
0

Free-space Optical Communications Using On-off
Keying and Source Information Transformation

Luanxia Yang, Bingcheng Zhu, Julian Cheng, Senior Member, IEEE, Jonathan F. Holzman, Member, IEEE

Abstract—Free-space optical communication using on-off key-
ing (OOK) and source information transformation is proposed.
It is shown that source information transformation allows the
proposed system to detect the OOK signal without requiring
the knowledge of instantaneous channel state information and
the probability density function (pdf) of the turbulence model.
Analytical expressions are derived for the pdf of the detection
threshold, and an upper bound is obtained on the average bit er-
ror rate (BER). Numerical studies show that the proposed system
can achieve comparable performance to the idealized adaptive
detection system, with a greatly reduced level of implementation
complexity and a signal-to-noise ratio performance loss of only
1.8 dB at a BER of 1×10−9 for a lognormal turbulence channel
with σ = 0.25.

I. INTRODUCTION

Free-space optical (FSO) communication systems have im-
portant advantages over their radio frequency counterparts.
For example, FSO systems can offer broadband operation,
high link security, and freedom from spectral license regu-
lations. Optical signals that are transmitted over free-space
are subject to amplitude and phase distortion. Due to transient
inhomogeneities of atmospheric temperature and pressure [1],
[2], however, and the resulting scintillation or fading is a
major cause of performance degradation for FSO systems.
The performance degradation is especially pronounced for
FSO systems using irradiance modulation and direct detec-
tion (IM/DD) with on-off keying (OOK) and fixed detection
thresholds, which are non-adaptive and unoptimized [3], [4].
Such systems can produce irreducible error floors if operation
is extended to high signal-to-noise ratios (SNRs) [5].

Attempts to overcome the irreducible error floors of OOK
IM/DD systems have focused on the application of adaptive
detection thresholds. The standard approach proposed for
adaptive detection applies perfect knowledge of the instanta-
neous channel state information (CSI), as it uses the instanta-
neous SNR to detect each data symbol [2], [6]. This approach
has obvious practical concerns for OOK IM/DD operation
with nanosecond data symbol durations (i.e., Gbps rates) and
millisecond turbulence coherence times, as rapid detection
threshold adjustments are needed on the timescale of the
millisecond turbulence coherence times [2], [7]-[9]. To accom-
modate these practical concerns, the electrical-SNR-optimized
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detection system was proposed in [10], [11]. Electrical-SNR-
optimized detection thresholds only need to change over the
especially long timescales, of seconds or minutes, over which
a stationary turbulence channel assumption applies [12]. How-
ever, this method requires knowledge of the probability density
function (pdf) of the turbulence channel, which increases the
computation complexity.

In [13], the authors introduced pilot-symbol (PS) assisted
modulation (PSAM) to mitigate the turbulence fading and
improve the system performance. The PS provided the receiver
with explicit turbulence fading references for detection, and
this can be used to mitigate the effects of fading. However,
PSAM can cause delays in the receiver as it is necessary to
store the whole frame before decoding[14, Chap. 5]. In [15], it
was demonstrated that an OOK IM/DD system could use two
laser wavelengths at the transmitter and two photodetectors
at the receiver to work in a differential mode, and achieve
excellent bit error rate (BER) performance with a detection
threshold fixed at zero. Unfortunately, this scheme suffers from
low throughput, as two lasers are used to transmit the same
information in each symbol duration.

In this work, we propose an alternative scheme that uses
two (or more) laser transmitters. Such a scheme can improve
the throughput beyond that of [15]. Moreover, the proposed
scheme does not require knowledge of the instantaneous CSI
and pdf of the turbulence channel, as the receivers have
explicit turbulence fading references for detection. It is shown
that such a system provides good BER performance without
irreducible error floors.

The remainder of this work is organized as follows. Section
II describes the system and channel models. Section III derives
the pdf of the detection threshold. Section IV obtains an upper
bound on the average BER. Numerical results and discussions
are presented in Section V. Finally, Section VI makes some
concluding remarks.

