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Free-Space Optical Communications: Capacity
Bounds, Approximations, and a New

Sphere-Packing Perspective
Anas Chaaban, Jean-Marie Morvan, and Mohammad Slim Alouini

Abstract—The capacity of the free-space optical channel is
studied. A new recursive approach for bounding the capacity of
the channel based on sphere-packing is proposed. This approach
leads to new capacity upper bounds for a channel with a peak
intensity constraint or an average intensity constraint. Under
an average constraint only, the derived bound is tighter than
an existing sphere-packing bound derived earlier by Farid and
Hranilovic. The achievable rate of a truncated-Gaussian input
distribution is also derived. It is shown that under both average
and peak constraints, this achievable rate and the sphere-packing
bounds are within a small gap at high SNR, leading to a
simple high-SNR capacity approximation. Simple fitting functions
that capture the best known achievable rate for the channel
are provided. These functions can be of practical importance
especially for the study of systems operating under atmospheric
turbulence and misalignment conditions.

Index Terms—Intensity-modulation, sphere-packing, capacity
bounds, capacity approximation, truncated-Gaussian.

I. INTRODUCTION

Free-space optical (FSO) communication has attracted lots
of research attention recently [2]–[7] due to its ability to
provide high-speed communication while not being too de-
manding in terms of infrastructure [8], [9]. As such, it is
an important solution for scenarios where deploying infras-
tructure is prohibitive (dangerous terrain) or not cost-effective
(temporary situations). FSO is also a potential solution for
the main challenge facing today’s radio-frequency communi-
cation: spectrum shortage.

Although optical heterodyne detection can be employed in
FSO [10], IM-DD is favored from a practical point of view
due to its simplicity and low-cost. Several models exist for IM-
DD channels [8], and one of the most often studied models is
the Gaussian channel with input-independent Gaussian noise
[11]–[16]. In this model, the input signal is a positive random
variable representing the optical intensity, and the noise is
input-independent Gaussian. In addition to its nonnegativity,
the input signal is typically restricted by a peak and an average
constraint due to safety and practical considerations [17].
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Although the capacity achieving input distribution is known to
be discrete [16], the capacity of the channel is yet unknown
in closed-form.

Nevertheless, several bounds on the channel capacity exist,
and these bounds are tight in some cases [11]–[15]. For
instance, for a channel with an average constraint only, [11]
derived capacity upper and lower bounds that meet at high
signal-to-noise ratio (SNR). Under an average and peak inten-
sity constraints, the upper and lower bounds in [11] meet at
high and low SNR. The highest known achievable rate for the
channel was given in [12], where the best discrete distribution
with equally spaced mass points was found. This distribution
achieves rates close to capacity as shown in [12]. On the other
hand, [13] derived bounds for the channel under an average
constraint only, where it was shown that the best discrete
distribution with equally spaced mass points is the geometric
distribution. In the same paper, an upper bound was derived
by using sphere-packing in a simplex. Despite this work, a
simple capacity expression is still to be found.

Our work in this paper can be considered rather comple-
menting the work in [11], [12] for an IM-DD channel with
both average and peak constraints. As in [13], we bound
the capacity of the IM-DD channel using a sphere-packing
approach. Under a peak constraint, we get a problem of sphere-
packing in a cube. We derive upper bounds for this case
using two approaches. The first approach is similar to the one
used in [13] which employs the Steiner-Minkowski formula
for polytopes [18]–[20]. The second approach is based on a
new recursive argument that better capitalizes on the geometry
of the ball, and hence yields better bounds at moderate/high
SNR. For the IM-DD channel with only an average constraint,
the new approach yields a significantly better bound than the
one derived in [13] for any SNR. This is due to exploiting
the geometry of the ball while deriving the bounds. The
derived sphere-packing bounds coincide with the high SNR
capacity of the channel with an average constraint only, and
the channel with average and peak constraints with a dominant
peak constraint, which reproduces the results of [11] for those
cases. The advantage is that sphere-packing bounds have a
simpler interpretation than the bounds in [11] due to their
geometric nature.

In [11], continuous input distributions that achieve the high-
SNR capacity of the channel were given. Continuous input
distributions lead to achievable rates that can be written in sim-
ple expressions, contrary to discrete input distributions [12].
We ask the questions whether other continuous distributions
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than those in [11] can achieve higher rates at moderate SNR.
To this end, we derive the achievable rate of a truncated-
Gaussian (TG) input distribution. This answers the question in
the affirmative. The expression of the achievable rate is rather
complicated, and requires optimization over two parameters.
We lower bound this achievable rate by a simpler expression,
and provide values for the optimization parameters which yield
fairly good performance at high SNR. In particular, we show
that the TG distribution is nearly capacity achieving1 at high
SNR if the peak constraint dominates the average constraint.
Otherwise, we show that the TG distribution achieves the
sphere-packing bounds within a gap of at most 0.163 nats,
although this gap can be reduced numerically to 0.1 nats.
Based on this, we approximate the high-SNR capacity by
the sphere-packing bounds. We note that the gap reduces
to approximately zero by incorporating a bound from [11].
This leads to the conclusion that the TG distribution is nearly
capacity achieving at high SNR.

The best achievable rate known to-date remains the one
given in [12], which is fairly close to the upper bounds at any
SNR. However, this achievable rate is derived numerically,
and does not have a closed-form expression. A closed-form
expression is important for the study of practical systems under
fading scenarios. The availability of such an expression allows
a better understanding of the ultimate performance of IM-DD
systems beyond simple sub-optimal schemes such as on-off
keying [2], [3], [21] or binary pulse-position modulation [22],
[23], and beyond high SNR scenarios with only an average
constraint [24]. To make the capacity approaching scheme in
[12] more accessible, we provide a simple fitting function
which closely captures its achievable rate globally (at any
SNR). This expression is of the form 1

2 log(1+γ2f(γ)) where
γ is the SNR and f(γ) is of the form p(γ)/q(γ) which are both
polynomials of the same degree in γ. It turns out that fixing
the degrees of these polynomials to 1 provides a sufficiently
good fit, while increasing it to 3 provides a very close fit at the
expense of a more sophisticated expression. We also provide
a simpler local fitting function of the form d1

2 log(1 + d3γ
2)

which provides a close fit within a desired range of SNR.
The rest of the paper is organized as follows. The system

model is given in Section II. The main results of the paper are
given in Section III, and are proved in the remaining sections.
In Section IV, we derive capacity upper bounds using sphere-
packing in a cube. In Section V, we derive a capacity upper
bound using our recursive approach on sphere-packing in a
simplex. In Section VI, we derive the achievable rate using
a TG distribution, and approximate the high-SNR capacity.
We provide capacity fitting functions in Section VII, and we
conclude in Section VIII.

Throughout the paper, we use normal-face font to denote
scalars, and bold-face font to denote vectors. We use gµ,ν(x)
to denote the Gaussian distribution with mean µ and variance
ν2, and Gµ,ν(x) to denote its cumulative distribution function.
We also use V (·) to denote the volume of an object. Next, we
introduce the IM-DD channel.

1in the sense that the gap to capacity upper bounds is close to zero.

II. THE INTENSITY-MODULATION DIRECT-DETECTION
CHANNEL

We consider an IM-DD channel whose input X > 0 is
a random variable representing the intensity of the optical
signal. Since intensity is constrained due to practical and safety
restrictions by average and peak constraints in general [17], the
input random variable has to satisfy X ≤ A and E[X] ≤ E.

To send a message w ∈ {1, · · · ,M} to the desti-
nation, the source encodes it into a codeword X(w) =
(X1(w), · · · , Xn(w)) of length n symbols, and sends this
codeword over the channel. Here, the symbols Xi(w) are
realizations of the random variable X . An intensity detector
is used at the destination to detect X(w). The received signal
after the detector is

Y = X + Z

where Z is a sequence of n independent and identically dis-
tributed g0,σ(z) noise instances, independent of X . Through-
out the paper, we denote the peak signal-to-noise ratio (PSNR)
A
σ by γ, and the average signal-to-noise ratio (ASNR) E

σ by
γ̄. In general, we say that the IM-DD has high SNR if γ̄ � 1,
which for a given APR E

A
, implies that γ � 1.

The destination uses a decoder to recover ŵ ∈ {1, · · · ,M}
from the received signal Y. An error occurs if ŵ 6= w, and
has a probability Pe. The goal of the paper is to bound the
capacity C of the given IM-DD channel (in units of nats per
channel use), defined as the maximum achievable transmission
rate. The transmission rate is defined as R = log(M)

n , where
R is said to be achievable if the error probability Pe can be
made arbitrarily small Pe → 0 by letting n→∞.

