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Abstract 

Free-standing flexible solid-state supercapacitors are attracting attention as 

power supply for electronic equipment. Here we report a novel strategy to 

fabricate free-standing flexible hybrid papers made up of porous carbon 

particles combined with graphene sheets. The synergetic effect between the 

carbon particles and the graphene sheets entails two important advantages: a) 

binder-free electrodes formed by carbon particles can be built up with the 

assistance of the graphene sheets and b) the restacking of the graphene sheets 

is avoided to a great extent due to the fact that the carbon particles act as 

spacers. These hybrid papers combine important properties for their use in 

solid-state supercapacitors: a) large specific surface area, b) good electrical 

conductivity, c) high packing density and d) excellent flexibility. They exhibit a 

volumetric electrochemical performance which is clearly superior to electrodes 

fabricated with carbon particles agglomerated with a binder. In addition, they 

achieve an excellent areal capacitance (103 mF cm-2) at current densities as 

high as 1400 mA cm-2 and are able to deliver a large amount of energy (~ 12 

µWh cm-2) at high power densities (316 mW cm-2). In this work, a robust, 

flexible and high-performance solid-state supercapacitor has been assembled 

using such hybrid papers.  



 2

Keywords: graphene paper, flexible, free-standing, supercapacitors, carbon 

nanoparticles. 



 3

Introduction 

Activated carbon is an essential ingredient of most electrodes used in 

electric double-layer capacitors (EDLC). This is because of their low cost, high 

surface area, controllable pore size, excellent chemical stability and good 

electronic conductivity.1-3
_ENREF_6 However, the fabrication of carbon-based 

electrodes involves a shaping process that commonly entails the addition of 

foreign inactive substances (i.e. a binder and a conductive additive), which 

substantially reduces the capacitance of the EDLC system on both a volumetric 

and gravimetric basis.4, 5 Moreover, the carbon electrodes fabricated in this way 

are unbendable and, in consequence, they are unsuitable for in flexible energy 

storage systems. 

Flexible energy storage devices have recently attracted increasing 

attention for incorporation in foldable electronic equipment (i.e. displays, mobile 

phones, computers, etc.).6-9 Because of its unique properties, graphene has 

emerged as an important building block for the fabrication of electrodes in 

energy storage systems, such as supercapacitors and Li-ion batteries. 5, 10 The 

singular structure of graphene sheets makes them suitable for assembling free-

standing, thin films that combine an excellent flexibility with a good electrical 

conductivity.11 For these reasons, graphene has become an essential 

component in the fabrication of electrodes for flexible energy storage systems. 5 

In order to successfully exploit the excellent properties of graphene for 

electrochemical applications, the re-stacking of the graphene sheets needs to 

be minimized.12, 13 By taking advantage of the ability of graphene sheets to form 

free-standing films, and by inserting several types of electroactive substances 

within the graphene framework it is possible to fabricate electrodes with 
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enhanced properties. Indeed, the synthesis of hybrid films made up of graphene 

sheets and conductive polymers or inorganic oxides has been investigated in 

some depth. As examples, several authors have explored the insertion of 

polyaniline or polypyrrole into graphene films.14-18 In this respect, Xu et al. 

synthesized by vacuum filtration paper-like composites films made up of 

reduced graphene oxide (rGO) and polyaniline, which contain 44 wt % rGO and 

exhibit a high capacitance (214 F g-1) and a high cycling stability.17 Davies et al. 

used a pulsed electrodeposition technique to create flexible, and uniform 

graphene/polypyrrole hybrid films that exhibit a high energy density of around 

33 Wh kg-1.18 Moreover, the incorporation of certain inorganic substances, such 

as nanoparticles of manganese oxides,19-21 iron oxide,22 tin oxide 23 or Ni-based 

oxides/hydroxides 24-27 confined within the graphene films has likewise attracted 

widespread attention. Thus, Gao et al. reported the design of solid-state 

asymmetric supercapacitors based on free-standing carbon nanotube/graphene 

and Mn3O4 nanoparticles/graphene films.19 Similarly, Chen et al. used N-doped 

graphene films to support nickel nanoparticles which were used as catalysts for 

the oxygen evolution reaction (OER).27  

Unlike the abundant literature centered around graphene/(polymeric or 

inorganic substances) composite films, there are no reports on the fabrication of 

self-standing, binder-free and flexible hybrid films formed by graphene and 

porous carbon particles. Worth noting in this context is the use of non-porous 

carbon black nanoparticles 28, 29 and carbon nanotubes 30, 31 that are used as 

spacers to avoid the self-restacking of graphene sheets.  