II. SYSTEM AND CHANNEL MODELS

We consider an IM/DD system with M laser source trans-
mitters and M photodetectors operating through atmospheric
turbulence channels. The operation of the proposed scheme
is as follows. At the transmitter, which is shown in Fig.
1, there are M distinct optical wavelengths, λ1, λ2, . . . , λM ,
assigned to the M laser transmitters. Each wavelength is used
to transmit an independent information sequence, with source
information transformation used to ensure that one or more
lasers transmit bit “1” during each symbol duration. When
M = 2, for example, the proposed system can almost double
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Fig. 1. Block diagram of the transmitter for the system using source
information transformation.

Fig. 2. Block diagram of the source information transformation. A binary
information sequence of length L is converted to a (2M−1)-nary information
sequence of length J , and this (2M −1)-nary information sequence of length
J is mapped to a binary information sequence of length JM .

the multiplexing gain achieved in the system of [15] using
double-laser differential signaling.

For source information transformation, we first convert a
binary information sequence of length L to a (2M − 1)-nary
information sequence of length J as shown in Fig. 2. This
mapping can be written as

T1 : {0, 1}L → {0, . . . , 2M − 1}J . (1)

Then we map each element of the (2M − 1)-nary sequence
into an M -bit binary sequence that does not contain the all-
zero binary sequence. The resulting M -bit binary sequence
after the serial-to-parallel conversion determines, among the
M transmitted lasers, which link transmits bit “0” and which
link transmits bit “1”. For example, when M = 3, we map
the seven elements of the 7-nary sequence (0, 1, 2, 3, 4, 5 , 6)
to the binary sequence {001, 010, 011, 100, 101, 110, 111}.
(Note here that the all-zero binary sequence is avoided.) This
mapping can be written as

T2 : {0, . . . , 2M − 1}J → {0, 1}JM . (2)

The mapping described in (1) and (2), which we call source
information transformation, will ensure that the M received
signals have an explicit turbulence fading reference for de-
tection in each symbol duration, meaning that at least one
laser is on (ie., at least one bit “1” is transmitted). Each bit
“1” suffers turbulence distortion and therefore be used as a
turbulence fading reference.

It is desirable to select values of L and J that make the
mapping of T1 be a one-to-one mapping, i.e.,

2L = (2M − 1)J . (3)

Fig. 3. Block diagram of the receiver for the system using source information
transformation.

However, the above equality is difficult to achieve in practice
for arbitrary values of L and J . Thus, to approximate the ideal
case of (3), we consider

min
(L,J)

[
(2M − 1)J − 2L

]
(4)

Subject to 2L ≤ (2M − 1)J .

Since there might be more than one pair (L, J) that satisfies
(4), we will choose the smallest pair (L, J) for our system,
i.e., the value of L + J that is the smallest among the pairs
satisfying (4). This is done to minimize the system delay. For
example, when M = 3, we select L = 14 and J = 5 by using
a computer search.

At the receiver, as shown in Fig. 3, diffractive optical
elements and/or narrowband optical filters are used to separate
the wavelengths for detection of the M transmitted signals. In
Fig. 3, we use the acronym PD to represent the photodetector.
After the M parallel photodetectors and the parallel-to-serial
conversion, in each symbol duration, a value of one-half of
the largest received signal is used to define the detection
threshold for the M received signals. If all of the M -bit binary
sequence are demodulated as bit “0”, which may happen due
to the noise, this is an incorrect decision (since an all-zero
binary sequence is not transmitted for our system), and we
will assume the source transmits 00 . . . 01. The demodulated
JM -bit binary sequence will be mapped to a (2M − 1)-nary
sequence of length J , and then this (2M − 1)-nary sequence
of length J will ultimately be converted back to a binary
information sequence of length L.