The capacity of the channel can be expressed as

C = max
f(x)∈F

I(X;Y )

[25], where f(x) is a distribution of X and F is the set of
distributions of X ∈ [0,A] satisfying E[X] ≤ E. Although
it is known that the capacity achieving distribution of such
a channel is discrete [16], this distribution is yet unknown
explicitly. The main goal of this work is to study the capacity
of the channel, and to provide simple approximations of this
capacity that can be useful in practice.

III. MAIN RESULTS

We first present a simple result on the optimal E[X] as given
in the following lemma.

Lemma 1: The solution of C = maxf(x)∈F I(X;Y ) satisfies
E[X] = min

{
E, A2

}
.

Proof: The proof is given in Appendix A.
Note that this generalizes the result in [11, Proposition 9]
stating that the capacity of this channel admits a maximum
at E[X] = A

2 .
The next results concerns the IM-DD channel with a peak

constraint only.
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Fig. 1: A comparison between different capacity upper bounds (UB) and lower bounds (LB) for an IM-DD channel with either
a peak constraint of an average constraint.

Theorem 1: The capacity CA of a channel with a peak
constraint only satisfies CA ≤ CA,i, i ∈ {1, 2}, where
CA,i = supα∈[0,1]Bi(α) and

B1(α) = α log

(
γ√
2πe

)
− log

(
αα(1− α)

3(1−α)
2

)
B2(α) = α log

(
γ√
2πe

)
− log

(
α
α
2 (1− α)1−α2α−1

)
.

Proof: The proof is given in Section IV.
Those bounds are derived using sphere-packing arguments, by
bounding the number of disjoint spheres [13], [26] that can be
packed centered within a cube of side-length A. This problem
can be approached by using the Steiner-Minkowski formula as
[13] leading to CA,1. We propose a new approach based on a
recursive argument which leads to CA,2. The main idea of the
recursive approach is bounding the number of spheres (and
portions thereof) inside an n-dimensional cube, then inside its
(n−i)-dimensional faces which are (n−i)-dimensional cubes,
for i = 1, · · · , n.

Fig. 1a shows several capacity bounds as a function of the
PSNR γ for a channel with a peak constraint only. Note that
the upper bound CA,2 is the tightest at moderate/high PSNR
(γ > 8 dB), and that it converges faster to the high PSNR
capacity of the channel. For comparison, the best known lower
bound from [12] is shown. This lower bound is achievable
by using a discrete uniform input distribution with equally
spaced mass points, i.e., by solving maxK≥1 I(X;Y ) where
X follows the distribution f(x) =

∑K
k=0

1
K+1δ(x− k`), ` =

A/K, and δ(·) is the Dirac delta function. The bounds [11,
(19)] and CA,2 provide a tight capacity characterization at low
and high PSNR, respectively.

Under an average constraint only, we have the following
bound.

Theorem 2: The capacity CE of a channel with an av-
erage constraint only satisfies CE ≤ CE where CE =

supα∈[0,1]B3(α), and

B3(α) = α log

(√
eγ̄√
2π

)
− log

(
(1− α)1−αα

3α
2

)
. (1)

Proof: The proof is given in Section V.
This bound is derived using sphere-packing in a simplex

with our recursive approach. The Steiner-Minkowski for-
mula was used in [13] to obtain the bound CE ≤ CF =
supα∈[0,1]B4(α) where

B4(α) = B3(α) +
α

2
log
(e

2

)
− 1

2
log

(
(1− α

2 )2−α

(1− α)1−α

)
.

By direct comparison, it can be shown that B3(α) ≤ B4(α) for
all α ∈ [0, 1] with equality if α = 0. Our upper bound is tighter
because it exploits the geometry of the ball as we shall see in
Section V. The bound CE coincides at high ASNR with the
capacity of the channel with an average constraint only given
in [11, Proposition 8], but has a simpler expression. Fig. 1b
shows several capacity bounds as a function of ASNR γ̄. Note
that our bound CE is closest to the best known lower bound
from [13]. This lower bound is achieved by using a geometric
input distribution with equally spaced mass points, i.e., by
solving max`>0 I(X;Y ) where X follows the distribution

f(x) =
∑∞
k=0

`
`+E

(
E
`+E

)k
δ(x− k`).

Since dropping constraints does not decrease capacity, the
capacity under both average and peak constraints is upper
bounded by that under one constraint only. This leads to the
following corollary.

Corollary 1: The capacity C of an IM-DD channel with an
average constraint E and a peak constraint A is upper bounded
by CE, CA,1, and CA,2.
The bounds CA,1 and CA,2 are tight at high SNR if E

A
≥ 1

2
which reproduces the high-SNR result in [11, Corollary 6]. As
we shall show, the upper bound CE is fairly tight at high SNR
if E

A
< 1

2 .
Another capacity upper bound for this case, which is tight

at low SNR, was given in [11, (11) & (19)]. This upper bound
is given as follows.
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Fig. 2: The gap between the sphere-packing bounds and the truncated-Gaussian lower bound for different ratios E
A

.

Theorem 3 ( [11, (11) & (19)]): The capacity C satisfies
C ≤ C where C = 1

2 log
(

1 + γ2

4

)
if E

A
≥ 1

2 and C =
1
2 log (1 + γ̄(γ − γ̄)) otherwise.

Proof: This bound was derived in [11] using a duality
approach. An alternative proof of this theorem is given in
Section VI-A.

After deriving the aforementioned upper bounds, we derive
a capacity lower bound. This lower bound is given by the
achievable rate of a truncated-Gaussian (TG) input distribution
satisfying both average and peak constraints, as given in the
following theorem.

Theorem 4: The capacity C satisfies C ≥ R ≥ R′ where the
achievable rates R and R′ are given by R = R′ − Φ3(µ, ν)
and R′ = C0(ν) − Φ1(µ, ν) − Φ2(µ, ν), and where C0(ν) =
1
2 log

(
1 + ν2

σ2

)
, Φ1(µ, ν) = log(η),

Φ2(µ, ν) = ((A− µ)gµ,ν(A) + µgµ,ν(0))
ην2

2(ν2 + σ2)
,

Φ3(µ, ν) = EX,Y [log(Gµ′,ν′(A)−Gµ′,ν′(0))] ,

for some parameters µ and ν satisfying ν2η(gµ,ν(0) −
gµ,ν(A))+µ ≤ min{E, A2 }, with η = (Gµ,ν(A)−Gµ,ν(0))−1,
µ′ = µσ2+yν2

ν2+σ2 , ν′ = νσ√
ν2+σ2

, and the expectation in
Φ3(µ, ν) is taken with respect to the distribution f(x, y) =
ηgµ,ν(x)gx,σ(y) over x ∈ [0,A] and y ∈ R.

Proof: See Sec. VI-B.
Although R is higher than the achievable rates given in [11,

(10) & (18)], it has a sophisticated expression. However, R′ is
simpler to compute, and is also simpler than RF in [12]. At
high SNR, specific choices of µ and ν lead to R′ being close
to the sphere-packing bounds as we shall see in Sec. VI-B. By
numerically optimizing with respect to µ and ν, we observe
that R′ is within a gap of ≈ 0 and < 0.1 nats per channel use
at high SNR of the sphere-packing bounds CA,2 and CE for
E
A
≥ 1

2 and E
A
< 1

2 , respectively (Fig. 2a). This negligible gap
at high SNR leads to the following approximation.

Proposition 1: The high-SNR capacity of a channel with
both average and peak constraints can be well-approximated

by CHigh SNR ≈ min
{

1
2 log

(
eγ̄2

2π

)
, 1

2 log
(
γ2

2πe

)}
.

These expressions are limits of CE and CA,2 as γ →∞. The
approximation gap is at most 0.1 nats.

Remark 1: It can be shown numerically that R′ (and con-
sequently R) is nearly capacity achieving at high SNR. This
statement is based on the negligible gap, at high SNR, between
R′ and the upper bound given by min{CE,CL,1,CA,2} with
CL,1 being the bound given in [11, (12)] (see Fig. 2b).

Remark 2: The high-SNR capacity of a channel with both
average and peak constraints is within ≈ 0 and 0.1 nats at
most of the sphere-packing bound CE for E

A
≤ 0.15 and

0.15 < E
A
≤ 1

e , respectively (see Fig. 2). This bounds is in
turn tight at high SNR for a channel with an average constraint
only. Therefore, for a channel with an average constraint only,
imposing a peak constraint A ≥ eE or A ≥ 20

3 E leads to a high
SNR capacity loss of at most 0.1 nats or ≈ 0, respectively.

The bounds are plotted in Fig. 3. In general, the sphere-
packing bounds CE and CA,2 are fairly tight at moderate/high
SNR. The bound CE is tighter than CA,2 when the E

A
is small

(thus, we do not plot CA,2 in Fig. 3a and 3b). The transition
point where CA,2 becomes tighter than CE occurs around E

A
=

1
e . At this point, the bound given in [11, (12)] which we denote
CL,1, becomes slightly tighter than CA,2. The reason is that
under both constraints, the feasible region of the codeword X
is the intersection of a simplex and a cube. At moderate E

A
,

treating this intersection as either a simplex or a cube enlarges
the upper bound. In summary, the bounds CE, C, CL,1, and RF
provide the tightest capacity bounding for all SNR for E

A
< 1

e .
On the other hand, the bounds CA,2, C, CL,2 [11, (20)], and
RF provide the tightest capacity bounding for all SNR for
E
A
> 1

e .