 In this work, we present a novel synthesis strategy for fabricating flexible, 

self-standing and binder-free hybrid films made up of highly porous carbon 
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particles combined with graphene sheets. Graphene acts as a scaffold that 

retains and interconnects the carbon particles. However, it is important to 

mention that when these composites are used as electrodes for energy storage 

systems (i.e. supercapacitors and batteries), graphene should not be 

considered just as a simple host material to encapsulate and interconnect the 

carbon particles, but also acts as an electroactive substance. In addition, the 

porous carbon particles not only provide a large surface area, but also act as 

spacers that reduce the stacking of graphene sheets. These hybrid films 

provide three important advantages compared to the conventional electrodes 

produced by agglomeration of porous carbon particles. Firstly, because the 

hybrid films are bendable, porous carbon particles can be used in flexible 

energy storage systems. Secondly, the fabrication process is notably simplified 

because the hybrid films are obtained by means of a simple vacuum filtration of 

a dispersion of carbon particles and graphene sheets. Thirdly, the 

electrochemical properties (i.e. specific capacitance or stored energy density) 

are clearly superior because no foreign substance is required. To demonstrate 

our synthesis strategy, we selected two types of micrometer-size porous carbon 

particles: a) microporous carbon nanosheets produced by the carbonization of 

potassium citrate 32 and b) N-doped micro-mesoporous carbon microspheres 

synthesized by chemical activation with potassium bicarbonate in the presence 

of melamine of hydrochar microspheres obtained by the hydrothermal 

carbonization of glucose.33 The hybrid graphene-based paper (HGP) 

synthesized with these carbon particles are free-standing, flexible, and show a 

high performance as electrodes in supercapacitors (SC). Thus, the HGP 

reported herein exhibit a better performance, on a volumetric basis, than the 
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electrodes fabricated by the agglomeration of the carbon particles with a binder. 

In addition, these hybrid papers combine a high areal energy density with a 

large areal power density. Even more importantly, the supercapacitors 

fabricated with the HGP electrodes exhibit high areal capacitances of 160 mF 

cm-2 in H2SO4. Moreover, they can also operate at high current densities of 

1442 mA cm-2 and exhibit an excellent rate performance (65 % retention), 

delivering a large amount of energy of ∼ 7.1 µWh cm-2 at an ultra-high power 

density of ∼ 579 mW cm-2. Furthermore, in this study the HGP composite has 

been successfully integrated in a flexible solid supercapacitor. 

Results and Discussion 

Synthesis and characterization of the hybrid graphene papers (HGPs) 

We recently reported a simple way of fabricating free-standing and 

flexible graphene papers (GP).34 In that study, we proved that the 

supercapacitors built up with this type of electrodes exhibit an excellent stability 

and high areal power (up to 280 mW cm-2) and energy (up to 60 µWh cm-2). In 

the present work we have taken a step forward and investigated the fabrication 

of hybrid papers made up of graphene units and highly porous carbon particles. 

The synthesis procedure of these hybrid systems is illustrated in Scheme 1. 

Once the graphene aerogel has been oxidized with hydrogen peroxide (H2O2), 

the resulting suspension of holey graphene units is mixed with the porous 

carbon particles and, then, vacuum filtered. The as-obtained film is dried and 

peeled off from the membrane and a free-standing flexible paper is obtained. In 

these experiments, two types of porous carbon particles with a well-defined 

morphology were used: microporous carbon nanosheets (CK) and micro-

mesoporous carbon microspheres (CS). The amount of carbon particles 
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incorporated into the hybrid paper is optimized to 60 %. The synthesis 

procedure of these carbon particles is given as Supporting Information. 