At the mth transmitter, the baseband signal to be transmitted
can be expressed as

sm(t) =
∑
i

ai,mgm(t− iTp), m = 1, 2, . . . ,M (5)

where ai,m ∈ {0, 1} is the ith data in the mth transmitter,
and Tp is the symbol duration. In (5), pulse shaping in the
mth transmitter is defined as gm(t) = 1 for 0 < t < Tp,
and gm(t) = 0 otherwise. These M signals are transmitted
through atmospheric turbulence channels and are distorted by
a multiplicative process I(u, t). We have assumed that the
channel fading is the same for all the wavelengths in each
symbol duration. This assumption can be achieved by ensuring
that the transmitter wavelengths are sufficiently close to each
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other (being separated only by tens of nanometers). This
ensures that the transmitter beams are spatially overlapped and
experience the same atmospheric turbulence distortion [15].

At the mth receiver, the received signal after the photode-
tection can be written as

rm(t) = RI(u, t)
∑
i

ai,mgm(t− iTp) + nm(t),

m = 1, 2, . . . ,M.

(6)

Without loss of generality, the photodetector responsivity R
is assumed to be unity. In (6), I(u, t) is assumed to be a
stationary random process for signal scintillation caused by
atmospheric turbulence, and nm(t) is additive white Gaussian
noise (AWGN) due to thermal noise and/or ambient shot
noise in mth receiver. Using a p-i-n photodiode and following
[10], the shot noise is assumed to be dominated by ambient
shot noise. (Both ambient shot noise and thermal noise are
statistically independent of the desired signal.) The total noise
power is σ2

g = σ2
s+σ2

T , where σ2
s and σ2

T denote the respective
variances of the ambient shot noise power and the thermal
noise power.

The mth received signal is sampled at time Tp. The sample
I(u, t = Tp) is a RV I , and the sample nm(t = Tp) is an
AWGN RV nm having zero mean and variance σ2

g . When
bit “0” is transmitted, s0 becomes true and the laser is off.
The demodulation sample is rm|s0 = nm. When bit “1”
is transmitted, s1 becomes true and the laser is on. The
demodulation sample is rm|s1 = I + nm.

III. THE PROBABILITY DENSITY FUNCTION OF THE
DETECTION THRESHOLD

With perfect knowledge of the instantaneous CSI, the mini-
mum error probability is provided by the maximum-likelihood-
based decision threshold which can be expressed by [11]

Tth =
σ0(I0 + I1) + σ1I0

σ0 + σ1
(7)

where σ1 and σ0 are the standard deviations of the noise
currents for bits “1” and “0”, respectively, and I1 and I0 are
averages of the generated currents at the receiver for bits “1”
and “0”. For simplicity, we assume σ0 = σ1 = σg , I0 = 0 and
I1 = I . The maximum-likelihood-based detection threshold is
Tth = I/2, which is an adaptive detection threshold, as it
varies with the fading coefficient. Note that this approach is
complex to realize in practice, as it requires perfect knowledge
of the instantaneous CSI for each symbol detection. However,
when the average SNR (denoted by γ) approaches infinity, or
for a noiseless system, we have

lim
γ→∞

max{r1, r2, . . . , rM} = I. (8)

Thus, we can intuitively set the detection threshold for the
system to be

Tth =
max{r1, r2, . . . , rM}

2
. (9)

The most important feature of the detection threshold proposed
in (9) is that it only depends on the received signal, and unlike

an ideal optimized OOK detection scheme, an estimate of the
CSI is not required.

We now derive the pdf of the detection threshold Tth in
(9). In a symbol duration, we first consider the case for which
k branches transmit bit “1”, where k = 1, 2, . . . ,M , and the
rest of the M − k branches transmit bit “0”. Without loss of
generality, we assume the first k branches transmit bit “1”,
and the rest of the M − k branches transmit bit “0”. The
conditional pdf of Tth can be written as

fTth
(tth|I, k)

= 2kΦ

(
2tth − I

σg

)k−1

Φ

(
2tth
σg

)M−k

fN (2tth − I)

+ 2(M − k)Φ

(
2tth − I

σg

)k

Φ

(
2tth
σg

)M−k−1

fN (2tth)