Simple capacity expressions are of theoretical importance
since they can be used to study fading channels [24], [27].
From this point of view, it is interesting to find simple fitting
functions which capture the best known achievable rate RF
given in [12]. It turns out that a globally close fit for RF can
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Fig. 3: The capacity upper bounds and lower bounds plotted versus the signal-to-noise ratio γ for several ratios E
A

. Note that
E
A

= 1
2 represents all scenarios with E

A
≥ 1

2 (including the case with only a peak constraint) since they have the same capacity
[11].

be obtained by using the function

Ψ(γ) =
1

2
log

(
1 + γ2

(
c1 + (c2 − c1)

Θ1(γ)

Θ2(γ)

))
,

where c1 = min
{
eγ̄2

2πγ2 ,
1

2πe

}
, c2 = min

{
γ̄
γ

(
1− γ̄

γ

)
, 1

4

}
,

and where Θ1(γ) and Θ2(γ) are polynomials of degrees m1

and m2 > m1 in γ, respectively. Choosing (m1,m2) = (0, 1)
gives a good fit, with a slight improvement by choosing
(m1,m2) = (1, 2). The coefficients of the polynomials Θ1(γ)
and Θ2(γ) can be obtained by solving a system of linear
equations as we shall see in Section VII. A rather simpler
local fit is given by the function

Ψ̂(γ) =
d1

2
log(1 + d2γ

2),

for γ in a given desired range of operation, where d1 and
d2 are to be chosen based on the desired SNR range. The
parameters d1 and d2 can be chosen for a range γ ∈ [γ1, γ2]
dB using a simple formula, and the achievable rates of RF at
three PSNR values, γ1, γ2, and γ0 ∈ [γ1, γ2]. This function

provides a very good local fit for the SNR range of interest,
and can be used to study channels with weak turbulence where
the SNR does not vary widely.

The next sections prove the main results presented in this
section.

IV. THE IM-DD CHANNEL WITH A PEAK CONSTRAINT

Upper bounds and lower bounds for this case have been
derived in [11]. Here, we present upper bounds on the ca-
pacity based on sphere-packing arguments. We consider two
approaches: one that uses the Steiner-Minkowski formula, and
one that uses a recursive approach. Then, we compare the two
approaches and comment on their differences.

Since a codeword X = (X1, X2, · · · , Xn) satisfies the
constraint 0 ≤ Xi ≤ A for i = 1, · · · , n, then this codeword is
confined to an n-dimensional cube with edge-length A, which
we denote Wn

A.
On the other hand, the noise Z satisfies E[Z2] = σ2. Thus,

for large n, the noise Z is confined “almost certainly to some
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λ

A
noise

spheres

(a) A 2-dimensional illustration
of sphere-packing in a cube.

λ

λ

λ

λ
W2

A

(b) The λ-neighborhood of the
square is the sum of a square,
a disk, and four rectangles.

Fig. 4: Packing spheres of radius λ so that their center lie
inside a cube of side-length A. The convex envelope at a
distance λ of the cube is the λ-neighborhood of the cube.

point near the surface” [26] of an n-dimensional ball of radius

λ ,
√
nσ2

by the sphere hardening effect [28, Chapter 5]. We denote this
ball by Bnλ.

Thus, the noise-perturbed signal Y = X + Z lies almost
surely near the surface of a ball Bnλ about X. This is denoted
“decoding sphere” in [25]. An upper bound for the IM-DD
channel capacity can be obtained by computing the maximum
number Mn of disjoint decoding spheres that can be packed
centered in Wn

A (Fig. 4a), as n→∞.2

A. Steiner-Minkowski Formula

An upper bound on Mn can be found using an idea similar
to the sphere-packing argument in [25]. The main difference
is that in our case we have a cube instead of a sphere.

The noise balls extend Wn
A by a distance of λ in all

directions. This extension is the so-called λ-neighborhood of
Wn

A,3 which we denote by Wn
A(λ). By dividing the volume

of Wn
A(λ) by the volume of Bnλ, we get an upper bound on

Mn. This leads to a upper bound on CA, the capacity of a
channel with a peak constraint only, as follows:

CA ≤ lim
n→∞

1

n
log

(
V (Wn

A(λ))

V (Bnλ)

)
.

Finding V (Wn
A(λ)) is not as straightforward as the case of a

sphere. However, according to the Steiner-Minkowski theorem
for polytopes [18, Proposition 12.3.6], this volume can be
written as a polynomial of degree n in λ. This theorem is
stated as follows.

Theorem 5 (Steiner-Minkowski [18]): To every n-
dimensional convex set T, we can associate scalars Li(T),
i = 0, 1, · · · , n, such that the volume of the λ-neighborhood
T′(λ) of T, λ > 0, is given by V (T(λ)) =

∑n
i=0 Li(T)λi,

where Li(T) are continuous functions.
Thus, for evaluating V (Wn

A(λ)), it remains to determine the
coefficients of the Steiner-Minkowski formula. These coeffi-
cients were given in [19] for any convex body as follows.

2See [28, Chapter 5] for a detailed justification of this sphere-packing
bounding approach. Another geometric justification of this approach is given
in [29, Appendix B].

3or the Minkowski sum of the cube and the ball

Theorem 6 ( [19]): For any convex body T of n dimensions,
the coefficients of the Steiner-Minkowski formula can be
written as Li(T) =

∑
Tn−i∈∂T V (Tn−i)V (Bi1)θTn−i,T , where

Tn−i is a generic n− i dimensional face of ∂T the boundary
of T, and θTn−i,T is the normalized dihedral external angle of
Tn−i in T.
Example: An example illustrating this theorem is shown in
Fig. 4b. This figure shows W2

A(λ), the λ-neighborhood of
W2

A. Note that the extension of W2
A by λ extends each vertex

to a quarter of a 2-dimensional disk of radius λ, and each edge
to a half of a 2-dimensional cylinder (rectangle) of length A

and radius λ. Thus we can write

V (W2
A(λ)) = A2 + 4(2−1)A1(2λ) + 4(2−2)A0(πλ2)

=
n∑
i=0

2i
(

n

n− i

)
2−iAn−iV (Biλ),

with n = 2. In this expression, 2i
(
n
n−i
)

is the number of
n − i dimensional faces of Wn

A [18], 2−i is the normalized
dihedral external angle of the n − i dimensional face in Wn

A

(see definition of this angle in [19]), and AiV (Biλ) is the
volume of the cylinder formed by the orthogonal product of the
n−i dimensional face and Biλ. Note that the n−i dimensional
faces of Wn

A are Wn−i
A [18].

Applying Theorem 6 for the cube Wn
A leads to

Li(W
n
A)λi =

(
n
n−i
)
An−iV (Biλ). Now, we replace V (Biλ) by

(
√
πλ)i

Γ(1+ i
2 )

(Γ(·) is the Gamma function) and λ by
√
nσ2, we

substitute Li(Wn
A) in the expression of V (Wn

A(λ)) according
to Theorem 5, and divide by V (Bnλ) to obtain

Mn ≤
V (Wn

A(λ))

V (Bnλ)
=

n∑
i=0

Ni, (2)

where Ni =
(
n
n−i
) (

A√
πnσ2

)n−i Γ(1+n
2 )

Γ(1+ i
2 )

.

Thus, we have the upper bound CA ≤ CA,1 =
limn→∞

1
n log (

∑n
i=0Ni) from (2). The remaining steps are

similar to [13] (given in Appendix B for completeness), and
lead to

lim
n→∞

1

n
log

(
n∑
i=0

Ni

)
≤ sup
α∈[0,1]

B1(α), (3)

where B1(α) is as given in Theorem 1.
Note that apart from defining the λ-neighborhood of the

cube Wn
A, the rest of the derivation of the bound CA,1 is

independent of the geometry of the ball since it is based
on V (Wn

A(λ))
V (Bnλ) , where only the volume of the ball matters. In

fact, the upper bound on Mn in (2) can be interpreted as the
number of containers of liquid of volume V (Bnλ) that can
be poured inside V (Wn

A(λ)). From this point of view, an
approach which better exploits the geometry of the ball should
have an advantage over this one, at least in some cases. Next,
we present a such an approach.

B. A Recursive Approach

Recall that an upper bound on the channel capacity can be
obtained by computing the maximum number Mn of disjoint



0090-6778 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2016.2524569, IEEE
Transactions on Communications

7

A

λ

(a) Balls B2
λ packed in W2

A. (b) Portions of balls outside W2
A dis-

tributed between its faces.

