUi.

4.1. The Top Layer Game: Sensing Attitude Strategy in the Coalition

This subsection analyzes the evolution of SUs’ sensing attitudes using the idea of
evolutionary game theory. In each time slot, SUs calculate their own utility. If SUi’s utility
Ūij(C) for participating in sensing in Ωj is higher than the average utility Ūij, then in the
next time slot, the probability of SUi participating in sensing will increase. To describe the
evolution of the sensing attitude of SUi in Ωj, the following differential equations [29] are
constructed as follows:

Ṗ j
i (C) =

P j
i (C, t + 1)−P j

i (C, t)

P j
i (C, t)

= ηi[Ū
j
i (C)− Ū j

i ] (29)

where ηi is the adjustment step size determined by SUi. P
j
i (C, t) is the probability that in

the t-th time slot SUi participates in sensing in Ωj.
In the next time slot, the probability of SUi participation in sensing in Ωj can be

calculated as follows:

P j
i (C, t + 1) = P j

i (C, t) + ηi

[
Ū j

i (C)− Ū j
i

]
P j

i (C, t) (30)

Equation (30) describes the dynamic process of SUi choosing its sensing attitude,
where the sum of the probabilities of participating in sensing and free-riding is equal to 1.

This paper first study the game of two SUs in Ωj, i.e., Ωj = {g1, g2}. The payoff table
of the two SUs is shown in Table 1 according to Equations (19) and (20), where A = 1− PC

f ,

Bi = 1− Pf i, Di = µ(1− α)TPj
H0

log2

(
1 +

Psi hj,i

σ2
i

)
, Ei = ∑M

j=1[P
j
H0

Qj
i T + (1− Pj

H0
Qj

iαT)],

F = Pj
H0

Ppj(1− αT), Wi = Pj
H0

Psi (1− αT) + λ min{1,− log S(Pd,i)}.

Table 1. Payoff table of a two-user.

C F

C β(AD1 + E1 − F), β(AD2 + E2 − F) β(B1D1 + E1 − F), B1D2 −W2 + E2

F B2D1 −W1 + E1, β(B2D2 + E2 − F) 0, 0

Let x1 and x2 denote the probability that g1 and g2 take attitude “C”, respectively, and
Vi = Ei − F, then the expected payoff Ūg1(C) while g1 chooses to contribute is expressed
as follows:

Ūg1(C) = β(AD1 + V1)x2 + β(B1D1 + V1)(1− x2) (31)

The mean utility function of g1 is given by:

Ūg1 = β(AD1 + V1)x1x2 + β(B1D1 + V1)x1(1− x2)

+ (B2D1 + E1 −W1)(1− x1)x2 (32)

Therefore, the replicator dynamics of the two SUs using Equation (26) will be:

G(x1) = x1(1− x1)(G1x2 + H1) (33)
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and
F (x2) = x2(1− x2)(G2x1 + H2) (34)

where Hi = β(BiDi + Vi), G1 = β(AD1 − B1D1) − (B2D1 + E1 −W1)
and G2 = β(AD2 − B2D2)− (B1D2 + E2 −W2). According to the conditions of equilibrium,
we have ẋ1 = 0 and ẋ2 = 0, then, we get four equilibrium points: (0, 0), (0, 1), (1, 0), (1, 1),
and the mixed strategy equilibrium (− E2

G2
,− E1

G1
). The Jacobian matrix is formed by taking

the partial derivatives of Equations (38) and (39), then we can obtain:

Jm =

[
∂G(x1)

∂x1

∂G(x1)
∂x2

∂F (x2)
∂x1

∂F (x2)
∂x2

]
(35)

where 

∂G(x1)
∂x1

= (1− 2x1)(G1x2 + H1)
∂G(x1)

∂x2
= G1x1(1− x1)

∂F (x2)
∂x1

= G2x2(1− x2)
∂F (x2)

∂x2
= (1− 2x2)(G2x1 + H2)

(36)

From the stability conditions of the Jacobian, the system converges when det(Jm) > 0
and tr(Jm) < 0. The stability conditions for the four equilibrium points are:

(1) When β < D2B1+V2−W2
D2 A+V2−W2

, the strategies of g1 and g2 converge to (C, F).

