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We investigate the ultraslow motion of polychromatic Bessel beams in unbounded, nondispersive media. Con-
trol over the group velocity is exercised by means of the angular dispersion of pulsed Bessel beams of invariant 
transverse spatial frequency, which spontaneously emerge from near-field generators. Temporal dynamics in 
transients and resonances over homogeneous delay lines (dielectric slabs) are also examined. 
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1. INTRODUCTION 
The speed of a light pulse propagating in an optical me-
dium may vary significantly depending on the dispersion 
in the refractive index n and ranges from subluminal 
to superluminal, and even negative, velocities. Ultraslow 
wave propagation refers to group velocities much smaller 
than c or, equivalently, to group indices ng=n + a)dan ex-
ceeding by far unity, which requires strong chromatic dis-
persion dmn. Strong absorption under such conditions, 
however, brings severe limitations in the experimental 
observation of slow light, which has led to pursuit of 
quantum interference effects such as electromagnetically 
induced transparency or coherent population oscil-

lations 
Reduction of the group velocity was achieved much ear-

lier in optical resonances. Structural dispersion in metal-
lic hollow waveguides, or optical fibers, induces chromatic 
dispersion that allows for both subluminal and super-
luminal modes of propagation. Flatband regions of 
ultraslow propagation are found in the vicinity of band-
gaps where, at the edges, modes with zero group velocity 
should exist . Slow-wave structure assemblies for use 
in traveling-wave tubes benefit from this phenomenon 

Evidence of slow light phenomena in photonic crys-
tals and their use in delay lines for optical buffer-
ing , dispersion compensation , and for enhanced 
l ight-matter interactions in nanophotonic circuits 
have been described more recently. 

In a rather different context undistorted wave trans-
mission in free space with polychromatic Bessel beams 
has attracted considerable attention in recent years 

Potential applications may be found in different 
research areas, e.g., remote sensing, high resolution im-
aging, impulse radar, plasma physics, directed energy 
transfer, and secure communications 

In the absence of a medium or a struc-
ture it is the plane-wave angular dispersion that is at 

work in the control of the wave shape and its velocity 
Most of the research has been focused on super-

luminal diffraction-free solutions of the wave equation 
and on undistorted pulse beam propagation in dis-

persive dielectric media Although subluminal lo-
calized pulses have been reported previously , the 
characteristic features of pulsed Bessel beams (PBBs) 
with group velocity approaching zero have not been exam-
ined at length 

We investigate in this paper slow-wave propagation of 
ultrashort PBBs in nondispersive bulk media, and free 
space as a particular case. Within the vast variety of non-
diffracting PBBs presenting subluminal group velocity, 
we have focused on those with constant transverse spatial 
frequency , exhibiting therefore a high-pass semi-

infinite band. Near the band edge we encounter proper 
conditions for ultraslow wave propagation. Far-field syn-
thesis of PBBs usually relies on complex approaches such 
as dynamic aperturing . Alternatively, near-field 

generation of such wave packets is commonly performed 
by direct pulse-plane-wave diffraction with radial grat-
ings or annular arrays . The characteristic periodic 
modulation of these diffractive optical elements allows 
the imprinting of a given spatial frequency, which is inde-
pendent upon frequency, onto the wavefield. Also, the fun-
damental modes of surface-emitting semiconductor laser 
structures is of this kind Finally, excitation of 
stable PBBs driven by nonlinearities represents an at-
tractive route 

In this paper, pulse dynamics (in particular, transit 
times and pulse stretching) of PBBs traveling within non-
dispersive homogeneous material systems are thoroughly 
examined for applications such as all-optical transmission 
delay lines and resonant cavity confinement. We present 
analytical and numerical results of PBBs propagating at 
group indices ranging from 8 in glass microlines of 20 /xm. 

for few-cycle wave packets, up to re„=1000 for resonant 



optical 20 ns long pulses in a plane-parallel cavity of a 
length of 10 mm. 

2. PULSED BESSEL BEAMS 
PBBs are coherent superpositions of monochromatic 
Bessel beams A(<u,z)c7m(£j_r)exp(i7n<£)exp(-i<u£) of differ-
ent frequencies a), where (r,<f>) axe polar coordinates in a 
plane perpendicular to the propagation direction z, Jm() 

is the Bessel function of the with order, A(o),z) 

=A(o))exp[ikz(o))z], and 

the effective refractive index neff=c/v„ and of the group el 
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is the axial wavenumber. The transverse wavenumber 
k | > 0 is taken to be independent of frequency for PBBs 

, which makes them factorized in time and space, with 
an identical Bessel profile at any temporal slice of the 
pulse, as we will see in Figs. 3 and 5. 