(10)

where Φ(x) =
∫ x

−∞
1√
2π

exp
(
− r2

2

)
dr is the cumulative

distribution function of a standard Gaussian RV, and fN (x) =
1√

2πσg
exp

(
− x2

2σ2
g

)
denotes the noise pdf. The detailed deriva-

tions of (10) are given in the Appendix. The pdf of Tth

conditioned on I can be obtained as

fTth
(tth|I) =

M∑
k=1

fTth
(tth|I, k)p(k)

=
fN (2tth − I)

2M−1

{
M

[
Φ

(
2tth
σg

)
+Φ

(
2tth − I

σg

)]M−1

+

(
Φ

(
2tth
σg

))M−1
}

+
fN (2tth)

2M−1

×

{
M

(
Φ

(
2tth
σg

)
+Φ

(
2tth − I

σg

))M−1

+

(
Φ

(
2tth
σg

))M−2 [
(M − 1)Φ

(
2tth − I

σg

)
−MΦ

(
2tth
σg

)]}
(11)

where p(k) =
(
M
k

)
/2M is the probability that there are k

branches transmitting bit “1” values. Averaging (11) with
respect to the fading coefficient I , one can obtain the pdf of
Tth as

fTth
(tth) = EI [fTth

(tth|I)] (12)

where EI [·] represents the statistical expectation with respect
to I .

IV. THE UPPER BOUND ON THE AVERAGE BER

As it is challenging to find the exact BER expression for
our proposed system, we will find an upper bound on the
average BER. For expository purposes, we first analyze the
error caused in the detection process. The error in the detection
process, before the (2M − 1)-nary sequence conversion at
the receiver, is the turbulence induced error when the binary
sequence is transmitted through the turbulence channel. We
then analyze the average BER of the output binary sequence.
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A. Error in the Detection Process at the Receiver
Without loss of generality, it is assumed that the first k

branches transmit bit “1”, and the rest of the M −k branches
transmit bit “0”. The detection threshold becomes

T̃th =
max{I + n1, . . . , I + nk, nk+1, . . . , nM}

2
. (13)

We define N = [n[1] ... n[M ]]T as the noise vector, and
Nk⊙ =

[
n[1] ... n[k − 1] n[k + 1] ... n[M ]

]T as
the noise vector without the kth noise component nk. The
probability of having incorrect detection in one or more links
can be written as

P (e2|k)

=
1

M

{
EN1⊙

[
EI

[
P
(
I + n1 < T̃th

∣∣∣N1⊙ , I
)]]

+ . . .+ ENk⊙

[
EI

[
P
(
I + nk < T̃th

∣∣∣Nk⊙ , I
)]]

+ ENk+1⊙

[
EI

[
P
(
nk+1 > T̃th

∣∣∣Nk+1⊙ , I
)]]

+ . . .+ ENM⊙

[
EI

[
P
(
nM > T̃th

∣∣∣NM⊙ , I
)]]}

.

(14)

Since all components of the noise vector N are independent
and identically distributed (i.i.d.), for k1 ̸= k2, where k1, k2 ∈
{1, 2, . . . ,M}, we have

ENk1
⊙

[
EI

[
P
(
I + nk1 < T̃th

∣∣∣Nk1
⊙ , I

)]]
= ENk2

⊙

[
EI

[
P
(
I + nk2 < T̃th

∣∣∣Nk2
⊙ , I

)]] (15)

and

ENk1
⊙

[
EI

[
P
(
nk1 > T̃th

∣∣∣Nk1
⊙ , I

)]]
= ENk2

⊙

[
EI

[
P
(
nk2 > T̃th

∣∣∣Nk2
⊙ , I

)]]
.

(16)

Thus, the probability of having incorrect detection in one or
more links can be written as

P (e2|k) =
k

M
EN1⊙

[
EI

[
P
(
I + n1 < T̃th

∣∣∣N1⊙ , I
)]]

+
M − k

M
ENM⊙

[
EI

[
P
(
nM > T̃th

∣∣∣NM⊙ , I
)]]

.