×2

(c) Upper bound for the portions
in Fig. 5b.

Fig. 5: A 2-dimensional illustration of the recursive approach.

balls Bnλ that can be packed centered in Wn
A, as n→∞ [13],

[25], [26]. Consider an arbitrary constellation of such balls.
We upper bound the number of balls Mn by upper bounding
their total volume4 and then dividing by V (Bnλ). The total
volume of such balls can be written as

vtot = vin(Wn
A) + vout(W

n
A), (4)

where vin(Wn
A) is the total volume of balls and portions of

balls inside Wn
A, and vout(W

n
A) is the total volume of portions

of balls outside Wn
A. Clearly, vin(Wn

A) ≤ V (Wn
A) (shaded

area in the 2-dimensional illustration in Fig. 5a). Now we
upper bound vout(W

n
A) (unshaded areas in Fig. 5a).

Consider one (n− 1)-dimensional face Wn−1
A of Wn

A. Our
goal is to transform the problem of bounding vout(W

n
A) to a

problem of packing (n − 1)-balls in Wn−1
A . To this end, we

distribute the portions of balls outside Wn
A between the faces,

by associating each portion to the face with which it has the
largest intersection (see Fig. 5b). Next, we upper bound the
total volumes of these portions by twice the total volumes of
the spherical-caps5 on the outer side of the face (see Fig. 5c),
where we multiply by 2 to account for the portions overflowing
to the other side of this face. Thus,

vout(W
n
A) ≤ 2

∑
Wn−1

A
⊂∂Wn

A

V (spherical-caps on Wn−1
A ), (5)

where ∂Wn
A is the boundary of Wn

A. Hence,

vtot ≤ V (Wn
A) + 2

∑
Wn−1

A
⊂∂Wn

A

V (spherical-caps on Wn−1
A ). (6)

Next, we upper bound V (spherical-caps on Wn−1
A ). Denote

the volume of an n-dimensional spherical-cap of height h and
radius λ (see Fig. 6) by V (Pnλ,h). We transform each spherical-
cap to an equivalent cylinder which has the same base as the
spherical-cap, but different height h′, so that both have the

4We refer to the volume of the union of some objects as their “total volume.”
5A spherical-cap is defined as the portion of an n-sphere cut by an (n−1)-

plane.

r×
hh′

Fig. 6: A spherical-cap in 2-dimensions of radius r and height
h, and the corresponding equivalent cylinder (rectangle in the
2-dimensional case) of height h′.

same volume. The height h′ of this cylinder is h′ =
V (Pnλ,h)

V (Bn−1

λ′ )
,

where λ′ =
√

2hλ− h2, since the base of the spherical-cap is
Bn−1
λ′ . In Appendix C, we show that h′ ≤ ĥn where ĥn is the

height of the equivalent cylinder corresponding to a spherical
cap Pnλ,λ. Thus

h′ ≤ ĥn =
V (Bnλ)

2V (Bn−1
λ )

. (7)

Therefore, we can write V (Pnλ,h) ≤ ĥnV (Bn−1
λ′ ).

Now we get back to bounding V (spherical-caps on Wn−1
A ).

Denote the heights of spherical-caps on Wn−1
A by h1, · · · , ha

where a ∈ N is the number of such caps. Then, we can write

V (spherical-caps on Wn−1
A ) =

a∑
i=1

V (Pnλ,hi) (8)

≤ ĥn
a∑
i=1

V (Bn−1
λ′i

), (9)

where λ′i =
√

2hiλ− h2
i . This step upper bounds the a

spherical-caps by a cylinders with larger volume and same
intersection with Wn−1

A . At this point, we have a constellation
of a balls of dimension n−1, whose radii are λ′i, i = 1, · · · , a,
and which are centered in Wn−1

A . The total volume of those
balls can be upper bounded by repeating the same steps above.
Thus,

V (spherical-caps on Wn−1
A )

≤ ĥn
[
V (Wn−1

A ) + vout(W
n−1
A )

]
. (10)

Here, vout(W
n−1
A ) is the total volume of the portions of the a

(n− 1)-dimensional balls outside Wn−1
A . We plug this in (6)

to obtain

vtot ≤ V (Wn
A) + 2ĥn

∑
Wn−1

A
⊂∂Wn

A

[
V (Wn−1

A ) + vout(W
n−1
A )

]
=

1∑
i=0

2iKn−iV (Wn−i
A )

i∏
j=0

ĥn+1−j

+ 2ĥn
∑

Wn−1
A
⊂∂Wn

A

vout(W
n−1
A ),

where Kn−1 is the number of (n−1)-faces in Wn
A, and where

we formally define ĥn+1 = 1.
Remark 3: While the Steiner-Minkowski approach calcu-

lates the volume of the parallel extension of Wn−1
A of thickness

λ, here we have thickness 2ĥn instead, which is smaller than
λ for large n.
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Similar to (5), we can show that∑
Wn−1

A
⊂∂Wn

A

vout(W
n−1
A )

≤ 2
∑

Wn−2
A
⊂∂Wn

A

V (spherical-caps on Wn−2
A ). (11)

This can be shown by rejoining the (n− 1)-faces of Wn
A, and

redistributing the portions of the (n−1)-balls over the (n−2)-
faces of Wn

A in a fashion similar to Fig. 5b. Using (10) again
yields6

vtot ≤
2∑
i=0

2iKn−iV (Wn−i
A )

i∏
j=0

ĥn+1−j

+ 4ĥnĥn−1

∑
Wn−2

A
⊂∂Wn

A

vout(W
n−2
A ) (12)

=
∑̀
i=0

2iKn−iV (Wn−i
A )

i∏
j=0

ĥn+1−j

+ 2`
∏̀
j=0

ĥn+1−j
∑

Wn−`
A
⊂∂Wn

A

vout(W
n−`
A ) (13)

with ` = 2. By proceeding similarly, we can write for ` = n−1

vtot ≤
n−1∑
i=0

2iKn−iV (Wn−i
A )

i∏
j=0

ĥn+1−j

+ 2n−1
n−1∏
j=0

ĥn+1−j
∑

W1
A
⊂∂Wn

A

vout(W
1
A). (14)

Similar to (11), we have∑
W1

A
⊂∂Wn

A

vout(W
n−1
A )

≤ 2
∑

W0
A
⊂∂Wn

A

V (spherical-caps on W0
A). (15)

Since V (spherical-caps on W0
A) is upper bounded by ĥ1, we

obtain

vtot ≤
n∑
i=0

2iKn−iV (Wn−i
A )

i∏
j=0

ĥn+1−j . (16)

By noting that 2i
∏i
j=0 ĥn+1−j =

V (Bnλ)

V (Bn−iλ )
, and using

Kn−i = 2i
(
n
n−i
)
, we obtain

vtot ≤
n∑
i=0

2i
(

n

n− i

)
V (Wn−i

A )
V (Bnλ)

V (Bn−iλ )
. (17)

Now, we divide by V (Bnλ), and to obtain the following upper
bound on Mn,

Mn ≤
n∑
i=0

2i
(

n

n− i

)
V (Wn−i

A )

V (Bn−iλ )
. (18)

6Note that ĥn is increasing in λ. Thus, the equivalent height of a spherical-
cap with radius λ′ < λ is also less than ĥn.

By replacing V (Wn−i
A ) by An−i, V (Bn−iλ ) by (

√
πλ)n

Γ(1+n
2 )

, λ by
√
nσ2, and proceeding similar to [13] (see Appendix B), we

obtain the upper bound CA ≤ CA,2 = supα∈[0,1]B2(α), where

B2(α) = α log
(

γ√
2πe

)
− log

(
α
α
2 (1− α)1−α2α−1

)
as given

in Theorem 1.

C. Comparison

Note that both CA,1 and CA,2 are tight at high PSNR γ,
since both converge to the lower bound [11, Theorem 5] given
by CA ≥ 1

2 log
(

1 + γ2

2πe

)
. This is also true for a channel with

both a peak and an average constraint, with A ≤ 2E. Note
also that CA,2 becomes tighter than CA,1 when the optimum
α is close to 1. This is the case at moderate/high PSNR
where the first term of B1(α) and B2(α) dominates the bound.
This behavior can be justified by Remark 3, which is in turn
due to exploiting the geometry of the sphere in the recursive
approach. At low PSNR, CA,1 is tighter than CA,2. The reason
is that in the recursive approach, we place a ball on each vertex
of the cube (see (15)). Thus, the upper bound on Mn is larger
than 2n at any PSNR. At low PSNR, this term dominates, and
CA,2 converges to log(2) (not to zero as for CA,1). The next
section applies the recursive approach to bound the capacity
of the channel with only an average constraint, and proves
Theorem 2.