Here we investigate the dispersion effects on the pulse 
propagation driven by the transversal localization of the 
PBB, so that the refractive index n is assumed to be in-
dependent of frequency for simplicity, or the propagation 
constant k(o)) = om/c linear with frequency. From Eq. (1) 
the axial wavenumber kz vanishes at the cutoff frequency 
Mc=k1c/n, taking real positive values 0<kz<k for o) 

> o)c. The spectrum A(a>) is usually assumed to vanish for 
w=s 0)c. 

For quasi-monochromatic radiation of carrier frequency 
<uo, the group velocity vg=l/kz0 along the z direction (the 
prime stands for derivation with respect to o), and the 
subscript 0 for evaluation at <u0) results to be 

1 (2) 

which is subluminal (lower than cln). On the contrary, 
the phase velocity vp = o)0/kz0 is found to be superluminal, 
and related to the group velocity by vpvg=(cln)

2
. Figure 1 

shows the dispersion curve [Eq. (1)] in the plane o)-kz, 

where the relation vg < vp is evidenced geometrically. Fur-
thermore the slope of the dispersion curve approaching 
zero in the vicinity of o)c evidences that PBBs can propa-
gate at arbitrarily small group velocities. The speeds of 
the wave packet can be equivalently expressed in terms of 

index ng=clvg, related by neftng=n
2 for PBBs. The group 

index is inversely proportional to the group velocity, and 
directly proportional to the phase velocity for PBBs. Value 
ng>n refers to the ultraslow propagation regime. 

3. ULTRAHIGH GROUP-INDEX REGIME 
In the vicinity of the band edge (o)^aic , kz^0), the group 
velocity tends to zero, and hence the group index tends to 
infinity. PBBs in this ultraslow regime approach a nearly 
frozen pulse with a diffraction-free Bessel transversal 
profile. The dispersion relation in this regime can be ap-
proached by the parabola 

1 + -
2k

2 
2o),.n 2 2 ' 

(3) 

which holds for a sufficiently low axial wavenumber kz 

<ik1 = o)cn/c, or sufficiently small frequency shift a)-aic 

from the cut of frequency. It follows from Eq. (3) that in 
this regime vg is proportional to the axial wavenumber 
kz0, and thus is proportional to the squared root of the 
shift So)=o)0-o)c of the carrier frequency from the cutoff 
frequency o)c. 

The proximity of slow-PBBs spectra to the band edge 
strongly influences the practicable pulse durations. If the 
spectrum is located about o)0 and must vanish for o)<aic, 
then the half-bandwidth a must satisfy a< So). From Eq. 
(3), So}~(n

2
/2ng)o}0, from which the fractional bandwidth 

r = 2a/io0 must satisfy Y<n
2
ln

2 Since ng>n in the ul-
traslow regime, ultraslow PBB are inherently quasi-
monochromatic (r<§l). The number of cycles is roughly 
estimated by N=T~

l (for a transform-limited pulse), 
which increases as the square root of the group index. 

Although ultraslow PBBs are narrowband, the wave-
form may be distorted noteworthily upon propagation due 
to the strong dispersive character of the group index near 
the band edge. Figure 2 shows fast growth of group index 
and group-index dispersion [c times group-velocity disper-
sion (GVD)] collectively as o)0 approaches o)c. After travel-
ing a distance L, the wave packet arrives with a time de-
lay T=Llvg=(Llc)ng varying for different spectral 
components of the field, and therefore causing pulse de-
formation if L is large enough. Of particular relevance is 
the dispersion length LD, or propagation distance at 
which the pulse becomes significantly distorted due to 
group-index dispersion. A significant distortion is ex-
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pected to occur when the intraband delay \T=T(o)0 + a) 

-T(a)0) is similar to the pulse duration r=2/cr, which 
yields the usual expression LD=T

2
l2\kzS}\ for the disper-

sion length. For ultraslow PBBs, Eq. (3) implies that 
kzkz = tocn

2
/c

2 and kzk" = -kz
2
, which gives 

Ko = -

2 3 

o)cng 
3 9 

and a dispersion length 

Ln = 
4\ 0 « 

w P n 2„3 ' 

(4) 

(5) 

where \0 = 2irc/a)0 is the vacuum carrier wavelength. For 
the shortest PBB with given group index ng (T=n

2
/n

2
), 

the dispersion length becomes Li)=4ir~
1
\0ngn~

2
, which is 

proportional to the group index and exceeds the carrier 
wavelength in several orders of magnitude. 

