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Free-space optical system performance for laser
beam propagation through non-Kolmogorov
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Abstract. It is well know that free-space laser system performance is
limited by atmospheric turbulence. Most theoretical treatments have
been described for many years by Kolmogorov’s power spectral density
model because of its simplicity. Unfortunately, several experiments have
been reported recently that show that the Kolmogorov theory is some-
times incomplete to describe atmospheric statistics properly, in particu-
lar, in portions of the troposphere and stratosphere. We present a non-
Kolmogorov power spectrum that uses a generalized exponent instead
of constant standard exponent value 11/3, and a generalized amplitude
factor instead of constant value 0.033. Using this new spectrum in weak
turbulence, we carry out, for a horizontal path, an analysis of long-term
beam spread, scintillation index, probability of fade, mean signal-to-noise
ratio �SNR�, and mean bit error rate �BER� as variation of the spectrum
exponent. Our theoretical results show that for alpha values lower than
�=11/3, but not for alpha close to �=3, there is a remarkable increase
of scintillation and consequently a major penalty on the system perfor-
mance. However, when alpha assumes a value close to �=3 or for alpha
values higher than �=11/3, scintillation decreases, leading to an im-
provement on the system performance. © 2008 Society of Photo-Optical Instru-
mentation Engineers. �DOI: 10.1117/1.2870113�

Subject terms: atmospheric turbulence; structure function; Kolmogorov spectrum;
beam spread; scintillation; fade; signal-to-noise ratio; bit error rate.

Paper 070450R received May 26, 2007; revised manuscript received Sep. 30,
2007; accepted for publication Oct. 3, 2007; published online Feb. 28, 2008. This
paper is a revision of a paper presented at the SPIE conference on Free-Space
Laser Communication Technologies XIX and Atmospheric Propagation of
Electromagnetic Waves, Jan. 2007, San Jose, California. The paper presented
there appears �unrefereed� in SPIE Proceedings Vol. 6457.

1 Introduction
For a long time, structure function has been modeled ac-
cording to Kolmogorov’s power spectrum of refractive in-
dex fluctuations, which is widely accepted and has been
applied extensively in studies of optical and radio wave
propagation in the atmosphere. However, recent experi-
mental data from space-based stellar scintillation, balloon-
borne in-situ temperature, and ground-based radar measure-
ments indicate that turbulence in the upper troposphere and
stratosphere deviates from predictions of the Kolmogorov
model.1–3 One circumstance in which the spectrum may not
be Kolmogorov is when the atmosphere is extremely stable,
for example, in low wind conditions. In such cases, the rate
of the energy cascade from larger to smaller scales is re-
duced and Kolmogorov turbulence is not fully developed.
The Kolmogorov model makes several assumptions about
the nature of the turbulence. For example, the turbulent
fluctuations of the index of refraction are assumed to be
homogeneous, or statistically stationary, and isotropic,
meaning there is no preferred direction through the turbu-
lence, and there is a specific mathematical form for the
power spectral density of the index of refraction fluctua-