(2) When β < D1B2+V1−W1
D1 A+V1−W1

, the strategies of g1 and g2 converge to (F, C).

(3) When β > D2B1+V2−W2
D2 A+V2−W2

and β > D1B2+V1−W1
D1 A+V1−W1

, the strategies of g1 and g2 converge
to (C, C).

(4) When β < D2B1+V2−W2
D2 A+V2−W2

and β < D1B2+V1−W1
D1 A+V1−W1

, the strategies of g1 and g2 converge
to (C, F) or (F, C) based on the initial adopted strategies.

The above mentioned has demonstrated the ooo∗ of the two SUs. However, due to the
different utility functions of different SUs, it is difficult to obtain ooo∗ in the case of multiple
SUs. Through repeated games, SUs can autonomously adapt to the changing environment,
and each SU has a clear sensing strategy.

4.2. The Bottom Layer Game: Coalition Formation Strategy

Regardless of what sensing attitude is adopted or which coalition is accessed, it will
directly affect the utility of SUs. In the bottom layer game, the method used by SUs to solve
the problem of which coalition to access is modeled as a hedonic coalition game. Next, the
relevant definitions and related theorems are stated and proved.

Definition 2. (Switch Rule): Given a partition Π = {Ω1, . . . , Ωm, . . . ΩM} of SUs’ set N ,
SUi ∈ Ωm decides to leave it current coalition Ωm and join another coalition Ωm′ ∈ Π, where
m 6= m′, if and only if Ωm′

⋃{i} �i Ωm, where �i is the preference relation of SUi. As a result,
{Ωm, Ωm′} → {Ωm\{i}, Ωm′

⋃{i}}.
In order to evaluate the preferences of SUi over its own sets of possible coalitions, the

concept of preference relation is introduced [30] as follows:

Ωm′ �i Ωm ⇔ uΩm′
i ≥ uΩm

i (37)

where the relationship of Ωm′ �i Ωm means that SUi prefers to join coalition Ωm′ over
coalition Ωm. The uΩm

i which is the preference function of SUi in Ωm can be expressed as
follows:

uΩm
i =

{
UΩm

i (oooi,m, Ωm), if Ωm /∈ h(i)
−∞, otherwise

(38)
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where UΩm
i is the utility of SUi in coalition Ωm and h(i) is the history set of SUi. The history

set contains the coalitions that SUi has joined prior to formation of the current partition Π.
In general, considering the history set can accelerate the convergence of the system.

According to the preference relationship of SU in Equation (34), it can be considered
that when the history set of SUi is not considered:

Ωm′ �i Ωm ⇔ Ui
(
oi,m′ , Ωm′

)
> Ui(oi,m, Ωm) (39)

Theorem 1. In TL-CSAG, the convergence rate of the sensing attitude strategy of SUs always
precedes that of the coalition formation strategy. That is, the formation of ooo∗ precedes the formation
of ωωω∗.

Proof. When the sensing attitude strategy does not reach ooo∗, according to Equation (26),
the utility function of SUs has two states, and the utility is unstable. According to the
description of Equation (39), when SUi exchanges its coalition, it may have Ui

(
oi,m′ , Ωm′

)
>

Ui(oi,m, Ωm) and will join coalition Ωm′ . However, in the subsequent time slots, due to
the change of ooo∗, Ui

(
oi,m′ , Ωm′

)
> Ui(oi,m, Ωm) may occur, and SUi will switch coalition

again.

