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Abstract

Object localization in an image is usually handled by

searching for an optimal subwindow that tightly covers the

object of interest. However, the subwindows considered in

previous work are limited to rectangles or other specified,

simple shapes. With such specified shapes, no subwindow

can cover the object of interest tightly. As a result, the de-

sired subwindow around the object of interest may not be

optimal in terms of the localization objective function, and

cannot be detected by a subwindow search algorithm. In

this paper, we propose a new graph-theoretic approach for

object localization by searching for an optimal subwindow

without pre-specifying its shape. Instead, we require the re-

sulting subwindow to be well aligned with edge pixels that

are detected from the image. This requirement is quantified

and integrated into the localization objective function based

on the widely-used bag of visual words technique. We show

that the ratio-contour graph algorithm can be adapted to

find the optimal free-shape subwindow in terms of the new

localization objective function. In the experiment, we test

the proposed approach on the PASCAL VOC 2006 and VOC

2007 databases for localizing several categories of animals.

We find that its performance is better than the previous effi-

cient subwindow search algorithm.

1. Introduction

An important task in computer vision and image un-

derstanding, object localization tries to solve the following

problem: given that there are a known number of specific

objects in an image, find the exact locations of the objects

in the image. In most cases, we are only interested in lo-

calizing one object of interest from an image. Object local-

ization plays an important role in object detection, which

also contains a recognition step to determine whether the

object of interest is present in an image and how many in-

stances of the object are in an image. Many object detection

systems carry out object localization first by hypothesizing

that the object of interest is present in an image, followed

by a recognition step [14, 9, 27, 19], which verifies whether

the located object is the desired object of interest. In many

applications [10, 11, 15, 6, 24, 7], the recognition step must

additionally compare the localization results from hypothe-

sizing different objects in the image. This paper is focused

only on the object localization problem.

In computer vision, object localization is often a very

challenging problem because an object to be localized actu-

ally defines a category of objects with large intra-category

variations. For example, given an image that contains a dog,

we want to localize this dog accurately. While we know

there is a dog in this image, we do not know its species, size,

pose, and color. This usually requires a supervised learning

process to extract some common features from all dogs that

can discriminate a dog against other objects or backgrounds.

Bag of the visual words is the state-of-the-art technique de-

veloped for achieving this goal. It can detect a set of fea-

tures points from an image and associate each feature to a

specific score that reflects its likeliness of being a feature of

the desired object. For example, a positive-score feature is

likely to be on the object of interest while a negative-score

feature is unlikely to be on the object of interest. In this

case, object localization can be reduced to searching for a

subwindow that covers as many positive-score features and

as few negative-score features as possible.

Sliding window [2, 7, 8, 5] is a widely used technique for

addressing this problem: for every possible subwindow in

an image, check the feature scores covered by the window,

and select the one with the maximum total feature scores

as the optimal subwindow to localize the object of inter-

est. Without knowing the size and the pose of the object,

this technique must check subwindows with different sizes,

which is computationally expensive. To reduce the size of

the search space, only rectangular subwindows, with four

sides parallel to the four sides of the image, are searched

in the sliding window technique. Recently, more efficient

branch and bound algorithms [13, 1] have been developed to

speed up the subwindow search without exhaustively check-

ing all possible subwindows while keeping the global opti-

mality of the result. In these efficient subwindow search



(ESS) algorithms, the searched subwindows are also rect-

angles as in the sliding window technique. As illustrated

in Fig.1(a), a rectangular subwindow may not cover the ob-

ject of interest tightly. As a result, the desirable subwindow,

shown in green in Fig.1(a), may cover many negative-score

features and therefore may not be detected as the optimal

subwindow, which is shown in pink in Fig.1(a).

(a) (b)

Figure 1. An illustration of the problems of object localization

by searching for (a) rectangular subwindows, and (b) polygonal

subwindows without other constraints. Red and blue dots in the

images indicate the positive-score and negative-score features, re-

spectively.