V. THE IM-DD CHANNEL WITH AN AVERAGE
CONSTRAINT

Now we consider an IM-DD channel with only an average
intensity constraint. A capacity upper bound in this case can be
derived by considering sphere-packing in a simplex. A sphere-
packing upper bound was derived in [13], [14] using the
Steiner-Minkowski formula. Next, we derive an upper bound
using the recursive approach as in Section IV-B, and show that
this bound is tighter than the one given in [13] for all ASNR.

A. A Recursive Approach

For a channel with an average constraint only, we have
A = ∞. Thus, according to Lemma 1, the optimal dis-
tribution satisfies E[X] = E. On the other hand, by
the law of large numbers, for any ε > 0, we have
limn→∞ P

(∣∣ 1
n

∑n
i=1Xi − E[X]

∣∣ ≥ ε) = 0. Thus a codeword
X = (X1, X2, · · · , Xn) satisfies Xi ≥ 0 and

∑n
i=1Xi = nE

almost certainly for large n. This confines the codewords to a
regular (n − 1)-simplex Sn−1

E =
{
X ∈ Rn+ |

∑n
i=1Xi = nE

}
with side-length nE

√
2 (Fig. 7a shows an example with

n = 3). Here, we need to upper bound the number Mn of
disjoint balls Bnλ that can be packed with their centers within
Sn−1
E . Note that the intersection of an n-ball with the (n−1)-

dimensional hyperplane supporting Sn−1
E is Bn−1

λ . Thus, the
problem is equivalent to bounding the number of balls Bn−1

λ

that can be packed centered in Sn−1
E (see Fig. 7b). Next, we

denote n− 1 by m.
We apply our recursive approach to derive an upper bound.

Similar to Section IV-B, we bound the total volume of balls
that can be packed centered in SmE and then divide by V (Bmλ ).
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3E

3E

3E

X1

X2

X3

noise spheres

λ

(a) Balls B3
λ packed centered on the 2-simplex

S2
E defined by

∑3
i=1Xi = 3E.

λ

3E
√

2

(b) Balls B2
λ packed on a regular 2-simplex S2

E

with side-length 3E
√

2.

Fig. 7

The same steps as (4)–(17) can now be applied to this case.
The total volume of balls and portions of balls inside SmE
can be upper bounded by V (SmE ). The portions that extend
outwards of SmE are distributed among the (m−1)-dimensional
faces of SmE , and bounded by twice the total volume of
spherical-caps on the outer side of each face. The spherical-
caps are bounded by cylinders, which leads to a problem of
packing (m− 1)-dimensional balls (of different radii) on the
(m− 1)-dimensional faces of SmE . This procedure is repeated
for all (m − i)-dimensional faces, i = 0, · · · ,m. Note that
the number of (m − i)-dimensional faces, i = 0, · · · ,m, in
SmE is

(
m+1
m−i+1

)
, and that each such face is in fact an (m− i)-

simplex [18]. This leads to the following upper bound on the
total volume of balls

vtot ≤
m∑
i=0

(
m+ 1

m− i+ 1

)
V (Sm−iE )

V (Bmλ )

V (Bm−iλ )
. (19)

By dividing by V (Bmλ ), we obtain the following upper bound
on Mn = Mm+1

Mm+1 ≤
m∑
i=0

(
m+ 1

m− i+ 1

)
V (Sm−iE )

V (Bm−iλ )
. (20)

Using V (Sm−iE ) = (nE)m−i

(m−i)!
√
m− i+ 1 [30], V (Bm−iλ ) =

(
√
πλ)m−i

Γ(1+m−i
2 )

, λ =
√
nσ2, and proceeding similar to Appendix

B, we obtain the upper bound CE ≤ CE = supα∈[0,1]B3(α),

where B3(α) = α log
(√

eγ̄√
2π

)
− log

(
(1− α)1−αα

3α
2

)
as

given in Theorem 2.
Remark 4: If we use E[X] ≤ E instead of E[X] = E, we

get the right n-simplex ŜnE = {X ∈ Rn+|
∑n
i=1Xi ≤ nE}.

A sphere-packing bound for this case was derived in [13]
using the Steiner-Minkowski formula. Our approach can also
be applied on this right n-simplex. Alternatively, we can outer
bound this right n-simplex by replacing the vertex at the origin
with a vertex at −(d, d, · · · , d) where d = (

√
n+ 1− 1)E to

obtain a regular n-simplex SnE, and then apply our recursive
approach to this simplex. This yields the same bound as (20).

Remark 5: Contrary to the approach by the Steiner-
Minkowski formula, our approach avoids using the external
normalized dihedral angles which are difficult to compute in
a simplex (see [13, (6)]).

B. Comparison

As discussed in Section III, this bound is tighter than the
one derived in [13] using the Steiner-Minkowski formula for
any ASNR. Again, the main reason is that this recursive
approach is more dependent on the geometry of the ball than
the approach used in [13]. The bound CE characterizes the high
ASNR capacity for a channel with only an average constraint.
Namely, at high ASNR, B3(α) converges to α log

(√
eγ̄√
2π

)
, and

therefore, CE approaches 1
2 log

(
eγ̄2

2π

)
where it meets the lower

bound [11, Theorem 7] given by CE ≥ 1
2 log

(
1 + eγ̄2

2π

)
.

Recall that using the recursive approach, the bound (20)
is dominated by the number of vertexes at low SNR. Since
the number of vertexes of the simplex scales linearly with its
dimensions, our bound CE approaches zero at low ASNR. This
is in contrast with CA,2 which does not approach zero since
the number of vertexes of a cube scales exponentially with its
dimensions. Next, we consider an IM-DD channel with both
average and peak constraints.

VI. AVERAGE AND PEAK CONSTRAINTS

Upper bounds on the capacity of the channel with both
average and peak constraints were given in [11]. Next, we
provide an alternative derivation of one of the bounds in [11].

A. Alternative Derivation of [11, (11) & (19)]

The capacity of the channel is given by C =
maxf(x)∈F I(X;Y ) [25]. The capacity maximizing input dis-
tribution is not known. However, we know that if X is un-
bounded and it satisfies only a variance constraint Var(X) ≤ P
(Var(X) denotes the variance of X), then the maximizing
input distribution is g0,

√
P (x). Assuming that the input of our

IM-DD channel satisfies Var(X) ≤ P for some P > 0, and
ignoring the constraint X ∈ [0,A] leads to the upper bound
C ≤ 1

2 log
(
1 + P

σ2

)
.

The problem boils down to finding the maximum allowable
variance for f(x) ∈ F. For any distribution f(x) with support
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X ⊆ [0,A] and mean E[X] = µ, the variance is upper bounded
by

Var(X) =

∫
x∈X

(x− µ)2f(x)dx (21)

≤
∫
x∈X

[ x
A

(A− µ)2 +
(

1− x

A

)
µ2
]
f(x)dx

= µ(A− µ), (22)

with equality if f(x) = fµ(x), the binary distribution with
fµ(A) = µ

A
and fµ(0) = 1 − µ

A
. For f(x) = fµ(x) with

µ ≤ E, the variance of X is maximized if µ = A
2 when

E
A
≥ 1

2 and µ = E otherwise. This leads to the same upper
bound in [11, (11) & (19)] as given in Theorem 3.

Next, we derive the rate achievable by using a truncated-
Gaussian (TG) input distribution, and show that it is within a
negligible gap of capacity at high SNR.

B. Truncated-Gaussian

We consider a distribution of X given by

g̃µ,ν(x) = ηgµ,ν(x), x ∈ [0,A], (23)

for some µ ∈ R and ν ∈ R+, where η = (Gµ,ν(A) −
Gµ,ν(0))−1. The mean of this distribution is

µ̃ =

∫ A

0

xg̃µ,ν(x)dx = ν2η(gµ,ν(0)− gµ,ν(A)) + µ. (24)

We choose µ and ν such that µ̃ ≤ min{E, A2 } as stated in
Theorem 4. For a given choice of µ and ν, the achievable rate
can be expressed as R = I(X;Y ) [25]. This mutual infor-
mation is evaluated in Appendix D, leading to the achievable
rate

R = C0(ν)− Φ1(µ, ν)− Φ2(µ, ν)− Φ3(µ, ν),

where C0(ν) = 1
2 log

(
1 + ν2

σ2

)
, Φ1(µ, ν) = log(η),

Φ2(µ, ν) = ((A− µ)gµ,ν(A) + µgµ,ν(0)) ην2

2(ν2+σ2) ,
Φ3(µ, ν) = EX,Y [log(Gµ′,ν′(A)−Gµ′,ν′(0))],
µ′ = µσ2+yν2

ν2+σ2 , ν′ = νσ√
ν2+σ2

, and where the
expectation is taken with respect to the distribution
f(x, y) = ηgµ,ν(x)gx,σ(y).