tions. However, further development of the turbulent theory
of passive scalar transfer has shown that although the Kol-
mogorov spectrum is generally correct �within the inertial
subrange�, it constitutes only one part of the more general
behavior of passive scalar transfer in a turbulent flow.4 In
fact, media with Kolmogorovs-type turbulence are suffi-
ciently wide spread, but they are not the only possible ones.
Another type of turbulence as wide spread as Kolmogor-
ov’s is helical.5,6 In brief, it was shown in the early 1960’s
that the Euler equation has, side by side with energy, an-
other integral of motion: the helicity. Helicity exists practi-
cally in all real turbulent media, and it is necessary only to
establish in which cases it is important for the solution of
radiation transfer problems. Consequently, since radiation
affects temperature fluctuations, then in the presence of
nonzero helicity and in the case where its flux is a govern-
ing parameter, besides spectral properties of the velocity
field, passive scalar behavior is also changed. It has also
been reported7 that some anomaly behavior seems to occur
when the atmosphere is extremely stable, because under
such conditions the turbulence is no longer homogeneous in
three dimensions, since the vertical component is sup-
pressed. It has been shown8 that for such 2-D turbulence,
coherent vortices can develop that reduce the rate of the0091-3286/2008/$25.00 © 2008 SPIE
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energy cascade from larger to smaller scales. As a result,
Kolmogorov turbulence will not develop. In addition, re-
cent experimental results9 have indirectly indicated that
near the tropopause, the Kolmogorov model may not com-
pletely describe the power spectral density of the turbu-
lence. Therefore, a significant body of evidence that con-
flicts with the conventional statistical model of turbulence
is now available from various measurements of turbulence
under a variety of conditions. In addition, anisotropy in
stratospheric turbulent inhomogeneities has been experi-
mentally investigated.10–13 Also, laboratory investigations
have shown that turbulence can be anisotropic, even at
Reynolds numbers well past the critical Reynolds number
for the flow geometry. Since the tropopause �i.e., the
boundary between the troposphere and the stratosphere� is
known to have fluid flow properties similar to the shear
layers created in the laboratory, these studies cast doubt on
the correctness of the conventional assumption of isotropic
turbulence through the entire atmosphere. French
researchers9 have collected data at high altitudes that indi-
cate the existence of anisotropic turbulence and non-
Kolmogorov behavior, and recent velocity scale size data
collected from an aircraft report anisotropic behavior in the
tropopause. Flight test studies have shown the presence of
stratified layers in the upper atmosphere at altitudes be-
tween 12 and 18 km, indicating that conventional models
of how turbulence strength smoothly decreases as a func-
tion of altitude may be in error. In addition, there have been
a number of successful measurement campaigns to quantify
the lower atmosphere, where the density and turbulence
levels are orders of magnitude higher than the upper atmo-
sphere. From these measurements, assumptions have been
made as to the nature of the turbulence, and the techniques
used in measuring the lower altitude turbulence have been
applied to high altitude measurements. However, turbu-
lence generation and dissipation are fundamentally differ-
ent at high and low altitudes. Where the lower regions are
influenced by the surface of the earth, atmospheric density,
and molecular dissipation of energy, the high regions are
dominated by large-scale turbulence generation phenom-
ena, strong discontinuity associated with the tropopause,
and solar flux. Finally, turbulence spectrum was investi-
gated by Lidar measurements.14 The experimental results
show the various strata and layers in the vertical turbulence
profiles. It is shown that the power-law exponent of the
structure function is different from the purely Kolmogorov
cases. Thus, it should be taken into account in applications
of turbulence sensing, image restoration, free-space optical
communications, etc. We must accept de facto that turbu-
lence is still an unsolved problem in classical physics, and
the scientific community must persist in doing more simu-
lations, measurements, and experiments.15

Stewart McKechnie reported,16 “…the time has come to
look at the subject of imaging through turbulence much
more critically. It might be more constructive to abandon
old dogma and replace it with a sounder and more open
approach.”

It is very important, therefore, to find new models more
general than the Kolmogorov spectrum to describe experi-
mental data also in non-Kolmogorov turbulence. In this
work, we present a theoretical spectrum model that reduces
to one type of Kolmogorov only for a particular case of its

exponent: the standard value 11 /3. The exponent can as-
sume all the values between the range 3 to 4. Using this
new spectrum, following the same procedure already used
by Andrews, Phillips, et al.,17,18 we have analyzed the im-
pact of the exponent’s variation on long-term beam spread,
scintillation index, probability of fade, mean signal-to-noise
ratio �SNR�, and mean bit error rate �BER� for a horizontal
path, that is, for constant value of the refractive index struc-
ture parameter.

2 Non-Kolmogorov Spectrum
The basic power-law spectrum of Kolmogorov is defined
by

�n��� = 0.033 · Cn
2 · �−11/3, �1�

where Cn
2 is the refractive-index structure parameter. The

validity of the Kolmogorov spectrum is restricted to the
inertial range, although in some analyses it is extended to
all spatial wave numbers. Here we examine a more general
power spectrum model that describes non-Kolmogorov at-
mospheric turbulence, in which the power law exponent
11 /3 is allowed to deviate somewhat from this value.