After ooo reaches ooo∗, SUs determines their possible strategy of obtaining high returns
ooo∗, and will focus on the distribution of SUs in the coalition. When a division Π∗ is a
NE, it means that there is no coalition that makes the SU strictly like to join, while the
other coalitions are not hurt by the formation of this new coalition. The NE formed by the
hedonistic coalition is specifically defined as follows:

Definition 3. A parition Ω∗ = {Ω∗1 , Ω∗2 , . . . , Ω∗M} is NE if ∀SUi ∈ Ω∗j with ∀j ∈ M, Ω∗j �i

Ωl
⋃{i}, ∀l ∈ M.

Theorem 2. Once the sensing attitudes of SUs reache the stability strategy ooo∗ , the final coalition
will also achieve the stability strategy Π∗.

Proof. After each switching operation, SUs will obtain higher utility in the new coalition.
Given the number of channels M in the CIoT network and the number of SUs N, the total
number of different partitions is MN , which is a finite number. Thus, from any given initial
partition Π0, the switching operation always terminates at some point after a finite number
of iterations, where the coalition structure converges to the final partition Π∗.

4.3. Algorithm Steps

Based on the analysis of the above two parts, the whole process of the proposed
cooperative spectrum sensing and access algorithm based on the two-layer game can be
obtained. During the initialization phase, each coalition selects the SU with the highest
detection probability among all SUs as its CH. Furthermore, once a CH is selected by a
coalition, it cannot be chosen by any other coalition, and it must always have a cooperative
attitude. Furthermore, ooo∗ of each coalition’s sensing attitude strategy is obtained by the
evolution among the SUs. On the basis of ooo∗, the ω∗ formed by SUs can be obtained through
the switch rules, and the specific steps are shown in Algorithm 1.



Sensors 2023, 23, 5828 13 of 19

Algorithm 1 The proposed two-layer cooperative sensing and accsee game

Require: Location of the SU and the PU
Ensure: Stable sensing attitudes ooo∗; Stable sensing coalitions Π∗;

1: Initialization: Set iterations t = 1, initial sensing strategy probability P0 = 50%,
initialize parameter µ and η; Randomly initialize the attitudes of SUs ooo0; Randomly
and evenly distribute the SUs to each coalition Π0;

2: while s 6= s∗ and t ∈ 1 : MAX do
3: t = t + 1;
4: Randomly select two coalitions Ωn and Ωm from the coalitions set Π , and then

switch SUi ∈ Ωn to the coalition Ωm, etc., {Ωn, Ωm} → {Ω′n, Ω′m} =
{Ωn\{i}, Ωm

⋃{i}};
5: SUi chooses a strategy oi,m with probability Pm

i (C, t);
6: Calculate the utility Ui(oi,n, Ωn) of SUi, and calculate the utility Ui(oi,n, Ω

′
m) of the

coalition Ω
′
m at which SUi is exchanged;

7: SUi decides whether to join a new coalition based on Equation (37);
8: Update Pn

i (C, t) and Pm
i (C, t) based on Equations (29) and (30);

9: while ooo = ooo∗ do
10: Set t = t + 1;
11: Repeat steps 4, 6, 7;
12: Set ooo ← ooo∗;
13: end while
14: end while

5. Simulation Analysis and Evaluation

In this section, MATLAB is used to simulate the performance of the proposed method.
The spatial environment is established in a 1 km × 1 km planar coordinate system with 3
PUs and 15 SUs randomly distributed in the coordinate system; the sampling frequency
is fs = 1 MHz, the bandwidth is 2 MHz and the time of each frame is T = 10 ms. The rest
of the simulation parameters are shown in Table 2. The method proposed in [31] is used
here as a comparison, which is denoted by “Con”. The random algorithm randomizes the
sensing attitudes and the coalitons of all SUs, which are denoted by “Random”. In the
following section, the final state distribution of SUs, the relationship between detection
probability and cooperation probability, which represents the proportion of contributors out
of 15 SUs, the factors affecting cooperation probability, the fairness of the SUs distribution
in the coalition, and finally the performance of the three algorithms in terms of throughput
are investigated.

Table 2. Simulation parameters.