Recently, Yeh et al. [26] extended the ESS algorithms

to search for polygonal subwindows that may not be rect-

angular. However, the shape of the subwindow must be

pre-specified, such as a polygon with a specified number of

sides or a polygon formed by stacking multiple rectangles.

A non-rectangular subwindow has more degrees of freedom

than a rectangular subwindow. This would substantially in-

crease the computational complexity of the optimal subwin-

dow search. More importantly, by allowing a more complex

shape for the searched subwindow, the resulting object lo-

calization algorithm may be very sensitive to the noise of

the detected features and derived feature scores. An exam-

ple is shown in Fig.1(b), where we search for a pentagon

subwindow. We can see that even a single positive-score

outlier feature in the background may lead to a undesirable

optimal subwindow (shown in pink) with a highly irregular

shape.

In this paper, we develop a new graph-theoretic approach

for object localization where the searched subwindow can

take any shape, e.g. a free-shape polygon without a speci-

fied number of sides. To address the problem of being sen-

sitive to the feature noise, we additionally require the re-

sulting subwindow to align well with edge pixels detected

from the image. This way, the new localization objective

is formulated as searching for a free-shape subwindow by

striking a balance between two goals: (a) the optimal sub-

window should cover as many positive-score features and

as few negative-score features as possible, as in the previ-

ous methods, and (b) the sides of the optimal subwindow

should have the maximum coincidence with the detected

image edge pixels. In particular, we define a localization

objective function in a ratio form and show that the ratio-

contour graph algorithm [22] can be adapted to find the op-

timal free-shape subwindow in terms of the new localization

objective function.

Note that, although we consider edge information in our

formulation, we are not attempting to address the challeng-

ing problem of object segmentation as in [23] and [18].

While a successful segmentation automatically leads to a

perfect localization, even the state-of-the-art segmentation

methods only work on images where an object class shows

relatively small variations (in texture, color, pose, species,

occlusion, etc.) within relatively simple and consistent

backgrounds. As in ESS, this paper is aimed at localizing

objects from a large number of images, such as the entire

VOC dataset, with very complex object variations and dif-

ferent backgrounds.

2. Bag of Visual Words and Rectangular Sub-

window Search for Object Localization

Object localization that combines the rectangular sub-

window search and the bag of visual words technique usu-

ally consists of following steps [13].

First, a set of training images that contain the object of

interest are collected, and the ground-truth object localiza-

tion is manually constructed for these training images. Here

the ground-truth object localization is the tightest rectangu-

lar subwindow (with four sides parallel to the four sides of

the image) that fully covers the object of interest, as illus-

trated by the green rectangle in Figs.1(a) and (b).

Second, on each training image, a feature detector, e.g.,

the Scale-Invariant Feature Transform [16] (SIFT), is ap-

plied to detect a set of feature points, where each point is

described by a feature descriptor.

Third, the feature points from all the training images are

clustered into K visual words (i.e., cluster centers) in terms

of the feature descriptor. These K visual words can be used

to quantize any feature by assigning its descriptor to the

nearest cluster center.

Fourth, for each subwindow W in an image, a K-

dimensional vector v is derived, where the k-th element vk

counts the number of detected features in W that can be

quantized to the k-th visual word. We build a classifier with

an input v and an output y, which indicates the likeliness

that the subwindow W tightly covers the object of interest.

In training this classifier, the manually labeled ground-truth

subwindows are used as positive training samples, i.e., the

output y = 1. We also randomly construct a set of subwin-

dows in the background region on each training image and

use them as negative training samples, i.e., y = −1. Us-

ing the linear kernel SVM (support vector machine) classi-

fier [20, 13], the decision function y = β +
∑

i αi〈v,vi〉
can be rewritten as

y = β +
∑

f∈W

w(f) (1)



where f ∈ W indicates a feature (visual word) f is located

in the subwindow W and w(f) is a score associated with

this visual word. After the SVM training, the score w(f)
for all K visual words is obtained.