One of the key parameters for developing the theory of
radiation passage through a turbulent medium is the struc-
ture function D�r�. The structure function describes the be-
havior of correlations of turbulent temperature or other pas-
sive scalar �aerosol, for example� field fluctuations with
distance between two given points separated by a distance
r. We assume that in an atmosphere exhibiting non-
Kolmogorov turbulence, the structure function for the index
of refraction is given by

Dn�r� = � · Cn
2 · r�, �2�

where � is the power law that reduces to 2 /3 in the case of
conventional Kolmogorov turbulence. Here, � is a constant
equal to unity when �=2 /3, but otherwise has units
m−�+2/3. Following same procedure reported in Ref. 17, the
corresponding power-law spectrum associated with struc-
ture function takes the form �see Appendix in Sec. 9�

�n��,�� = A��� · C̃n
2 · �−�, � � 0, 3 � � � 4, �3�

where �=�+3 is the spectral index or power law, C̃n
2

=� ·Cn
2 is a generalized structure parameter with units m−�,

A��� is defined by

A��� =
1

4�2	�� − 1�cos���

2
�, 3 � � � 4, �4�

and the symbol 	�x� in the last expression is the gamma
function. When �=11 /3, we find that A�11 /3�=0.033, and
the generalized power spectrum reduces to the conventional
Kolmogorov spectrum in Eq. �1�. Also, when the power law
approaches the limiting value �=3, the function A��� ap-
proaches zero. Consequently, the refractive-index power
spectral density vanishes in this limiting case.

3 Long-Term Beam Spread
The first important quantity that shows total average beam
spot size radius on the receiver lens is the long-term beam
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spread. It can be written as the sum of three terms:
diffraction-limited beam spreading, beam spreading due to
small turbulence scales, and beam wander, which can be
described by the variance of the instantaneous center of the
beam in the receiver plane.

The analytical form of long-term beam spread for a
Gaussian beam wave is17

We
2 = �WLT

2 ���� = W2 · �1 + �T����� , �5�

where W is the diffraction-limited spot size radius and
�T���� is the term that includes small-scale beam spreading
and beam wander atmospheric effects. To carry out long-
term beam spread analysis, we need to calculate the �T����
term. For a horizontal path, the parameter Cn

2 that appears

inside the relation C̃n
2=� ·Cn

2 is constant. Following the
same formula reported in Ref. 17, but using the non-
Kolmogorov spectrum in Eq. �3�, we carry out

T��� = 4�2k2L · 	
0

1 	
0




� · �n��,��

�
1 − exp�−
L�2�2

k
��d�d�

= − 16 · A��� ·
1

� − 1
· 	�1 −

�

2
� · �/2−1 · �̃R

2��� , �6�

where �=1−z /L �z is the propagation distance�, 
=2L /kW2, and we have defined a non-Kolmogorov Rytov
variance

�̃R
2��� = 1.23 · C̃n

2 · k3−�/2 · L�/2. �7�

It is interesting to observe that for �=11 /3, we obtain the
particular case of the Kolmogorov spectrum already re-
ported in Ref. 17.

At this point, we plot in Fig. 1 the long-term beam
spread as a function of � for a particular case, taking:

L = 1 km; C̃n
2 = 7 · 10−14 m−�+3;

� = 1.55 �m; W0 = 0.01 m.

We deduce from Fig. 1 that if alpha decreases from �
=11 /3 �excluding alpha values close to 3�, then the long-
term beam spread We increases up to a maximum value. At
this point, the curve changes its slope, because the term
A��� assumes very low values. In addition, it is shown that
if alpha increases from �=11 /3, then the long-term beam
spread We decreases down to a minimum value. At this
point, the curve changes its slope, because the term 	�1
−� /2� assumes high values close to its asymptote as �
→4. The obvious physical interpretation of alpha ap-
proaching 3 is that turbulence tends to vanish. On the other
extreme, the physical interpretation of alpha approaching 4
is that phase effects dominate in the form of random tilts,
which generate beam wander.