In Sections 4 and 5 we take advantage of these basic 
properties of ultraslow PBBs for the design of light delay 
and storage devices without the need for any dispersive 
material medium or waveguiding structure. A commit-
ment between group-velocity reduction and pulse dura-
tion may lead a simple dielectric slab (e.g., vacuum) to act 
as a delay line for femtosecond pulses with moderately 
slow velocities, or as a resonator with extremely slow 
pulses of nanosecond duration. 

the left side (i.e., Ag = 0), the electric field may be ex-
pressed at any observation distance in terms of the spec-
trum A\(ci),0) of the incident field at z = 0. In particular, 
the transmitted field at the output plane z =L is seen to be 
given by 

4>m 

where 

At(W ,0)T1T2exp(i^2L) 

1 - R
2
 exp(i2kz2L) 

TV 
2*,i 

R: 

hi + hi' 

2^2 

hi + hi' 

hi - hi 

hi + hi 

-Jm(ki.r)exp(im4i), (9) 

(10a) 

(10b) 

(10c) 

The set of equations (10) corresponds to the well-known 
Fresnel formulas for s-polarized states, where the differ-
ence kZ2~hi is referred to as the impedance mismatch at 
the slab-cladding interfaces. 

A convenient interpretation of Eq. (9) is commonly 
given by expanding i//m3 into a power series of R by use of 
the expression 

4. FEW-CYCLE PULSE DELAY LINES 

We consider a dielectric slab of width L, with the left face 
at z = 0 and an index of refraction of n2, bounded by a di-
electric cladding of refractive index re1>re2. The PBB of 
monochromatic components 

til =
A
i(

M
,°)

J
m(k1_r)exp(imcf>), (6) 

carrier frequency o)0, and transverse wavenumber k± im-
pinges normally on the left face of the slab. The time ori-
gin is taken when the envelope of the input PBB is maxi-
mum at z = 0. The Snell law of refraction implies that the 
Bessel transverse wavenumber is preserved within the di-
electric slab. 

The pulse bandwidth is limited by the cutoff frequency 
Mc=k1c/n2 of the slab, since it is is higher than the cutoff 
frequency of the cladding. The axial wavenumbers kzj(

0)
) 

= (n
2
o}

2
/c

2
-k

2
L)

1
'
2 (;'=1 in the cladding atz<0,j=2 in the 

slab, and j=3 at z>L, with n3 = ni) will be real and posi-
tive if the bandwidth of the input PBB satisfies a< So) 

= o)0-o)c. Within the j domain, solutions of the wave equa-
tion are expressed as a superposition of the forward-
propagating wave of spectrum 

AJ(«>,z) =Aj(o>,0)exp(ikzjz), (7) 

and the backpropagating wave of spectrum 

Aj (o),z) =Aj (w,0)exp(- ikzjz). (8) 

For simplicity in the boundary conditions, we consider 
PBBs whose axial electric field vanishes. In this case, the 
boundary conditions require continuity of the wave field 
and its normal derivative at interfaces z = 0 and L. If a 
single wave packet impinges on the dielectric slab from 

[1-R
2 exp(J2^2L)]_1 = 1 + 2 R2q exp(i2g^2L). 

9=1 

(ID 

This expansion suggests that the transmitted wave is a 
pulse train consisting of (1) a precursor field having the 
same waveform as the incident PBB i//[(o),0), phase delay 
kz2L and attenuation T{F2, and (2) an infinite number of 
wavelets originated from 2<j reflections at the slab inter-
faces at a reflectance rate R. The precursor arrives at z 

=L at a time T=Llvg2, where vg2=llk'z2 (evaluated at o) 

= o)0) is the group velocity of the PBB in the slab. If the 
impedance at the interfaces is quasi-matched (kz2akzi), 

which corresponds to close enough refractive indices of 
slab and cladding, R~(kz2-kzl)(2kz2)~

1 is close to zero 
and T1T2 = 1-R

2 approaches the unity. In this case, the 
precursor carries most of the energy from the incident 
PBB, leading to a single strong signal at the output plane. 

We perform numerical simulations in order to verify 
the validity of this analysis. From a cladding of refraction 
index n1 = 1.5, we launched on the slab of refraction index 
n2 = 1.48 the azimuthal PBB of spectrum 

E = Eja-j, =A
+

1((o,z)J1(k1_r)u 
•f" (12) 

about the typical optical frequency a)0 = 3.14fs_ 1 and of 
duration T = 2 0 0 fs. The electric field in Eq. (12) is a 
diffraction-free solution of the reduced wave equation V 
X V x E - & 2 E = 0 with zero axial components We 

point out that the azimuthal unitary vector u^=-sin<£x 
+ cos <f>y carries the angular dependence of the field over 
<j>. Since r=6.37X 10~

3
<n

2
ln

2
g for PBBs, this femtosecond 

optical pulse can be transmitted as a PBB with a maxi-
mum group index ng~lS. For the choice of the (rather 



strong) lateral localization fe_L = 15.2 fim 

(>kz2 = 2.87 /im"1), the cutoff frequency results to be o)c 

= 3.083 fs"1, and the group index takes the moderate 
value ng=8. Finally, the thickness of the slab is chosen to 
be L = 20 /urn, significantly smaller than the dispersion 
length LD = 80.64 /urn in order to prevent any significant 
distortion of the transmitted PBB. 