(17)

The first term in (17) can be upper-bounded as (18) on the
top of the next page. The second term in (17) can be upper-
bounded as (19) on the next page. Subtituting (18) and (19)
into (17), we have

P (e2|k) <
k

M
{EI [P (n1 < −I)] + (k − 1)

× En2

[
EI

[
P

(
n1 <

n2 − I

2

∣∣∣∣n2, I

)]]
+ (M − k)EnM

[
EI

[
P
(
n1 <

nM

2
− I

∣∣∣nM , I
)]]}

+
M − k

M
En1

[
EI

[
P

(
nM >

I + n1

2

∣∣∣∣n1, I

)]]
.

(20)

The upper bound on the average BER for the binary sequence
transmitted through the turbulence channel with M transmit
lasers is obtained as (21) on the next page. It is difficult to
find a closed-form expression of (21), as it contains a double
integral, however, this integral can be evaluated numerically
with high accuracy.

B. Average BER of the System
At the transmitter, a binary sequence aL . . . a2a1 is con-

verted into a (2M − 1)-nary sequence hJhJ−1 . . . h2h1. This
(2M −1)-nary sequence of length J is mapped to a binary se-
quence of length JM . At the receiver, after the demodulation,
we will map a binary sequence of length JM to a (2M − 1)-
nary sequence ĥJ ĥJ−1 . . . ĥ2ĥ1. This (2M −1)-nary sequence
ĥJ ĥJ−1 . . . ĥ2ĥ1 is converted to a binary sequence, denoted
as âL+1âL . . . â2â1. We comment that when a (2M − 1)-nary
sequence of length J will be converted to a binary sequence
of length L + 1; however, at the transmitter, we convert a
binary information sequence of length L to a (2M − 1)-nary
information sequence of length J . Thus, at the receiver, we
will ignore âL+1 and use âL . . . â2â1 as our binary information
sequence.

To calculate the probability of having an incorrect decision
in the binary sequence âL . . . â2â1, for expository purposes,
we consider M = 3. When M = 3, we will convert L = 14
binary information bits a14 . . . a2a1 to a 7-nary sequence with
a length of J = 5 (h5h4h3h2h1). Then we map the 7-nary
sequence of length of J = 5 into a binary sequence of length
JM = 15. At the receiver, after the demodulation, we map
each sequence of M = 3 binary bits to an element of the
7-nary sequence. The mapping can be seen as follows:

000 → 0, 001 → 0, 010 → 1, 011 → 2,

100 → 3, 101 → 4, 110 → 5, 111 → 6.
(22)

Tabel I shows the conditional probability of the received (2M−
1)-nary number ĥl given the transmitted (2M−1)-nary number
hl. The conditional probability in Tabel I can be calculated by
using the bit error probability for the binary bit transmitted
through the turbulence channel, Pe2 . For example, P (0|0) =
P (000|001)+P (001|001) = (1−Pe2)

2Pe2+(1−Pe2)
3. Tabel

II shows the conditional probability of the received (2M −1)-
nary number ĥl given the transmitted (2M − 1)-nary number
hl, written in terms of Pe2 .

Since all elements of ĥ5 . . . ĥ2ĥ1 and h5 . . . h2h1 are inde-
pendent, the conditional probability for the received (2M −1)-
nary sequence ĥ5 . . . ĥ2ĥ1 given the transmitted (2M−1)-nary
sequence h5 . . . h2h1 is

P (ĥ5 . . . ĥ2ĥ1|h5 . . . h2h1)

=

5∏
j=1

P (ĥj |h5 . . . h2h1) =

5∏
j=1

P (ĥj |hj).
(23)

The conditional probability of the received binary sequence
âL . . . â2â1 given the transmitted binary sequence aL . . . a2a1
can be written as

P (â14 . . . â2â1|aL . . . a2a1)

= P (ĥ5 . . . ĥ2ĥ1|h5 . . . h2h1) =

5∏
j=1

P (ĥj |hj).
(24)

If the transmitted binary sequence is a14 . . . a2a1, and the
received binary sequence is â14 . . . â2â1, the conditional error
probability of this system given a14 . . . a2a1 and â14 . . . â2â1
is