Finally, it is interesting to observe that recently in litera-
ture there have appeared several works concerning other
beam types and their advantages over the pure Gaussian
beam type.19,20 Unfortunately, we do not yet know how our
non-Kolmogorov spectrum would affect such cases. How-
ever, we presume that different beam types probably will
present the same advantages over the pure Gaussian beam
like those they present by using the Kolmogorov spectrum.
For example, beam spreading for higher-order Gaussian
beams, by using our non-Kolmogorov spectrum, probably
will be less than that of a lowest-order Gaussian beam. That
is, because the higher-order mode structure places more
energy of the beam away from the beam axis, the incremen-

Fig. 1 Long-term beam spread as a function of alpha for horizontal path.
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tal spreading due to turbulence should be less also in non-
Kolmogorov turbulence. A similar result will most likely be
obtained also for annular beams.

4 Scintillation
Another important parameter that is necessary to calculate
the system performance is the scintillation index. In our
analysis, we include aperture averaging effects of the re-
ceiver aperture, so we carry out the flux variance in the
plane of the detector at a short distance behind the collect-
ing lens of diameter DG. Finally, in our analysis we assume
that beam-wander-induced scintillation is negligible, which
is true when we consider either a plane wave or a spherical
wave, but the situation may be different for focused
beams.17

4.1 Horizontal Path: Plane Wave and Spherical
Wave Models

Following the same procedure as discussed in Ref. 17 for
the standard Kolmogorov spectrum, but this time using a
non-Kolmogorov spectrum, our analysis for the plane wave
model leads to

�I�plane
2 ��,DG� = 8�2 · k2 · L · Re�	

0

1 	
0




� · �n��,��

· exp�−
DG

2 · �2

16
�

· 
1 − exp�− j
L · �2 · �

k
��d�d�

= 6.5 · �2 · A��� · �̃R
2���

· 	�1 −
�

2
� ·

1

�
· ��

2
· � k · DG

2

16 · L
��/2−1

− 
� k · DG
2

16 · L
�2

+ 1��/4

· sin
�

2
· arctg� 16 · L

k · DG
2 �� . �8�

Our analysis for the spherical wave model leads to

�I�spherical
2 ��,DG�

= 8�2 · k2 · L · Re�	
0

1 	
0




� · �n��,��

· exp�−
DG

2 · �2 · �2

16
�

· 
1 − exp�− j
L · �2 · � · �1 − ��

k
��d�d�

= 4�2 · k2 · L · A��� · C̃n
2 · � 16

DG
2 �1−�/2

· 	�1 −
�

2
� · � 1

� − 1
− Re
� j

16L

kDG
2 ��/2−1

·
2

�
· 2F1�1 −

�

2
,
�

2
;1 +

�

2
;1 + j

kDG
2

16L
�� , �9�

where 2F1�a ,b ;c ;z� is the hypergeometric function17 given
by

2F1�a,b;c;z� = �
0



�a�n · �b�n

�c�n
·

zn

n!
, �z� � 
 . �10�

At this point, we can plot both �I�plane
2 �� ,DG� and

�I�spherical
2 �� ,DG� as a function of alpha for a particular hori-

zontal case. We take

L = 1 km; C̃n
2 = 7 · 10−14 m−�+3;

� = 1.55 �m; DG = 0.1 m.

The results for both the plane wave and spherical wave are
shown in Fig. 2. We deduce from Fig. 2 that for alpha
values lower than Kolmogorov value �=11 /3, excluding
alpha values close to 3, there is an increase of scintillation
both for the spherical wave model and the plane wave
model, but for the spherical wave model it is more pro-
nounced. Consequently, scintillation in this case leads to a
larger penalty on system performance. We deduce also that
there are two maximum values of scintillation respectively
for alpha values close to 3.3 for the plane wave model and
close to 3.2 for the spherical wave model. At these points,
the curves change their slopes because the term A��� be-
gins to decrease to zero. In addition for alpha values higher
than �=11 /3, scintillation slightly decreases for both the
plane wave model and spherical wave model, and conse-
quently it will lead to a slight gain in system performance.