Fifth, to localize the object of the interest on a new im-

age, the same feature detector and the feature quantizer are

applied to detect a set of feature points where each point is

associated with a visual word f which has a score w(f).
We then search for an optimal rectangle subwindow C that

maximizes the objective function Eq. (1). Given that β is

a constant, the objective is actually to search for a sub-

window that covers as many positive-score features and

as few negative-score features as possible. As mentioned

above, efficient subwindow search (ESS) algorithms [13]

have been recently used for achieving this objective.

3. Problem Formulation

To obtain a tighter covering of the object of interest, we

allow the shape of the subwindow to be arbitrary, only if

it is closed and simple (without self-intersections). We can

formulate object localization in an image as searching for

an optimal free-shape subwindow, i.e., a simple closed con-

tour C, with maximum total score
∑

f∈C w(f), where the

visual words f and the score w are obtained by using the

same bag of visual words technique discussed in Section 2.

However, as discussed in Section 1, this may make the lo-

calization algorithm very sensitive to feature noise, which is

common in practice. To address this problem, we introduce

an additional term into the localization objective to force the

resulting free-shape subwindow to be well aligned with the

edge pixels detected from the image.

Specifically, as illustrated in Fig.2, we first construct a

feature map M and an edge map E from the input image

I in which we want to localize the object of interest. As

shown in Fig.2(c), the feature map M is of the same size as

the input image I , with M(x, y) being the feature score w

at pixel (x, y) if this pixel is detected as a feature point.

If pixel (x, y) is not a detected feature point, we simply

set M(x, y) to be zero. The edge map consists of a set of

line segments, as illustrated in Fig.2(b), which can be con-

structed by an edge detector [3], followed by a line fitting

step. We refer to these straight line segments as detected

segments. Note that a detected segment may come from the

boundary of the desired object, the boundaries of other un-

desired objects, or the noise and texture of the objects and

the background. Also, in real images, the objects of inter-

est may be cropped by the image perimeter, which can be

addressed according to [21].

Our goal is to search for an optimal free-shape subwin-

dow by identifying a subset of detected segments in E and

connecting them into a closed contour C. Since the de-

tected segments are disjoint, we construct additional line

segments that fill the gaps between the detected segments

(c)

(a) (b)

(d)

Figure 2. An illustration of the proposed free-shape subwindow

search for object localization. (a) Input image, (b) edge map E,

(c) feature map M , where red and blue points are positive- and

negative-score features, respectively, and (d) the detected optimal

subwindow that traverses detected (solid) and gap-filling (dashed)

segments alternately.

to form closed contours. We refer to these as gap-filling

segments. Without knowing which gaps are along the re-

sulting optimal contour, we construct a gap-filling segment

between each possible pair of the endpoints of the different

detected segments. This way, a closed contour is defined as

a cycle that traverses a set of detected and gap-filling seg-

ments alternately, as shown in Fig.2(d). Each such closed

contour C is a free-shape subwindow that defines a candi-

date object localization result and we define its object lo-

calization cost (negatively related to the object localization

objective function) as

φ(C) =
|CG|∑

(x,y)∈C M(x, y)
, (2)

where |CG| is the total length of the gaps along the contour

C and the
∑

(x,y)∈C M(x, y) =
∑

f∈C w(f) is the total

scores of the features located inside the contour C. Our

goal is to search for an optimal contour C that minimizes

the cost (2) subject to a constraint

∑

(x,y)∈C

M(x, y) > 0. (3)

Clearly, the numerator of the cost (2) measures the align-

ment between C and the image edge pixels. The constraint

(3) is necessary to avoid detecting an undesired subwindow

C that covers mainly negative score features. This unde-

sired subwindow C has a negative cost (2), which might be

the minimum without constraint (3).