P (e|a14 . . . a2a1, â14 . . . â2â1) =
∑14

l=1 al ⊕ âl
14

(25)
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P
(
I + n1 < T̃th

∣∣∣N1⊙ , I
)
= P

(
I + n1 <

max{I + n1, . . . , I + nk, nk+1, . . . , nM}
2

∣∣∣∣N1⊙ , I

)
= P

({
I + n1 <

I + n1

2

}
∪ . . . ∪

{
I + n1 <

I + nk

2

}
∪
{
I + n1 <

nk+1

2

}
∪ . . . ∪

{
I + n1 <

nM

2

}∣∣∣N1⊙ , I
)

≤ P

(
I + n1 <

I + n1

2

∣∣∣∣ I)+ P

(
I + n1 <

I + n2

2

∣∣∣∣n2, I

)
+ . . .

+ P

(
I + n1 <

I + nk

2

∣∣∣∣nk, I

)
+ P

(
I + n1 <

nk+1

2

∣∣∣nk+1, I
)

+ . . .+ P
(
I + n1 <

nM

2

∣∣∣nM , I
)

= P (n1 < −I| I) + P

(
n1 <

n2 − I

2

∣∣∣∣n2, I

)
+ . . .+ P

(
n1 <

nk − I

2

∣∣∣∣nk, I

)
+ P

(
n1 <

nk+1

2
− I

∣∣∣nk+1, I
)
+ . . .+ P

(
n1 <

nM

2
− I

∣∣∣nM , I
)

= P (n1 < −I) + (k − 1)P

(
n1 <

n2 − I

2

∣∣∣∣n2, I

)
+ (M − k)P

(
n1 <

nM

2
− I

∣∣∣nM , I
)
.

(18)

P
(
nM > T̃th

∣∣∣NM⊙ , I
)
= P

(
nM >

max{I + n1, . . . , I + nk, nk+1, . . . , nM}
2

∣∣∣∣NM⊙ , I

)
= P

({
nM >

I + n1

2

}
∩ . . . ∩

{
nM >

I + nk

2

}
∩
{
nM >

nk+1

2

}
∩ . . . ∩

{
nM >

nM

2

}∣∣∣NM⊙ , I
)

≤ P

(
nM >

I + n1

2

∣∣∣∣nM , I

)
.

(19)

Pe2 =

M∑
k=1

P (e2|k)p(k)

<
M∑
k=1

(M
k

)
2M − 1

{
k

M

[
EI [P (n1 < −I)] + (k − 1)En2

[
EI

[
P

(
n1 <

n2 − I

2

∣∣∣∣n2, I

)]]
+ (M − k)EnM

[
EI

[
P
(
n1 <

nM

2
− I

∣∣∣nM , I
)]]

+
M − k

M
En1

[
EI

[
P

(
nM >

I + n1

2

∣∣∣∣n1, I

)]]}
=

M∑
k=1

(M
k

)
2M − 1

{
k

M

(
EI

[
Q

(
I

σg

)]
+ (k − 1)En2

[
EI

[
Q

(
I − n2

2σg

)]]
+(M − k)EnM

[
EI

[
Q

(
2I − nM

2σg

)]])
+

M − k

M
En1

[
EI

[
Q

(
I + n1

2σg

)]]}
.

(21)

TABLE I
CONDITIONAL PROBABILITY OF THE RECEIVED (2M − 1)-NARY NUMBER ĥl GIVEN THE TRANSMITTED (2M − 1)-NARY NUMBER hl .