The physical interpretation of alpha approaching 4 is
that the power spectrum contains fewer eddies of high
wave numbers; therefore, scintillation effects are reduced.

5 Probability of Fade
Given a PDF model for irradiance fluctuations pI�I�, the
probability of fade describes the percentage of time the
irradiance of the received signal is below some prescribed
threshold value IT. Hence, the probability of fade as a func-
tion of threshold level is defined by the cumulative
probability17

pI�I � IT� = 	
0

IT

pI�I�dI . �11�

The PDF most often used under weak irradiance fluctua-
tions is the lognormal model, and the resulting probability
of fade leads to

pI�I � IT� =
1

2
· �1 + erf� 1

2
· �I

2��,DG� − 0.23 · FT

�2 · �I��,DG�
�� , �12�

where erf�x� is the error function. In arriving at this expres-
sion, we have introduced the fade threshold parameter
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FT = 10 · log10� �I�
IT
��dB� . �13�

The fade parameter FT, given in decibels �dB�, represents
the decibel level below the on-axis mean irradiance that the
threshold IT is set.

5.1 Horizontal Link: Plane Wave Model and
Spherical Wave Model

Using the scintillation index for the plane wave model �Eq.
�8�� and for the spherical wave model �Eq. �9�� in Eq. �12�,
we calculate the probability of fade as a function of alpha
for a fixed fade threshold parameter for a particular hori-
zontal case, in which

L = 1 km; C̃n
2 = 7 · 10−14 m−�+3;

� = 1.55 �m; DG = 0.1 m, FT = 6 dB.

The plots are shown in Fig. 3 for both the plane wave and
spherical wave models.

It is clear now that alpha variation has a serious impact
on the probability of fade for both spherical and plane wave
models; in particular, lower alpha values lead to a penalty
on the fade performance �excluding alpha values close to
3�. In addition, we can observe that the spherical wave
model predicts a higher probability of fade than the plane
wave model for alpha values lower than the alpha value
intersection point �around �=3.72�. For alpha values higher
than the alpha value of intersection point, the situation is
the opposite. Also for this diagram, there is a maximum
point where the curves change their slope, because the scin-
tillation begins to decrease to zero.

Under the same conditions, we plot the probability of
fade as a function of fade threshold parameter for several
alpha values. Both plane wave and spherical wave cases are
illustrated respectively in Figs. 4 and 5.

6 Mean Signal-to-Noise Ratio
In this section, we examine the mean signal-to-noise ratio
in the presence of atmospheric turbulence using a non-
Kolmogorov power spectrum. The received irradiance over
long measurement intervals must be treated like a random
variable because of the turbulence. Based on Refs. 17 and
18, the mean signal-to-noise ratio �SNR� at the output of
the detector in the case of a shot-noise limited system as-
sumes the form

�SNR� =
SNR0

�1 + �I
2��,DG� · SNR0

2�1/2 , �14�

where SNR0 is the signal-to-noise ratio in the absence of
turbulence.

6.1 Horizontal Link: Plane Wave Model
We plot in decibel units the mean signal-to-noise ratio
�SNR� as a function of signal-to-noise ratio without turbu-
lence SNR0 for several alpha values, using the plane wave
model for scintillation. We take the following parameters

L = 1 km; C̃n
2 = 7 · 10−14 m−�+3;

� = 1.55 �m; DG = 0.1 m.

The plot, shown in Fig. 6, illustrates the impact of the alpha
variation on the �SNR� performance. Again, when alpha is
lower than �=11 /3, excluding alpha values close to 3,

Fig. 2 Scintillation index as a function of alpha for horizontal path using the spherical and plane wave
models.
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there is a translation of the curves toward lower values, or,
in other words, there is a penalty on the system perfor-
mance. For alpha values higher than �=11 /3, there is a
gain on the system performance with respect to the case of
Kolmogorov �=11 /3. Finally, there is also a gain on sys-
tem performance with respect to Kolmogorov �=11 /3
when alpha assumes values very close to �=3, because the
amplitude factor A��� assumes very low values and conse-

quently the scintillation reported before in Fig. 2 ap-
proaches zero.