In Fig. 3(a) we represent the waveform of the field en-
velope \E,p\

2 at the input plane z = 0. For convenience we 
used the Gaussian spectrum 

A | K + fl,0) = (27TO-2)-1'2 exp(- tffto
2
), (13) 

since it leads to the analytical expression 

E^r) = exp(- io)0t)exp(- ^2o2/2)J1(A_Lr) (14) 

for the incident wave field (if the spectral amplitude at o)c 

is negligible). In Fig. 3(b) we show the transmitted field at 
z=L. The precursor arrives with a group delay of T 

= 533 fs, a time 124 fs longer than the time taken by the 
PBB in traveling the same distance L within the homoge-
neous dielectric medium of refractive index n\. Due to the 
quasi-matched impedances, the retarded wavelets origi-
nated from reflections at the interfaces cannot be ob-
served at the scale of the figure, as expected from the en-
ergy balance given by R = 0.145 (evaluated at <u=<u0)-

5. ULTRASLOW RESONANCES 
We consider now the feasibility of PBBs with ng exceeding 
the unity by several orders of magnitude. For sufficiently 
small refractive index n2 of the dielectric slab and same 
cladding, the impedance mismatch at the input and out-
put interfaces is high, and the reflectivity R may reach 
absolute values around the unity [see Eq. (10c)]. This at-
tractive case leads to a leaky trapping of a extremely slow 
PBB within the layer through multiple reflections at z 

= 0 and L. Here we better speak of a resonator of the 
Fabry-Perot type sustaining ultraslow PBBs rather than 
of a delay line. 

Pig. 3. (Color online) Instantaneous intensity |-E |̂2 (in arbitrary 
units) of the azimuthal PBB: (a) input plane (z = 0), and (b) out-
put pulse (z=L). 

The round-trip group delay, or time consumed by the 
PBB in coming back to the input plane z = 0 after being 
reflected at z=L, is given by 2T=2L/vg2. For simplicity, 
we address our discussion to the central plane z=LI2, 

where the released PBB arrives with a delay TI2 and re-
turns from a reflection on an interface with a periodic de-
lay T. Replicas of the input beam propagating alterna-
tively in the forward and backward directions are 
observed at a rate T"1 in the form of a genuine pulse 
train. However, if the pulse duration -ris sufficiently long 
such that T > T, the leading part of the pulse moving back-
wards from reflection reaches the plane z=LI2 in time to 
interfere with the rear part of the forward pulse. Overlap-
ping will be negligible only if the resonator length is 
larger than the pulse coherence length, that is, 

L>L„ "g2-

2\n 

ITTlgY 
(15) 

Moreover nontotal reflection at the interfaces and disper-
sive distortion at each round trip causes attenuation and 
broadening of the replicas at distances greater than the 
dispersion length LD in Eq. (5). Since LD and Lc are re-
lated by Lc=Lj)Yn„l(2n2), and the bandwidth is limited to 
T<n2ln„, the dispersion length is found to satisfy Lp 

>2LC. As a conclusion, a range of resonator lengths L 

E (LC,LD) exists in which overlapping and distortion are 
simultaneously negligible, at least for a number of round 
trips ~Lj)/(2L). This number can be significantly high as 
long as Ls^Lc and Y<n2n~ . 

As a particular case, we consider again the azimuthal 
PBBs in Eq. (12) as the light signal that excites a reso-
nant PBB when it is launched from the left side of the 
cladding (n1 = 1.5) onto a vacuum cavity (n2 = 1), a configu-
ration that provides high reflectivity at the interfaces. For 
the visible carrier frequency w0 = 3.14 fs - 1 , Fig. 4(a) shows 
the group index reachable as a function of its detuning So) 

from the cutoff frequency. For a choice of the ultrahigh 
group index ng=10

3
, the detuning must be SOJ=1.51 

X 106 fs - 1 , attained by a PBB of transverse frequency k± 

= 10.5 fiTXT
1
, or a transversal spot size of about 0.2 /mi. In 

Fig. 4(b) we plot the dispersion length LD and the coher-
ence length Lc for the different possible bandwidths a 