Parameter Meaning Value

m time bandwidth product 5

λ the parameter to determine the value of penalty 0.02

µ the parameter to determine the value of revenue 10

η adjustment step size 3

σ2 Gaussian noise variance 1× 10(−9) W

Ppj PU transmission power 0.1 W

Psi SU transmission power 0.1 W

PH0 probability that the PU is absent 0.9

β weighting factor 0.9

α weighting factor 0.5

ρ penalty gradient coefficient 20
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The initial coalition structure and the final coalition structure obtained from TL-CSGA
are shown in Figure 4a,b, respectively. In these two figures, each colored box represents
an SU, and the boxes in the same column belong to the same coalition. As can be seen
from Figure 4b, SUs are finally distributed in three coalitions, and FUs are all distributed in
coalition Ω2. When the CIoT network is stable, Pf and Pd for each coalition will be fixed.
As FUs do not contribute to the two parameters, switching their coalitions after the system
is stable will not affect the interests of other SUs. Eventually, all FUs will be concentrated
in the coalition with the highest benefit. Since the number of CUs will affect Pf , it is not
advisable for each coalition to have too many CUs; otherwise, it will reduce the throughput
of the system. Generally, CUs will be roughly evenly distributed in each coalition.

Figure 4. (a) Initial and (b) Final coalition structures.

Figure 5 shows the relationship curves between the cooperation probability and the
detection probability. As can be seen from Figure 5, with a certain number of SUs, the
average detection probability of coalitions increases as the cooperation probability increases.
In CSS, to avoid interference from SUs to PUs, the coalition detection probability Pd needs
to reach a certain threshold of θth, i.e., Pd > θth. As a certain number of SUs participate,
when the cooperation probability reaches a certain value, the coalition detection probability
Pd can meet the requirement of Pd > θth. This paper assumes that the coalition detection
probability needs to meet Pd > 0.95.

Figure 5. The relationship between cooperation probability and detection probability.
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Figure 6 shows the effect of λ and P̃d on the probability of cooperation with the
15 SUs. It can be seen that the increased value of λ is more likely to prompt SUs to adopt
a cooperative sensing attitude. Moreover, it may also increase the probability of SUs
cooperation with increasing P̃d values.

Figure 6. Effect of the parameters λ and P̃d on the cooperation probability.

Figure 7 shows the effect of ρ, P̃d, and detection probability Pd on the penalty function.
As shown in Figure 7, the higher the detection probability of the coalition, the smaller
the penalty to FUs in the coalition. For the same detection probability, decreasing P̃d will
reduce the penalty to FUs. In Figure 6, the effect of P̃d on the cooperation probability is
essentially the effect of P̃d on the penalty function, which in turn affects the cooperation
probability of SUs.

Figure 7. Effect of the coalition detection probability on the user penalty.

Figure 8 shows the effect of the energy harvested by FUs and the weight factor β on the
cooperation probability of the system. In Figure 8, it can be observed that the more energy
harvested by FUs, the lower the cooperation probability. The reason is that free-riders can
obtain high profits by harvesting more RF energy. Similarly, a lower weight factor β leads
to a lower probability of cooperation. Under a certain amount of energy harvesting by FUs,
increasing β can improve energy harvesting benefits, reduce consumption during spectrum
sensing, and improve data transmission efficiency. The simulation results show that the
EH technology can provide more benefits to selfish SUs, and its application may exacerbate
their free-riding behavior.
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Figure 8. Effect of the energy harvested by FUs on the cooperation probability.

In order to evaluate the fairness of SUs’ allocation of each coalition, Jain’s fairness is
introduced [32], which is defined as follows:

F =
(∑n

i=1 xi)
2

n ∑n
i=1 x2

i
(40)

Jain’s fairness evaluates the fairness of a set of values, where there are n coalitions
and xi is the value allocated to SUi, and it is located in [1/N, 1]. 1/N corresponds to the
minimum fair allocation where only one SU obtains a non-zero value, and 1 corresponds to
the maximum fair allocation where all SUs receive the same value.