The graphene units obtained after oxidation with H2O2 consist of two 

types of nanostructures (i.e. wrinkled sheets and nanoscrolls, see Figure S1a 

and S1b) which contain numerous basal nanoholes (size ~ 2-4 nm) caused by 

the etching action of hydrogen peroxide (see Figures S1c). These basal pores 

are important as they enhance the transport of ions throughout the entire film.35 

A typical graphene paper obtained from these graphene units has a layered 

structure (see Figure S1d), with a thickness of 30 µm, a volumetric density  of 

0.8 g cm-3 and a specific surface area (measured by methylene blue) of 700 m2 

g-1. 34 

The carbon nanosheets (CK) used in the experiments were obtained by 

direct carbonization of potassium citrate as reported by Sevilla and Fuertes, 32 

whereas the carbon microspheres (CS) were synthesized by the chemical 

activation of glucose hydrochar with a mixture of potassium bicarbonate and 

melamine. 33 SEM and TEM inspections of the morphology of these particles 

reveals that the carbon nanosheets consist of thin layers that are fully 

interconnected and the carbon microspheres consist of spherical particles with 

a diameter of 250 ± 40 nm (see Figure S2). Both types of carbon particles are 

highly porous and have a high specific surface area (2230 m2 g-1 for CK and 

3230 m2 g-1 for CS), a large pore volume and a porosity which is made up 

almost exclusively of micropores in the case of CK and of micro-mesopores in 

the CS sample (see Table 1 and Figure S3). 

The HGPs obtained by vacuum filtration of a dispersion of graphene units 

and carbon particles, were then subjected to a pressure of up to 500 MPa. As 
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illustrated in Figure 1a, the HGPs are free-standing and flexible and they have a 

thickness of ~ 35 µm for GP-CK and GP-CS, as can be appreciated by the 

cross sections in Figure 1b. The SEM and TEM images of the HGP papers 

containing carbon nanosheets and carbon microspheres reveal that these 

particles are mixed together with the graphene units (see Figures 1c-f). 

The chemical and structural properties of the HGP samples were 

investigated by elemental analysis, X-ray diffraction (XRD), Raman 

spectroscopy and X-ray photoelectron spectroscopy (XPS). The chemical 

composition of the different samples is given in Table 2. As a consequence of 

the treatment with hydrogen peroxide, the graphene paper exhibits a relatively 

high content in oxygen groups (25.85 % wt, (C/O) ratio ~ 3.7). The incorporation 

of the carbon particles with low oxygen contents (8.5 % wt for CK and 6.4 % wt 

for CS) led to a decrease in the overall oxygen content of the HGP samples and 

the values of the (C/O) ratios are ~ 5.1 for GP-CK and (C/O) ~ 6 for GP-CS. In 

addition, some nitrogen is also present in the films, originating either from the 

graphene sheets (as a consequence of the ammonia/hydrazine36 used in the 

reduction process) or from the N-doped microspheres (see Figure S4 for the 

high-resolution XPS N1s spectrum of the GP-CS paper). The presence of 

oxygen and nitrogen functional groups is an important feature due to their 

capacitance enhancement through reversible redox reactions and also due to 

their ability to improve the wettability of the electrodes. 37, 38 The nature and 

distribution of the oxygen functional groups present in the GP and HGP 

samples was investigated by XPS (Figure 2a). The deconvoluted C1s spectrum 

corresponding to the graphene papers shows the presence of C=O, C=N and/or 

amide groups (288.6 eV), C-O groups (286.8 eV) and O-C=O groups (290.4 
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eV), besides the π-π* shake-up satellite (292.2 eV), C sp2 (284.5 eV) and C sp3 