4. Proposed Algorithm

If the feature value M(x, y) ≥ 0 for all pixels (x, y) ∈ I ,

the constraint (3) can be removed. In this case, the global



optimal contour C that minimizes the cost (2) can be found

in polynomial time [22]. Specifically, an undirected graph

is first constructed from the edge and feature maps: each

endpoint of a detected segment is represented by a pair of

mirror vertices and each detected/gap-filling segment is rep-

resented by a pair of mirror graph edges. Two weights are

then defined for each graph edge. The first weight measures

the gap length contributed by the corresponding segment.

Therefore, the first weight of a graph edge that describes a

detected segment is zero and the first weight of a graph edge

that describes a gap-filling segment is the length of that seg-

ment. The two mirror graph edges that describe the same

segment have identical non-negative first weights. The sec-

ond weight describes the total feature score contributed by

the corresponding segment and is defined as the total fea-

ture score in the area bounded by this segment and its pro-

jection on the bottom side of the image. The two mirror

graph edges that describe the same segment have second

weights with opposite signs [22]. This way, the summa-

tion of the (signed) total second weight along a cycle de-

scribes the (signed) total feature score inside the contour.

This reduces the problem of searching for the optimal con-

tour C to the problem of detecting an optimal cycle in the

constructed graph that has the minimum ratio between the

total first and second weights along the cycle. Wang et al.

[25] have shown that a ratio contour algorithm can be used

to find such an optimal cycle in polynomial time.

When some feature values of M(x, y) are negative, we

can first check what can be obtained by applying the same

graph construction and ratio contour algorithm. The sum-

mation of the second weight along a contour C still repre-

sents the (signed) total feature score inside this contour. But

the optimized cost function is now given by

φ(C) =
|CG|

|
∑

(x,y)∈C M(x, y)|
. (4)

Clearly, this optimization problem is different from the one

formulated in Section 3: The optimal contour C that min-

imizes (4) may have a negative
∑

(x,y)∈C M(x, y), which

does not satisfy the constraint (3). We do not know whether

there exists an efficient polynomial time algorithm that can

globally solve the constrained optimization problem formu-

lated in Section 3. In this section, we propose an approx-

imate solution by adapting the ratio contour algorithm that

minimizes the cost (4).

Without considering the constraint (3), we directly run

the ratio contour algorithm and obtain an optimal contour

C that minimizes the cost (4). Then we check the sign of∑
(x,y)∈C M(x, y): if it is positive, we know that the con-

straint (3) is automatically satisfied and the obtained con-

tour C is the desired contour that solves the constrained

optimization problem formulated in Section 3. If the de-

tected contour C has a negative
∑

(x,y)∈C M(x, y), clearly

it is not the contour desired since it does not satisfy the con-

straint (3). However, given that this contour C minimizes

the cost (4),
∑

(x,y)∈C M(x, y) < 0 is expected to be as

small as possible. Therefore, this contour C actually tries to

cover as many negative-score features and as few positive-

score features as possible. This means that the detected con-

tour C is more likely to cover a background region that has

no overlap with the desired object. One strategy is then to

discard the detected contour C, re-run the ratio contour al-

gorithm to detect a second optimal contour, and repeat this

process until we detect an optimal contour C that satisfies

the constraint (3). In this paper, to re-run the ratio contour

algorithm for a new optimal contour, we simply remove all

the detected/gap-filling segments that are on or connected to

to any previous contours. While some edges along the de-

sirable object boundary might be removed in this process,

we found that it does not affect much the performance of

object localization, since a successful localization window

does not need to delineate with object boundaries perfectly.

Below is the summary of the proposed algorithm:

Algorithm 1 C = SingleObjectLocalization(I)

1: Construct the edge map E and the feature map W from

the image I .

2: for t = 1 to T do

3: From the maps E and W , apply ratio contour to find

the optimal contour C that minimizes (4).

4: if Constraint (3) is satisfied then

5: Return C.