<SOJ of the PBB, where LC<LD is evidenced graphically. 
For instance, a pulse duration of T = 2 0 ns {a= 10"7 fs - 1 , or 
r = 6.37XlO"8) yields Lc = 6 mm and LD = 18.85 cm. A cav-
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ity of length L = 10 mm, as considered below in numerical 
simulations, would result in nearly 10 shapely round 
trips without overlapping and distortion, with a period of 
2T=66.7 ns. The ultraslowness of the PBB along with the 
pseudoresonance provides a storage time of the order of 
the microsecond, to be compared with the fly time of 
—0.3 X 10"11 s of light in vacuum. 

In Fig. 5 we show contour plots of the intensity \E^ at 
the input and midplane of the resonator. The intracavity 
field is computed following the procedure described in 
Section 4 based on the continuity conditions on the inter-
faces, which leads to the in-plane spectra 

A+(W,0): 
7\ 

l-R
2
exp(i2kz2L) 

•At(<u,0), (16a) 

RT1 exp(i2kz2L) 

^
(
^ °

) =
l - ^ e x p ( ^ 2 L )

A
^

0 )
' 

(16b) 

for the forward-propagating and counterpropagating 
components of the PBB, respectively, where A^(<u,0) is 
given by the Gaussian signal in Eq. (13). Figure 5(a) 
shows a field at the input face z = 0 of the resonator. Only 
the input excitation is observable at the scale of the figure 
since multiple reflections are strongly attenuated. This ef-
fect originates from the negative sign of the reflection co-
efficient R = -0.998, which causes the leading part of any 
reflected pulse to interfere destructively with the rear 
part of the pulse prior to reflection. The strongly attenu-
ated reflections are more clearly seen in Fig. 5(c) for the 
output face z=L. Attenuation is seen to be significant up 

-100 -50 0 50 100 
?(ns) 

Pig. 5. (Color online) Intracavity dynamics of |-E |̂2 at different 
transverse planes: (a) input plane z = 0, (b) amid-reflectors plane 
z=L/2, and (c) interface plane z=L. 

to distances Lc from the faces of the resonator, which 
yields an effective cavity length of about L-2LC without 
attenuation. Figure 5(b) shows that the field at the cen-
tral plane z=L/2 of the resonator is composed of a peri-
odic sequence of nonoverlapping, nearly undistorted, and 
nonattenuated PBBs of period T=33.3 ns and an offset 
group delay of TI2. Time reversal of alternate pulses is 
not appreciated due to the symmetry of the Gaussian 
pulse. 

6. CONCLUSIONS 
In this paper we have established the conditions for the 
observation and synthesis of wave packets with ultraslow 
group velocity in a nondispersive medium or free space 
without the help of any guiding structure. In practice, la-
ser emission from surface-emitting semiconductors car-
ries the required angular dispersion to produce sublumi-
nal pulsed Bessel beams, which demonstrates that near-
field diffraction of nonevanescent waves allows practical 
realizations of ultraslow wave velocities in free space. 
Drastic reduction of the group velocity is achieved by 
strong angular dispersion of the composing monochro-
matic Bessel beams at angles close to TT/2, or, equiva-
lent^, by pseudostanding waves with transversal wave-
numbers much larger than the axial wavenumber, 
leading additionally to strong transverse localization into 
a few nanometers. 

The analysis of the limitations in PBB bandwidth and 
dispersive distortion, as imposed by the presence of the 
bandgap, allows us to conclude that a femtosecond optical 
PBB can propagate at moderate slow velocities (ng~ 10), 
while extremely slow group velocities («.g~103 or larger) 
are possible with picosecond or longer pulses. 

We conclude our investigation with the analysis of non-
guiding, uniform delay lines, based on lowering the re-
fraction index with respect to the surrounding medium, 
which hence slow down the exciting pulsed Bessel beam. 
For convenience, azimuthally symmetric vector Bessel 
beams have been taken for the analysis and numerical 
simulations. The influence of the refractive index mis-
match at input and output planes onto the pulse dynam-
ics is examined. When the index mismatch is sufficiently 
low the dielectric slab emulates a lossless delay line us-
able for few-cycle femtosecond pulses. An increase of the 
mismatch enhances the reflectivity at the interfaces, so 
that the plate (vacuum in our numerical simulations) acts 
as an optical resonator sustaining an extremely slow PBB 
of nanosecond duration. Our analysis leaves an open door 
for the experimental demonstration and optical engineer-
ing of ultraslow wave phenomena in free space. 
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