Since Φ3(µ, ν) < 0, a more easily computable achievable
rate can be obtained by dropping the term Φ3(µ, ν) leading to

R′ = C0(ν)− Φ1(µ, ν)− Φ2(µ, ν).

This achievable rate is close to capacity at high SNR (see Fig.
8). In particular, it is close to the sphere-packing bounds at
high SNR. Interestingly, fixing µ = 0 and optimizing with
respect to ν suffices for approaching capacity at high SNR.
Next, we simplify R′ for the purpose of comparison with upper
bounds at high SNR.

C. Simplification at High SNR

The achievable rate R′ can be thought of as the sum of two
quantities: the capacity of a Gaussian channel with Gaussian
distributed input with variance ν2 (C0(ν)), and residual terms
which arise due to the truncation of the Gaussian distribution.
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Fig. 8: Achievable rate of TG distribution and the sphere-
packing upper bounds at A/σ = 30dB versus E

A
. Here, R′

is obtained by fixing µ = 0 and optimizing numerically with
respect to ν.

With this interpretation, it is natural to check whether it is
possible to make the residual terms vanish, leading to a simpler
rate R′ ≈ C0(ν).

Intuitively, the rate C0(ν) is achieved if the distributions
g̃µ,ν(x) and gµ,ν(x) are almost identical. Thus, we need to
choose µ and ν so that Gµ,ν(0) ≈ 0 and Gµ,ν(A) ≈ 1. Since
most of the mass of the Gaussian distribution gµ,ν(x) lies
between µ− 3ν and µ+ 3ν, we choose µ = min

{
A
2 ,E

}
− ξ

and ν = µ
3 , where ξ is a small quantity chosen so that µ̃ ≤

min{E, A2 } (24).
This choice leads to η ≤ 1.0027 with equality when µ =

A/2, and thus Φ1(µ, ν) ≤ 2.7×10−3. On the other hand, this
choice leads to µgµ,ν(0) = 3

e4
√

2eπ
≥ (A − µ)gµ,ν(A) with

equality if µ = A/2. Thus, Φ2(µ, ν) ≤ 3
e4
√

2eπ

ην2

ν2+σ2 . For
high SNR, Φ1(µ, ν) + Φ2(µ, ν) < 0.016 is negligible with
respect to C0(ν). This leads to

R ≥ R′ > C0

(
min

{
A

2
,E

})
. (25)

If E
A
< 1

2 , then the achievable rate (25) becomes 1
2 log

(
γ̄2

9

)
at high SNR. This achievable rate is within < 0.68 nats of
the upper bound CE (Theorem 2) at high SNR. Otherwise, if
E
A
≥ 1

2 , then the achievable rate (25) is 1
2 log

(
γ2

36

)
, which is

within < 0.38 nats of the upper bound CA,2 (Theorem 1).
Although the bound (25) is simple, and is within a constant

of capacity at high SNR, it is not as close to capacity as
one desires. Table I gives selections of µ and ν that bring
R′ closer to capacity at high SNR. The calculation of the gap
min{CE,CA,2}−R′ for E

A
∈
(

0,
√

2
9π

]
is given in Appendix

E. The gap for the other cases can be obtained similarly.
By maximizing numerically with respect to µ and ν, the gap

to the sphere-packing bounds at high SNR can be sharpened to
< 0.1 nats as shown in Fig. 2. Furthermore, by incorporating
the upper bound CL,1 given in [11, (12)] into the comparison,
the gap ∆′ = min{CE,CA,2,CL,1}−R′ reduces to ≈ 0 at high
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E
A

(
0,
√

2
9π

] (√
2
9π
, 1
3.2

] (
1
3.2
, 1
e

] (
1
e
, 1
2

)
1
2

µ 0 0 0 A
4

A
2

ν
√
π
2
E

√
π
2
E

√
π
2
E A

3
A

min{CE,CA,2} − R′ < 0.062 < 0.099 < 0.163 < 0.144 ≈ 0

TABLE I: Selections of µ and ν that lead to R′ close to capacity at high SNR.

SNR. Based on these numerical observations, we conclude that
the TG input distribution is nearly capacity achieving at high
SNR.

Since we are interested in simple capacity expressions, we
approximate the high-SNR capacity by

Chigh SNR ≈ lim
γ→∞

min{CE,CA,2}

= min

{
1

2
log

(
eγ̄2

2π

)
,

1

2
log

(
γ2

2πe

)}
,

as in Proposition 1. This approximation is exact for E
A
> 1

2
at high SNR where the lower bound [11, (18)] coincides with
CA,2. This approximation is nearly tight (≈ 0 gap to capacity)
for E

A
≤ 0.15 where R′ approaches CE (see Fig. 2a). For

0.15 < E
A
≤ 1

2 , the approximation is fairly tight since the gap
is < 0.1 nats and can be neglected at high SNR.

VII. CAPACITY FITTING

It is of practical interest to have a closed-form expres-
sion which captures the achievable rate RF in [12]. Such
an expression can be used to study power allocation and
outage/ergodic capacities of fading scenarios. While such a
closed form expression is given for high SNR by Proposition
1, and for low SNR by [11], it is not available for moderate
SNR; the regime of operation of practical systems. With this
in mind, we provide simple expressions for the achievable rate
in an IM-DD channel using curve-fitting. We first present a
global fitting for RF for all SNR.

A. Global Fitting

We need to choose a fitting that captures the behavior
of RF [12] from low to high SNR. Let the fitting function
be denoted Ψ(γ). As discussed in the previous section, the
high SNR capacity of the channel scales as 1

2 log(c1γ
2) for

some c1 > 0. On the other hand, the low SNR capacity
scales as c2

γ2

2 [11] for some c2 > 0. A suitable fitting
for high and low γ is thus given by the function Ψ(γ) =
1
2 log

(
1 + γ2(c1 + (c2 − c1)Θ(γ))

)
, where Θ(γ) is a func-

tion which satisfies limγ→∞Θ(γ) = 0 and limγ→0 Θ(γ) = 1.
By choosing c1 and c2 appropriately, Ψ(γ) captures the high
and low SNR behavior of capacity. It remains to capture RF
in the moderate SNR regime (see Figure 3). To this end, we
have to choose Θ(γ) appropriately. A convenient choice is of
the form of a Θ(γ) = Θ1(γ)

Θ2(γ) , where Θ1(γ) and Θ2(γ) are
polynomials of degrees m1 and m2 > m1 in γ, respectively.
That is,

Ψ(γ) =
1

2
log

(
1 + γ2

(
c1 + (c2 − c1)

∑m1

k=0 akγ
k∑m2

k=0 bkγ
k

))
,

for some c1, c2, ak and bk to be determined. Without loss of
generality, we fix a0 = b0 = 1. The remaining coefficients of
Θ1(γ) and Θ2(γ) have to be chosen so that these polynomials
have no roots in [0,∞) to avoid singularities. The parameters
c1 and c2 can be easily fixed using our knowledge of the high
and low SNR capacity of the channel. Namely,

c1 = min

{
eγ̄2

2πγ2
,

1

2πe

}
, (26)

c2 = min

{
γ̄

γ

(
1− γ̄

γ

)
,

1

4

}
. (27)

The parameters m1 and m2 can be chosen based on the
number of SNR-Rate pairs (γ,R) used for the fitting in the
moderate SNR regime. In particular, given Np such pairs
{(γ1, R1), · · · , (γNp , RNp)}, we can choose m2 =

⌈
Np+1

2

⌉
and m1 = Np −m2. This guarantees that m1 < m2 and that
the number of unknown parameters of the fitting function Ψ(γ)
does not exceed Np. After fixing m1 and m2, the parameters
ak and bk can be easily chosen by solving the linear system
of equations

m1∑
k=0

akγ
k
i −

(
e2Ri − 1− c1γ2

i

(c2 − c1)γ2
i

) m2∑
k=0

bkγ
k
i = 0, (28)

i = 1, · · · , Np. Thus, by choosing m1 and m2 as described
above, we have Np equations with Np unknowns and we can
solve for the parameters ak and bk. Recall that we obtain the
SNR-Rate pairs from RF [12].

By numerical inspection, a very close fit can be obtained
for Np ≤ 3 (see Fig. 9). By using Np = 1 and Np = 3, we
get (m1,m2) = (0, 1) and (m1,m2) = (1, 2). While the latter
gives a very close fit, the former gives a simpler fitting at the
expense of a small gap. The coefficients of the fitting functions
are summarized in Table II for different values of E

A
. For the

five cases in this table, the polynomials Θ1(γ) and Θ2(γ)
have no roots in [0,∞). Notice that the achievable rate (as a
function of γ) of an IM-DD channel with a given E

A
is also

achievable for any channel with larger E
A

, since the latter has
larger average constraint. Thus, by plugging the coefficients
given in Table II for E

A
= α in Ψ(γ), we obtain achievable

rates for an IM-DD with E
A
> α as well. The values in the

table can be used for studying the performance of fading IM-
DD channels at any SNR.