6: end if

7: Update E by removing segments on or connected to

C.

8: end for

9: Return FALSE.

In the experiment in Section 6, we actually obtain glob-

ally optimal contours (i.e., satisfying the constraint (3)) in

the first round on most of the test images. For the other im-

ages, we typically obtain a contour that satisfies (3) in the

second or third round. For such contours, we cannot guaran-

tee global optimality. However, as discussed above, since it

is unlikely to return a contour that covers many mixed pos-

itive and negative features, the optimal contours detected in

the second or third rounds may still provide a good local-

ization.

5. Multiple Object Localization

So far, our discussion has been focused on single object

localization. In this section, we extend it to multiple object

localization, where there is more than one object of interest

in the input image. Multiple object localization is nontriv-

ial when using sliding-window or ESS algorithms. An ex-

ample is shown in Fig.3(a), where we have two objects of



interest, both of them showing good positive-score features.

The sliding window and ESS algorithms simply search for

a rectangular subwindow to cover as many positive-score

features as possible. If there are not sufficient and strong

negative-score features between these two objects, the de-

tected optimal subwindow may be an undesired window

that covers both objects, as illustrated in Fig.3(b).

(a) (b)

(d)(c)

Figure 3. An illustration of the multiple object localization using

rectangular subwindow search and the proposed free-shape win-

dow search. (a) Input image with two objects of interest (i.e.,

sheep), (b) feature map and the rectangular subwindow search re-

sult, (c) edge and feature maps constructed from (a), and (d) mul-

tiple object localization results using the proposed algorithm.

The proposed algorithm developed in Section 4 can be

easily extended to multiple object localization. We can re-

peat the ratio contour algorithm until a specified number of

optimal contours C are generated that satisfy the constraint

(3). In each iteration, the detected and gap-filling segments

involved in the previous contours are removed and the con-

tours that do not satisfy the constraint (3) are discarded. The

proposed algorithm can also help to alleviate the problem of

detecting a subwindow that covers multiple objects. As il-

lustrated in Fig.3(c), while the contour that covers both ob-

jects leads to a larger total feature score
∑

(x,y)∈C M(x, y),
such a contour may contain long gaps and does not show

good alignment with edge pixels. As a result, such a con-

tour may have a larger cost (2) than the two desirable con-

tours shown in Fig.3(d), which may be the optimal contours

detected by the proposed algorithm.

6. Experiments

We test the proposed algorithm by localizing several cat-

egories of animals from the PASCAL VOC 2006 and 2007

databases and comparing our performance with the perfor-

mance of the ESS algorithm [13]. As mentioned in Sec-

tion 1, this paper is focused on the object localization where

we know the object of interest is present in an image. Many

verification and classification algorithms can be combined

with the proposed object-localization algorithm to achieve

a full object detection where we do not know whether the

object of interest is present in the image or not [14, 9].

6.1. Experiment on VOC 2006

VOC 2006 database contains 5304 natural images which

are divided into 3 parts: training images, validation images

and test images. In our experiment, the training and val-

idation images are used for constructing the visual words

and deriving the feature scores and the test images are used

for testing the performance of object localization. We use

two versions of the visual words and feature score in this

experiment: Version I is the visual words trained and used

in [13], where the ESS algorithm is reported, and Version

II is the visual words constructed by our own implementa-

tion of the bag of visual words technique. In Version II, the

SIFT points are detected, from which we randomly choose

150, 000 feature points and quantize their descriptors into

3, 000 visual words using the K-means algorithm. In Ver-

sion I, the positive training samples are the rectangular sub-

windows around the object of interest, which are provided

in the VOC 2006 database as the ground truth. However,

in Version II, each positive training sample is a free-shape

subwindow that is aligned with the boundary of the ob-

ject of interest, which we extracted by hand. To construct

the detected segments, we use the Berkeley edge detector

[17] (with its default threshold), and the line approximation

package developed by Kovesi [12] in which we remove all

edges with a length less than 10 pixels, and set the allowed

maximum deviation between an edge and its fitted line seg-

ment to 2 pixels.