7 Mean Bit Error Rate
In the presence of optical turbulence, the probability of
error is considered a conditional probability that must be
averaged over the PDF of the random signal to determine

Fig. 3 Probability of fade as a function of alpha using the log-normal PDF and two different models for
the scintillation index: plane and spherical wave models.

Fig. 4 Probability of fade as a function of threshold level for several values of alpha using the plane
wave scintillation index.
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the unconditional mean bit error rate �BER�. In terms of a
normalized signal with unit mean, this leads to the
expression17,18

Pr�E� = �BER� =
1

2
· 	

0




pI�u� · erfc� �SNR� · u

2 · �2
�du , �15�

where pI�u� is taken to be the log normal distribution with
unit mean, i.e.,

pI�u� =
1

u · �I�DG,�� · �2 · �

· exp�−

ln�u� +

1

2
· �I

2�DG,���2

2 · �I
2�DG,��

�, u � 0.

�16�

Fig. 5 Probability of fade as a function of threshold level for several values of alpha using the spheri-
cal wave scintillation index.

Fig. 6 Mean signal-to-noise ratio as a function of signal-to-noise ratio without turbulence for several
alpha values, using the plane wave model for scintillation.
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7.1 Horizontal Link: Plane Wave Model
We plot the mean bit error rate as a function of �SNR� for
several alpha values using the plane wave model for scin-
tillation. We take the same parameters

L = 1 km; C̃n
2 = 7 · 10−14 m−�+3;

� = 1.55 �m; DG = 0.1 m.

The plot is shown in Fig. 7. It shows the impact of the
alpha variation on �BER� performance. Also in this analy-
sis, when alpha is lower than �=11 /3, excluding alpha
values close to 3, there is a penalty, but for alpha higher
than �=11 /3, there is an improvement on the system per-
formance. However, when alpha assumes values close to
�=3, there is a gain on the �BER� performance with respect
to �BER� value corresponding to �=11 /3, because the
scintillation approaches zero.

8 Discussion
We introduce a non-Kolmogorov power spectrum that uses
both a generalized exponent and a generalized amplitude
factor instead of a constant standard exponent value �
=11 /3 and a constant amplitude factor 0.033 associated
with the conventional Kolmogorov spectrum. This non-
Kolmogorov spectrum is developed from a generalized
structure function. It is shown, for a horizontal link, the
long-term beam spread, scintillation, probability of fade,
mean SNR, and mean BER as variations depending on the
alpha exponent, lead to results somewhat different than
those obtained with the standard value of Kolmogorov �
=11 /3.

For horizontal links, it is shown that for alpha values
lower than �=11 /3, but not for alpha close to �=3, there is

a remarkable increase of scintillation and consequently a
major penalty on system performance. However, when al-
pha assumes a value close to �=3, the amplitude factor
A��� assumes a very low value and consequently the long-
term beam spread and scintillation decrease, leading to an
improvement on the system performance. Finally, also for
higher alpha values than �=11 /3, the scintillation de-
creases and consequently improves system performance.

9 Appendix

The power spectrum and structure function are related by17

�n��,�� =
1

4�2�2	
0


 sin��r�
�r

·
�

�r
�r2�Dn�r,��

�r
�dr ,

where the refractive-index structure function Dn�r ,�� is
given by Eq. �2�.

Using the integral formula17

	
0




x� sin�x�dx = 2���

	��

2
+ 1�

	�1

2
−

�

2
� ,

we obtain the final result

�n��,�� = A��� · C̃n
2 · �−�,

where

Fig. 7 Mean bit error rate as a function of mean signal-to-noise ratio for several alpha values, using
the plane wave model for scintillation.
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