B. Local Fitting

The function Ψ(γ) is a close fit for all SNR. However,
in practice, we are often interested in functions of the form
1
2 log(1 + cγ2), especially since numerous techniques have
been developed over the time to study capacity of this form in
fading scenarios (power allocation, outage, etc.) [31], [32].
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Fig. 9: Global and local fitting of the achievable rate RF using Ψ(γ) and Ψ̂(γ).

E
A

0.1 0.2 0.3 0.4 0.5

Np = 1
a0 1 1 1 1 1

(b0, b1) (1, 0.47) (1, 0.43) (1, 0.56) (1, 0.8) (1, 0.41)

Np = 3
(a0, a1) (1, 0.38) (1, 0.45) (1, 0.14) (1, 0.05) (1, 0.57)

(b0, b1, b2) (1, 0.19, 0.2) (1, 0.24, 0.21) (1, 0.04, 0.1) (1,−0.03, 0.07) (1, 0.32, 0.26)

TABLE II: Coefficients of the fitting function Ψ(γ) using one fitting point at γ = 15 dB and three fitting points at γ ∈ {0, 10, 15}
dB.

Thus, it is natural to seek a fitting function of this form.
Next, we simplify the fitting function Ψ(γ) to this form by
sacrificing its global tightness.

As evident from Fig. 3 e.g., the lower bound RF can not
be captured by a function of the form 1

2 log(1 + cγ2) in the
moderate γ regime since this function has a larger pre-log.
However, a local fit can be obtained by using a rather simple
fitting function

Ψ̂(γ) =
d1

2
log(1 + d2γ

2),

where d1 and d2 are positive scalars. At high γ, d1 = 1 and
d2 = c1 given in (26). At low γ, we can choose any d1 and
d2 such that d1d2 = c2 given in (27). For moderate SNR, d1

and d2 have to be chosen to reduce the gap between Ψ̂(γ)
and the achievable rate RF for an SNR range of interest. It is
also important to maintain Ψ̂(γ) < RF to guarantee that Ψ̂(γ)
is achievable. Next, we propose a simple method to obtain a
local fit for moderate γ.

Consider an SNR range of interest γ ∈ [γ1, γ2] dB for
some γ1 and γ2, and consider the achievable rates R1, R2,
and R0 corresponding to RF in [12] at γ1, γ2, and some
γ0 ∈ [γ1, γ2], respectively. First, we choose d1 as the pre-
log of RF (slope with respect to log(γ)) in this range of
γ, i.e., d1 = R2−R1

log(γ2)−log(γ1) . Roughly, this indicates that the
achievable rate RF scales as d1

2 log(γ2) in this range. Now, to

fix d2, we equate Ψ̂(γ0) to R0, leading to d2 = e
2R0
d1 −1
γ2
0

.
Alternatively, one could use an MMSE approach to min-

imize the gap between Ψ̂(γ) and RF . We repeat that Ψ̂(γ)
provides local fitting, contrary to Ψ(γ). The behavior of Ψ̂(γ)

is depicted in Figure 9. Note that Ψ̂(γ) provides a good
fit for the range of interest. The advantage of this function
is that it has a simple form that can be used for studying
fading scenarios using existing tools. In scenarios with weak
turbulence conditions e.g., the SNR γ does not vary widely
resulting in a distribution of γ that is thin around a nominal
value γ0. The performance of a system operating around γ0

can be well described by Ψ̂(γ) in the given range.

VIII. CONCLUSION

We studied a simple model of the IM-DD channel with
input-independent noise. For this model, we proposed a new
approach for deriving sphere-packing upper bounds. The pro-
posed recursive approach is better than the approach that uses
the Steiner-Minkowski formula which is commonly used in
literature. The main reason is that our approach makes use
of the geometry of the ball, while the other approach does
not. This recursive approach can in fact be applied to any
scenario where the input signal of the channel is confined to
a polyhedron. The resulting bounds are tighter than existing
bounds in some SNR regimes. An interesting extension of
these sphere-packing bounds would be to generalize them
to the intersection of a cube and a simplex, which better
captures the IM-DD channel under both average and peak
intensity constraints. We also derived the rate achieved by
using a truncated-Gaussian input distribution. By comparing
with the upper bounds, we show that the gap between the
achievable rate and upper bounds is negligible at high SNR.
We also provide simple functions that describe the highest
known achievable rate of this channel globally and locally.
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Such function can be of great importance for studying fading
in practical systems.
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APPENDIX A
SUFFICIENCY OF E[X] = min{E, A2 }

For an IM-DD channel with input-independent noise,
the capacity achieving input distribution satisfies E[X] =
min{E, A2 }. The proof is simple for a channel with an average
constraint only (A =∞), where it follows from the invariance
of mutual information to shifts in the input distribution. That
is, we can always shift X to obtain a distribution with a
larger mean achieving the same rate. This proof is however
not possible for X ∈ [0,A] since shifting might lead to
an infeasible distribution. Instead, we show that over the set
of distributions of X ∈ [0,A], C is increasing in E[X] for
E[X] ∈ (0, A2 ], and decreasing for E[X] ∈ (A

2 ,A].
The proof is similar to [11, Proposition 9]. Consider a peak

constrained IM-DD channel, and input distributions f1(x) and
f2(x) = f1(A − x) on X ∈ [0,A] with means µ1 ≤ A

2

and µ2 ≥ A
2 , respectively. Denote the rates achieved by these

distributions by I1 and I2, respectively. Since f2(x) = f1(A−
x), and due to the symmetry of the Gaussian noise distribution
around 0, we have I1 = I2. Consider now the mixture of the
two distributions f3(x) = τf1(x) + (1 − τ)f2(x), τ ∈ [0, 1],
which has the same support and has mean µ3 = τµ1 + (1 −
τ)µ2 ∈ [µ1, µ2]. By Jensen’s inequality and the concavity of
the mutual information in f(x) for a given f(y|x) [25], we
have

I(X;Y )|f3(x) = I3 ≥ τI1 + (1− τ)I2 = I1,

with equality if τ = 1 or τ = 0. Thus, for any µ1 ≤ A
2

(or µ2 ≥ A
2 ), there exists a distribution with mean µ3 ≥

µ1 (or µ3 ≤ µ2) which achieves higher rate. Therefore, C

is increasing in E[X] ∈ (0, A2 ], and decreasing in E[X] ∈
(A

2 ,A], which proves that the optimal distribution has E[X] =
min{E, A2 }.

APPENDIX B
BOUNDING THE LIMIT IN (3)

Here, we upper bound limn→∞
1
n log (

∑n
i=0Ni) where

Ni =
(
n
n−i
) (

A√
πnσ2

)n−i Γ(1+n
2 )

Γ(1+ i
2 )

, using similar steps as [13].
We start by writing

Ni =

(
A√
πnσ2

)n−i Γ
(
1 + n

2

)
Γ (1 + n)

Γ
(
1 + i

2

)
Γ (1 + n− i) Γ (1 + i)

using the definition of the binomial coefficient and the Gamma
function [33]. Note that

1

n
log

(
sup

i∈{0,··· ,n}
Ni

)
≤ 1

n
log

(
n∑
i=0

Ni

)

≤ 1

n
log

(
(n+ 1) sup

i∈{0,··· ,n}
Ni

)

and that

lim
n→∞

1

n
log

(
sup

i∈{0,··· ,n}
Ni

)
= lim
n→∞

1

n
log

(
(n+ 1) sup

i∈{0,··· ,n}
Ni

)
.

Thus

lim
n→∞

1

n
log

(
n∑
i=0

Ni

)
= lim
n→∞

1

n
log

(
sup

i∈{0,··· ,n}
Ni

)
= lim
n→∞

sup
i∈{0,··· ,n}

1

n
log (Ni)

≤ lim
n→∞

sup
α∈[0,1]

1

n
log (Nαn) ,

where the second step follows by the monotonicity of the log-
arithm, and the third by replacing i ∈ {0, · · · , n} by αn with
α ∈ [0, 1]. Using Stirling’s bound [34]

√
2πn

(
n
e

)n
e

1
12n+1 ≤

Γ(n + 1) ≤
√

2πn
(
n
e

)n
e

1
12n , and after some manipulation,

we obtain

Nαn ≤

[(
A2

2πeσ2

) 1−α
2

α−
3α
2 (1− α)α−1

]n
e

1
4n

α
√

2πn(1− α)
.

The limit limn→∞
1
n log (Nαn) exists, and is equal to

B′1(α) = (1 − α) log
(

γ√
2πe

)
− log

(
(1− α)1−αα

3α
2

)
.