The relative overlap between the optimal subwindow C

and the manually labeled ground-truth subwindow Cgt on

the test images is usually used to measure the localization

accuracy:

φ(C, Cgt) =
Area(C ∩ Cgt)

Area(C ∪ Cgt)
. (5)

As in many previous works [13, 1, 4, 10], a localization

result C is regarded to be correct if φ(C, Cgt) ≥ 0.5. In

VOC 2006 database, the ground truth Cgt in an image is a

rectangle (or multiple rectangles when multiple objects are

present) around the the object of interest. However, such

a rectangular ground-truth subwindow may not be a tight

and accurate localization of the object of interest. In this

experiment, we also manually process all images in VOC

2006 to extract the exact boundary of the objects of interest

as the ground-truth subwindow.

For a test image, let Ce and Cp be the optimal subwin-

dows localized by the ESS algorithm and the proposed al-

gorithm, and C1
gt and C2

gt be the ground-truth subwindows

provided by VOC 2006 and our manual segmentation. We



compare the performance of the two methods by using two

accuracy measures. In Measure I, φ(Ce, C
1
gt) is the ac-

curacy of ESS and φ(C′

p, C
1
gt) is the accuracy of the pro-

posed algorithm, where C′

p is the tightest rectangle (with

four sides parallel to the four image sides) around Cp, as

illustrated in Fig.4. Clearly, this measure is more favorable

to the rectangular subwindow search algorithm, such as the

ESS algorithm, since we may detect a tighter subwindow

Cp, but still approximate it by a rectangle before evaluating

its accuracy. In Measure II, φ(Ce, C
2
gt) is the accuracy of

ESS and φ(Cp, C2
gt) is the accuracy of the proposed algo-

rithm.

(b)(a)

(b)

Figure 4. An illustration of using Measure I for evaluating the ac-

curacy of the proposed algorithm. (a) the detected contour Cp

by the proposed algorithm, and (b) the approximate rectangular

subwindow C
′

p of the contour shown in (a). in Measure I, this

rectangular subwindow is compared against the ground truth C
1

gt

provided by VOC 2006.

Table 1 shows the correct localization rate of the pro-

posed algorithm and the ESS algorithm, when they are ap-

plied to localize only one object from all test images, using

both versions of the visual words and feature scores, as de-

scribed above. Tables 2 show the the correct localization

rate of the proposed algorithm and the ESS algorithm when

they are repeated to localize multiple object on the images

which contain multiple objects of interest. The correct lo-

calization rate in Tables 1 and 2 are evaluated using Measure

I. Table 3 shows the localization rate that is evaluated using

Measure II. In [13], a precision-recall curve is also used

for evaluating the localization performance for each object

class. This precision-recall curve is derived by sorting the

images for each object class in terms of the a confidence

score. For the ESS algorithm, the total feature score of the

detected rectangular subwindow is used as its confidence

score. Accordingly, we use the total feature score of the

detected optimal free-shape subwindow as the confidence

score. Figure 5(a) and (b) compares the precision-recall

curve of the proposed algorithm and the ESS algorithm for

each object class. We can clearly see that, with either ver-

sions of visual words and features scores, and using either

measure, the proposed algorithm shows a performance bet-

ter than, or comparable to, the ESS algorithm on almost all

animal classes in VOC 2006 database. Note that Measure I

is more favorable to the ESS algorithm, since we need to re-

place the tighter detected contour by a rectangular subwin-

Version I Version II

Vis. words & Scores Vis. words & Scores

dataset Proposed ESS Proposed ESS

dog 0.287 0.297 0.502 0.458

cat 0.543 0.543 0.524 0.408

sheep 0.362 0.251 0.337 0.281

cow 0.433 0.378 0.436 0.298

horse 0.411 0.417 0.448 0.370

Table 1. The performance of the proposed algorithm and the ESS

algorithm on VOC 2006, when only localizing one object of inter-

est on each test image, using Measure I. Version I indicates the vi-

sual words and feature scores used in [13] and Version II indicates

the visual words and feature scores from our own implementation.