and C-N (285.6 eV) (see Table S1).39-43 The XRD patterns in Figure 2b reveal a 

broad band at around 24.7º. In the case of the GP sample, this result indicates 

a certain stacking of few graphene layers. A large increase in the low-angle 

scattering is observed in the XRD patterns of the GP-CK and GP-CS samples, 

which reveals an abundance of micro- and mesopores.44 Raman spectroscopy 

further confirms the amorphous nature of the graphene papers. As can be seen 

in Figure 2c, all the graphene papers exhibit a strong D (1340 cm−1) and G 

(1590 cm−1) bands, a negligible 2D band at 2649 cm−1 and D + G band at 2930 

cm−1. Slight differences between the ID/IG ratio values of GP and GP-CK/GP-CS 

are observed, which indicates that the incorporation of carbon particles does not 

increase the degree of disorder. The high electrical conductivity of the carbon 

particles gives rise to a notable increase in the electrical conductivity in the 

synthesized HGPs, as reflected in Table 2. Thus, the HGP films exhibit 

electrical conductivities that are 14 (GP-CK) and 2 (GP-CS) times greater than 

those of the GP film. The surface area of the materials was deduced from the 

amount of methylene blue adsorbed by the sample in an aqueous solution. This 

made it possible to compare the surface areas of the hybrid samples HGP with 

that of the graphene paper GP. The results shown in Figure 2d reveal that the 

incorporation of carbon particles led to a remarkable increase of the surface 

area, to 1010 m2 g-1 for the GP-CK and to 1040 m2 g-1 in case of the GP-CS. 

Comparison between the electrodes made up of carbon particles and 

binder and the binder-free graphene-(carbon particles) papers 

The electrochemical performance of the electrodes formed by carbon 

particles agglutinated with the aid of a binder and that of the hybrid graphene 
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papers was investigated in a two-electrode cell using 1 M H2SO4 as electrolyte. 

The physical characteristics of the electrodes once compacted by applying a 

pressure of up to 500 MPa are summarized in Table 3. It can be seen that the 

hybrid papers have high packing density values of 0.66 g cm-3, which are 

double those obtained with the electrodes formed exclusively by carbon 

particles (0.3-0.35 g cm-3), although slightly lower than that of the graphene 

paper (0.8 g cm-3). These results anticipate a good electrochemical 

performance on a volumetric basis for both the binder-free GP and HGP 

samples. Indeed, whereas on a gravimetric basis, the electrodes formed 

exclusively by carbon particles exhibit a higher specific capacitance, as can be 

deduced from the cyclic voltammograms (Figures S5a and S5b) and charge-

discharge experiments at different current densities (Figures S5c and S5d), 

when the results are shown on a volumetric basis, the binder-free HGP 

electrodes exhibit a superior performance. Thus, as can be seen in Figures 3a-

b, the volumetric capacitance of the flexible papers is considerably higher than 

that of the carbon particles over the whole current density range. In addition, the 

capacitance retention for the graphene paper with carbon nanosheets is higher 

than that of just the carbon particles (Figure 3c). In the case of the micro-

mesoporous carbon microspheres, both electrodes exhibit a similar capacitance 

fading, although the hybrid carbon paper can withstand higher current densities 

than the CS sample, like GP-CK. All of this translates into enhanced volumetric 

energy and power characteristics for the HGPs, as can be observed in the 

Ragone-like plot in Figure 3d. To be more precise, the use of HGPs leads to a 

50 % increase in volumetric energy density and they can operate at higher 

power densities. 
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Electrochemical performance of GP and HGP samples 

The cyclic voltammograms (CVs) of the supercapacitors assembled with 

the HGP samples are represented in Figures 4a-4b for different scan rates. The 

CVs clearly show that the HGPs exhibit capacitive behavior of up to 5 V s-1, 

suggesting ultra-fast ion transport. This high-rate capability is also corroborated 

by the variation of the normalized capacitance with frequency (Figure S6a), with 

relaxation time constants in the 0.17-0.22 s range. In addition, the Nyquist plots 

in Figure S6b exhibit short Warburg regions, indicating smooth ion diffusion. 