ĥl 0 1 2 3 4 5 6
P (ĥl|hl = 0) P (0|0) P (1|0) P (2|0) P (3|0) P (4|0) P (5|0) P (6|0)
P (ĥl|hl = 1) P (0|1) P (1|1) P (2|1) P (3|1) P (4|1) P (5|1) P (6|1)
P (ĥl|hl = 2) P (0|2) P (1|2) P (2|2) P (3|2) P (4|2) P (5|2) P (6|2)
P (ĥl|hl = 3) P (0|3) P (1|3) P (2|3) P (3|3) P (4|3) P (5|3) P (6|3)
P (ĥl|hl = 4) P (0|4) P (1|4) P (2|4) P (3|4) P (4|4) P (5|4) P (6|4)
P (ĥl|hl = 5) P (0|5) P (1|5) P (2|5) P (3|5) P (4|5) P (5|5) P (6|5)
P (ĥl|hl = 6) P (0|6) P (1|6) P (2|6) P (3|6) P (4|6) P (5|6) P (6|6)



5

TABLE II
THE CONDITIONAL PROBABILITY OF THE RECEIVED (2M − 1)-NARY NUMBER ĥl GIVEN THE TRANSMITTED (2M − 1)-NARY NUMBER hl .

ĥl 0 1 2 3 4 5 6
P (ĥl|hl = 0) (1− Pe2 )

2Pe2 (1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

+(1− Pe2 )
3

P (ĥl|hl = 1) (1− Pe2 )
2Pe2 (1− Pe2 )

3 (1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

P 3
e2

(1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

+(1− Pe2 )P
2
e2

P (ĥl|hl = 2) (1− Pe2 )
2Pe2 (1− Pe2 )

2Pe2 (1− Pe2 )
3 P 3

e2
(1− Pe2 )P

2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )
2Pe2

+(1− Pe2 )P
2
e2

P (ĥl|hl = 3) (1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

P 3
e2

(1− Pe2 )
3 (1− Pe2 )

2Pe2 (1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

+(1− Pe2 )P
2
e2

P (ĥl|hl = 4) (1− Pe2 )
2Pe2 P 3

e2
(1− Pe2 )P

2
e2

(1− Pe2 )
2Pe2 (1− Pe2 )

3 (1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

+(1− Pe2 )P
2
e2

P (ĥl|hl = 5) P 3
e2

+ (1− Pe2 )P
2
e2

(1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

(1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

(1− Pe2 )
3 (1− Pe2 )P

2
e2

P (ĥl|hl = 6) P 3
e2

+ (1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )
2Pe2 (1− Pe2 )P

2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )P
2
e2

(1− Pe2 )
3

where ⊕ implements an exclusive OR. Thus, the BER of this
system with M = 3 can be written as

P (e) =
∑

a14...a2a1,â14...â2â1

P (e|a14 . . . a2a1, â14 . . . â2â1)

× P (a14 . . . a2a1, â14 . . . â2â1)

=
∑

a14...a2a1,â14...â2â1

∑14
l=1 al ⊕ âl

14

× P (a14 . . . a2a1, â14 . . . â2â1)

=
∑

a14...a2a1,â14...â2â1

∑14
l=1 al ⊕ âl

14

× P (â14 . . . â2â1|a14 . . . a2a1)P (a14 . . . a2a1).
(26)

In (26), the elements of a14 . . . a2a1 are independent, so we
have P (a14 . . . a2a1) = 1

214 . Substituting (24) into (26), we
have

P (e) =
∑

a14...a2a1,â14...â2â1

∑14
l=1 al ⊕ âl

14

×
5∏

j=1

P (ĥj |hj)P (a14 . . . a2a1)

=
1

214

∑
a14...a2a1,â14...â2â1

∑14
l=1 al ⊕ âl

14

5∏
j=1

P (ĥj |hj).

(27)

In general, the BER for the proposed system with M
transmitted lasers can be written as

P (e) =
1

2L

∑
aL...a2a1,âL...â2â1

∑L
l=1 al ⊕ âl

L

J∏
j=1

P (ĥj |hj).

(28)

V. NUMERICAL RESULTS

In this section, the pdf of the detection threshold is first
verified, and the BER performance of the proposed system is
numerically studied.

In Fig. 4, the derived pdf of the detection threshold Tth is
compared with the simulated pdf. For expository purposes, we
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Derived pdf, M=3,σ=0.25
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Fig. 4. Comparison of the derived and simulated pdfs for the detection
threshold Tth over a lognormal fading channel with (σ,M) = (0.25, 3),
(0.2, 3) and (0.25, 2).

let the parameters (σ,M) = (0.25, 3), (0.2, 3) and (0.25, 2).
The simulated pdf is obtained by using Monte Carlo computer
simulations with 104 trials. The derived pdf shows excellent
agreement with the simulated pdf.