Version I Version II

Vis. words & Scores Vis. words & Scores

dataset Proposed ESS Proposed ESS

dog 0.235 0.185 0.383 0.296

cat 0.300 0.200 0.314 0.186

sheep 0.331 0.096 0.331 0.200

cow 0.437 0.232 0.420 0.241

horse 0.301 0.165 0.282 0.224

Table 2. The performance of the the proposed algorithm and the

ESS algorithm on VOC 2006, with multiple object detection on

the images with multiple objects of interest, using Measure I.

Version I Version II

Vis. words & Scores Vis. words & Scores

dataset Proposed ESS Proposed ESS

dog 0.247 0.182 0.365 0.362

cat 0.398 0.274 0.445 0.485

sheep 0.355 0.145 0.323 0.222

cow 0.423 0.275 0.413 0.272

horse 0.298 0.135 0.304 0.204

Table 3. The performance of the proposed and the ESS algorithm

algorithm on VOC 2006, when only localizing one object of inter-

est on each test image, using Measure II.

dow when calculating the localization rate of the proposed

algorithm.

6.2. Experiments on VOC 2007

We also evaluated the performance of the proposed algo-

rithm on the PASCAL VOC 2007 database which is a much

larger and more challenging database than PASCAL VOC

2006. There are 9963 images containing 24640 object in-

stances. For VOC 2007 images, we do not have Version

I visual words and feature scores used in [13]. We only

test using Version II visual words and feature scores that

are derived from our own implementation of the bag of vi-

sual words and SVM training on the VOC 2006 training
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Figure 5. Precision-recall curves of the proposed algorithm (red) and the ESS algorithm (blue), when using (a) Version I visual words and

features scores on PASCAL VOC 2006, (b) Version II visual words and features scores on PASCAL VOC 2006, and (c) Version II visual

words and features scores on PASCAL VOC 2007. All these curves are derived by using Measure I.

Single-Obj. Local. Multi-Obj. Local.

dataset Proposed ESS Proposed ESS

dog 0.419 0.389 0.312 0.238

cat 0.433 0.422 0.272 0.157

sheep 0.132 0.095 0.370 0.164

cow 0.217 0.176 0.269 0.141

horse 0.398 0.388 0.262 0.253

Table 4. The localization rates of the proposed algorithm and the

ESS algorithm on PASCAL VOC 2007 database, using Version II

visual words and feature scores and Measure I.

images. We did not construct new visual words and fea-

ture scores using any VOC 2007 images. In addition, we

only test the localization algorithms using Measure I, where

the ground truth subwindow is a rectangle provided in the

VOC 2007 database. Table 4 shows the localization result

of the proposed algorithm and the ESS algorithm. Similarly,

Figure 5(c) compares the precision-recall curves of the pro-

posed algorithm and the ESS algorithm. Similarly, these

results show that the proposed algorithm has a performance

better than, or comparable to, the ESS algorithm.

7. Conclusion

In this paper, we developed a new free-shape subwin-

dow search algorithm for object localization. Different from

previous subwindow-search based object localization algo-

rithms, we considered both object features and boundary

information for object localization. We applied the widely

used bag of visual words technique and SVM training to

construct a set of visual words and associated scores. The

localization objective is formulated as detecting an optimal

contour that not only covers features with larger total scores,

but also aligns well with edge pixels. We showed that a

ratio-contour graph algorithm can be adapted to find the de-

sirable optimal contour. We conducted experiments on both

VOC 2006 and 2007 databases and found that the perfor-

mance of the proposed algorithm is better than or compara-

ble to the ESS algorithm.
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