Thus, we can exchange the lim and the sup leading to
limn→∞

1
n log (

∑n
i=0Ni) ≤ supα∈[0,1]B

′
1(α). Now by re-

placing α by 1−α, we obtain B1(α) and the the upper bound
CA,1 given in Theorem 1.

APPENDIX C
BOUNDING THE EQUIVALENT HEIGHT OF A

SPHERICAL-CAP

The volume of a spherical-cap of radius λ and height h ∈
[0, λ] is [35]

V (Pnλ,h) =
1

2
V (Bnλ)Iλ′2

λ2

(
n+ 1

2
,

1

2

)
, (29)

where λ′ =
√

2hλ− h2, and Ix(a, b) is the regularized
incomplete beta function. The base of this spherical-cap is
Bn−1
λ′ . Thus, the height of the equivalent cylinder is

h′ =
1

2

V (Bnλ)

V (Bn−1
λ′ )

Iλ′2
λ2

(
n+ 1

2
,

1

2

)
(30)

= ĥn
V (Bn−1

λ )

V (Bn−1
λ′ )

Iλ′2
λ2

(
n+ 1

2
,

1

2

)
, (31)

where ĥn =
V (Bnλ)

2V (Bn−1
λ )

. Thus,

h′ = ĥn

(
λ2

λ′2

)n−1
2

Iλ′2
λ2

(
n+ 1

2
,

1

2

)
.
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Using the identity Ix(a, b) = xaF (a,1−b;a+1;x)
F (a,1−b;a+1;1) [33, Sec. 6.6]

where F (a, b; c;x) is the Gauss hypergeometric function, we
can write

h′ = ĥn

(
λ2

λ′2

)n−1
2

(
λ′2

λ2

)n+1
2

F
(
n+1

2 , 1
2 ; n+3

2 ; λ
′2

λ2

)
F
(
n+1

2 , 1
2 ; n+3

2 ; 1
)

= ĥn

(
λ′2

λ2

) F
(
n+1

2 , 1
2 ; n+3

2 ; λ
′2

λ2

)
F
(
n+1

2 , 1
2 ; n+3

2 ; 1
)︸ ︷︷ ︸

f(λ′)

.

But since h ∈ [0, λ], then λ′ ∈ [0, λ]. Furthermore, λ′2

λ2 and
F
(
n+1

2 , 1
2 ; n+3

2 ; λ
′2

λ2

)
are both increasing in λ′, and hence,

f(λ′) is increasing in λ′. Since f(0) = 0 and f(λ) = 1, it
follows that h′ ≤ ĥn.

APPENDIX D
DERIVATION OF THE LOWER BOUND IN SECTION VI-B

We start by writing the achievable rate R = I(X;Y ) with
input distribution g̃µ,σ(x) described in (23) as

R =

∫ A

0

∫ ∞
−∞

f(x, y) log

(
f(y|x)

f(y)

)
dydx (32)

=

∫ A

0

∫ ∞
−∞

f(x, y) log (f(y|x)) dydx

−
∫ A

0

∫ ∞
−∞

f(x, y) log (f(y)) dydx. (33)

The first integral above is−1 times the entropy of noise. Hence
it is equal to

T0 =

∫ A

0

∫ ∞
−∞

f(x, y) log (f(y|x)) dydx

= −1

2
log(2πeσ2). (34)

Next, we substitute f(y) = ηgµ0,σy (y)(Gµ′,ν′(A)−Gµ′,ν′(0))
in the second integral to obtain

T =

∫ A

0

∫ ∞
−∞

f(x, y) log (η) dydx

+

∫ A

0

∫ ∞
−∞

f(x, y) log
(
gµ0,σy (y)

)
dydx

+

∫ A

0

∫ ∞
−∞

f(x, y) log (Gµ′,ν′(A)−Gµ′,ν′(0)) dydx

= T1 + T2 + T3, (35)

where T1, T2, and T3 denote the three integrals above, respec-
tively. The first term T1 is clearly T1 = log(η). The last term
T3 can be written as T3 = EX,Y [log (Gµ′,ν′(A)−Gµ′,ν′(0))]
where the expectation is with respect to the distribution
f(x, y). It remains to evaluate T2 in order to obtain the

achievable rate R in Theorem 4. We start by substituting
gµ,σy (y) in T2, yielding

T2 =

∫ A

0

∫ ∞
−∞

f(x, y) log

(√
1

2πσ2
y

)
dydx

+

∫ A

0

∫ ∞
−∞

f(x, y)

(
− (y − µ)2

2σ2
y

)
dydx (36)

= −1

2
log
(
2πσ2

y

)
− 1

2σ2
y

∫ A

0

EY |X
[
Y 2
]
g̃µ,ν(x)dx

− 1

2σ2
y

∫ A

0

(
−2µEY |X [Y ] + µ2

)
g̃µ,ν(x)dx (37)

= −1

2
log
(
2πσ2

y

)
− σ2

2σ2
y

− 1

2σ2
y

∫ A

0

(x− µ)
2
g̃µ,ν(x)dx

= −1

2
log
(
2πσ2

y

)
− σ2

2σ2
y

− 1

2σ2
y

EX [(X − µ)2]. (38)

Finally, we evaluate the expectation EX [(X−µ)2] as follows

EX [(X − µ)2]

= η
2ν2

√
π

∫ A−µ√
2ν

− µ√
2ν

t2e−t
2

dt (39)

= η
ν2

√
π

(∫ A−µ√
2ν

− µ√
2ν

e−t
2

dt−
[
te−t

2
]A−µ√

2ν

− µ√
2ν

)

= ν2

[∫ A

0

g̃µ,ν(x)dx− (A− µ)g̃µ,ν(A)− µg̃µ,ν(0)

]
= ν2 (1− (A− µ)g̃µ,ν(A)− µg̃µ,ν(0)) . (40)

Collecting the terms T0, T1, T2, and T3, and substituting in
(33), yields the desired expression

R =
1

2
log

(
1 +

ν2

σ2

)
− log(η)

− ((A− µ)g̃µ,ν(A) + µg̃µ,ν(0))
ν2

2(ν2 + σ2)

− EX,Y [log(Gµ′,ν′(A)−Gµ′,ν′(0))] ,

where we replaced σ2
y by its value σ2 + ν2. This completes

the proof of Theorem 4.
Note that since η > 1, then T1 = log(η) can be considered

as a penalty arising due to the truncation of the Gaussian
distribution, which reduces the rate below 1

2 log
(

1 + ν2

σ2

)
. The

second term T2 can be positive or negative depending on the
choice of µ and ν. The last term T3 is always negative, and
hence it always increases the achievable rate. Since this term
might be difficult to compute, and since it is always negative,
we can drop it an obtain the achievable rate R′ as given in
Theorem 4.



0090-6778 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2016.2524569, IEEE
Transactions on Communications

15

APPENDIX E
GAP BETWEEN R′ AND SPHERE-PACKING BOUNDS FOR

SELECTIONS OF µ AND ν

Recall that the achievable rate R′ is given by

R′ =
1

2
log

(
1 +

ν2

σ2

)
− log(η)

− ((A− µ)gµ,ν(A) + µgµ,ν(0))
ην2

2(ν2 + σ2)
,

where η = 1
Gµ,ν(A)−Gµ,ν(0) , and µ and ν are chosen such that

µ̃ = ν2η(gµ,ν(0)− gµ,ν(A)) + µ ≤ E.
Let us fix µ = 0 and ν =

√
π
2E. To simplify the com-

putation, we would like to have Gµ,ν(A) ≈ 1, which can be

achieved if ν ≤ A
3 leading to the constraint E ≤ A

3

√
2
π . Using

this selection for E ∈
(

0, A3

√
2
π

]
, we have Gµ,ν(A) ≈ 1,

Gµ,ν(0) = 1
2 , gµ,ν(A) < 1

πEe
− A2

πE2 , gµ,ν(0) = 1
πE . This leads

to η ≈ 2 and µ̃ < E. The achievable rate is given by

R′ =
1

2
log

(
1 +

πE2

2σ2

)
− log(2)−Agµ,ν(A)

ν2

ν2 + σ2

>
1

2
log
(
πE2/(8σ2)

)
−Agµ,ν(A).

But Agµ,ν(A) < A
πEe

− A2

πE2 = 1√
π
te−t

2

where t = A√
πE

.

Also, for E ≤ A
3

√
2
π , we have t > 3√

2
> 1√

2
. Since the

function te−t
2

is decreasing for t > 1√
2

, then Agµ,ν(A) <
1√
π

3√
2
e−

9
2 < 0.0133. Therefore, at high SNR where the

sphere packing bound CE becomes 1
2 log

(
eE2

2πσ2

)
the gap can

be bounded as

CE − R′ <
1

2
log

(
e

2π

8

π

)
+ 0.0133 < 0.062.

Similar analysis can be applied to all other cases leading to
the values given in Table I.
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