In Fig. 5, we plot the BER versus electrical SNR when
the OOK IM/DD system uses a fixed detection threshold of
Tth = 0.5. Note that an error floor appears in the large SNR
regime. The system using source information transformation
can eliminate the error floor, although its BER performance
is worse than that of the OOK IM/DD system using fixed
detection thresholds in low SNR regimes. This is due to the
fact that a value of one-half of the largest received signal
is used to define the detection threshold for the M received
signals in each symbol duration. This detection threshold is
only optimum when the electrical SNR approaches infinity
and/or there is no noise. In the low SNR regimes, the detection
threshold is not an optimum detection threshold for our
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Fig. 5. The simulated BERs and BER upper bounds of the system using
idealized adaptive detection thresholds, source information transformation,
and fixed detection thresholds over lognormal turbulence channels (with
σ = 0.25, σ = 0.5 and M = 3).

proposed system, due to the noise influence, and the BER
of our proposed system becomes worse than that of the OOK
IM/DD system using a fixed detection threshold.

In Fig. 5, we also plot the upper bounds on the average BER
for the proposed system over lognormal fading channels with
different turbulence conditions. Simulated BER curves are also
used to verify the analytical BER upper-bound solutions. The
upper bound is tight when M = 3. However, as we have used
the union upper bound technique, it can be shown that the
upper bound becomes loose with increasing M . It is seen from
Fig. 5 that the OOK modulated system using idealized adaptive
detection thresholds with a lognormal turbulence model having
σ = 0.25 requires an SNR of 24.8 dB to attain a BER
of 1 × 10−9, while the proposed system requires an SNR
of 26.6 dB to achieve the same BER performance. Thus,
the corresponding SNR penalty factor for the system using
OOK and source information transformation in a lognormal
turbulence channel with σ = 0.25 is only 1.8 dB at BER of
1 × 10−9. This performance difference can be factored into
the ultimate FSO system design to offset the complexity of
implementing systems with adaptive detection thresholds (and
their need for knowledge of the instantaneous CSI).

VI. CONCLUSION

FSO communication systems using OOK and source infor-
mation transformation have been proposed. It was shown that
such systems can achieve good BER performance without the
need for knowledge of the instantaneous CSI and pdf of the
turbulence model. We have derived an analytical expression
for the pdf of the detection threshold and developed a tight
upper bound on the average BER. Numerical studies ultimately
showed that the system using coded wavelength multiplexing

achieves comparable performance to the idealized adaptive de-
tection system, with a greatly reduced level of implementation
complexity (exhibiting an SNR penalty factor of only 1.8 dB
at a BER of 1 × 10−9, for a lognormal turbulence channel
with σ = 0.25).

APPENDIX

In a symbol duration, we first consider the case for which
k branches transmit bit “1”, where k = 1, 2, . . . ,M , and the
rest of the M − k branches transmit bit “0”. Without loss of
generality, we assume the first k branches transmit bit “1”, and
the rest of the M−k branches transmit bit “0”. The conditional
cumulative distribution function of Tth can be written as (29)
on the top of the next page. Since all the noise components
n1, n2, . . . , nM are assumed to be i.i.d., we have (30) on the
top of the next page. It follows that

FTth
(tth|I, k)

=[P (n1 < 2tth − I)]k[P (nM < 2tth)]
M−k

=[Φ(2tth − I)]k[Φ(2tth)]
M−k.

(31)

The pdf of Tth conditioned on k branches transmitting bits
“1”s and I can be written as

fTth
(tth|I, k) =

d

dtth
FTth

(tth|I, k)

= 2kΦ

(
2tth − I

σg

)k−1

Φ

(
2tth
σg

)M−k

fN (2tth − I)

+ 2(M − k)Φ

(
2tth − I

σg

)k

Φ

(
2tth
σg

)M−k−1

fN (2tth).

(32)
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