By adjusting the cooperation probability to ensure Pd > 0.95, the fairness of different
algorithms in SUs’ allocation was analyzed. The fairness indices of the three coalitions
in Figure 4b are shown in Table 3, which lists the detection probabilities, false alarm
probabilities, and corresponding fairness F of the three coalitions using TL-CASG and
“Con” algorithms. It can be seen that the fairness index of the TL-CASG algorithm is
superior to that of the “Con” algorithm in terms of both detection probability and false
alarm probability. This is because the “Con” algorithm only considers the distance between
SUs and PUs when forming coalitions without considering the influence of SUs in other
coalitions globally.

Table 3. Coalition fairness analysis.

Coalition Pd-TL-CSAG Pd-Con Pf -TL-CSAG Pf -Con

Ω1 0.9729 0.9653 0.2849 0.3751
Ω2 0.9846 0.9934 0.1611 0.1718
Ω3 0.9613 0.9583 0.2139 0.4139

Fairness F 0.9999 0.9997 0.9495 0.9002

The relationship between throughput and the number of iterations of three algorithms
is compared in Figure 9. By modeling the problem of which PU channel is sensed by
SUs, the proposed algorithm can fully utilize the sensing capability of SUs in the multi-
PU model and improve the overall system throughput. After reaching an equilibrium
state in the “Con” algorithm and TL-CSAG, the average throughput of the proposed TL-
CSAG algorithm increased by 78% and 26.3%, respectively, compared with the “Random”
algorithm and “Con” algorithm.
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Figure 9. Curve of throughput with number of iterations.

6. Conclusions

On the basis of the EH-CIoT model, this paper considers the free-riding problem of
SUs. In order to prevent low system detection performance due to excessive SUs’ free-
riding behavior, this paper establishes a penalty mechanism to stimulate SUs to sense the
PU spectrum normally. To address the issue of whether SUs should free-ride and which PU
spectrum to sense and access to gain higher benefits, a two-layer game-based cooperative
spectrum sensing and access method is proposed to improve spectrum utilization and the
fairness of the proposed method. Simulation results show that after the system reaches
equilibrium, CUs are uniformly distributed among the three coalitions, but FUs are in the
coalition with the highest profit. In the case of a fixed number of SUs, as the probability of
cooperation increases, the average detection probability of coalitions also increases. At the
same time, this paper also studied the impact of different parameters on the probability of
cooperation, and simulation results confirmed that the more energy harvested, the lower
the probability of SUs adopting a cooperative sensing attitude. Furthermore, Jain’s fairness
concept is introduced to evaluate the higher fairness of the coalition in SUs’ allocation
in our algorithm. Finally, this paper studied the impact of using different algorithms on
throughput, and the results show that the proposed algorithm improves throughput by
78% and 26.3% compared with traditional algorithms. In the future study, we will further
explore the secrecy and energy-efficient resource allocation for our proposed network. In
the future study, we will further explore the application of free-riders in mobile networks
and optimize algorithm models to achieve faster iteration speeds.

Author Contributions: Conceptualization, K.J. and J.W.; methodology, K.J. and C.M.; software, C.M.,
J.W. and R.L.; validation, J.W., R.L. and H.H.; formal analysis, K.J., H.H., C.M. and R.L.; investigation,
K.J. and C.M.; resources, K.J., H.H. and C.M.; data curation, K.J., H.H. and W.J.; writing—original
draft preparation, C.M.; writing—review and editing, C.M., W.J. and H.H.; visualization, C.M., R.L.
and J.W.; supervision, K.J. and H.H.; project administration, K.J., C.M. and H.H.; funding acquisition,
H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Science Foundation of China under Grants
No. 61871133 and in part by the Industry-Academia Collaboration Program of Fujian Universities
under Grants No. 2020H6006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 5828 18 of 19

References
1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
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