Interestingly, a decrease in equivalent series resistance (ESR) is observed 

when the carbon particles are introduced. Specifically, GP-CS and GP-CK 

exhibit values of 0.21 Ω and 0.15 Ω respectively, in comparison to 0.32 Ω for 

GP, which is in agreement with their higher electronic conductivity (see Table 

1). A comparison of the CV curves at 5 mV s-1 in Figure 4c reveals a clear 

enhancement of capacitance for the HGPs compared to the graphene paper 

(GP). The material which leads to the highest cell areal capacitance is the 

hybrid graphene paper assembled with the microspheres. This can be ascribed 

to its higher specific surface area.  

Galvanostatic charge-discharge (CD) experiments were performed at 

current densities in the 0.24-1442 mA cm-2 range. At a low current density of 0.5 

mA cm-2 the CD plots (see Figure S6c) are perfectly symmetrical for all the 

materials (with coulombic efficiencies > 96 %). The stability of the 

supercapacitors was assessed by performing CD at 12 mA cm-2 over 5000 

cycles. As can be observed in Figure S6d, the capacitance retention for the 

hybrid graphene papers is > 96 %. When the current density is increased up to 

~ 230 mA cm-2, a small IR drop is observed (see Figure 4d), confirming the 
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results previously obtained by EIS and CV, and demonstrating their excellent 

rate capability . The variation of the cell areal capacitance with current density is 

illustrated in Figure 4e. It can be seen that the GP-CS paper exhibits the highest 

cell areal capacitance, 160 mF cm-2 (at low discharge rates), which implies an 

enhancement of 55 % in capacitance compared to GP (~ 100 mF cm-2). On the 

other hand, when carbon nanosheets (CK) are used, the cell areal capacitance 

is slightly lower (136 mF cm-2), but still higher than GP. These differences 

correlate well with the differences in the specific surface area and porosity (see 

previous section and Table 1). When the current density is increased up to 

ultra-high values (> 1150 mA cm-2), a capacitance retention of ~ 65 % is still 

obtained in the case of the HGPs. In fact, GP-CS can operate at current 

densities as high as 1442 mA cm-2 and still deliver ~ 103 mF cm-2. It is clear that 

the hybrid graphene papers developed in this work compare favorably with the 

best graphene materials 45-53 and hybrid graphene materials 15, 28, 54-56 reported 

in the literature (see Table S2). The combination of a unique graphene structure 

made up of holey graphene wrinkled sheets and graphene nanoscrolls with 

porous carbon particles of small size, ensures fast ion transport rates. In 

addition, the carbon particles serve as effective separators, preventing the 

agglomeration of the graphene sheets. The excellent areal energy and power 

characteristics of the assembled supercapacitors are evident in the Ragone-like 

plot in Figure 4f. Indeed, the GP-CS supercapacitor is able to store ~ 27 µWh 

cm-2 at an areal power density of 0.12 mW cm-2, which represents an increase 

of 55 % with respect to GP and a higher value also than that of GP-CK (23 µWh 

cm-2). More importantly, the HGPs can work up to 316 mW cm-2 delivering an 

areal energy density as high as 11.5 µWh cm-2. In summary, the hybrid 
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graphene papers can store more energy and deliver it more quickly than any 

graphene paper/film developed so far. 45-51, 53 

Electrochemical performance of solid-state supercapacitors with HGP 

papers 

In order to study the graphene papers in greater depth, a solid-state 

supercapacitor was assembled by using H2SO4-PVA as the gel electrolyte. For 

this purpose, GP-CS was selected due to the excellent results obtained in the 

previous section. Before assembling the supercapacitor, the electrodes were 

pressed to form a thin film of 55 µm. Figure S7a shows an image of the as-

prepared supercapacitor which is made up of two rectangular pieces of 

graphene paper 13 mm x 26 mm. The excellent electrochemical performance of 

GP-CS in H2SO4 is here confirmed when H2SO4-PVA is used as the electrolyte. 

Thus, comparison of the CVs at 20 mV s-1 of the solid-state SCs assembled 

with GP and GP-CS electrodes reveals that the HGP exhibits a superior cell 

areal capacitance (see Figure 5a). Likewise, the solid-state (GP-CS)-based SC 

is able to operate up to 52 mA cm-2 with a capacitance retention of ~ 58 %, as 

evidenced in Figure 5b. Especially remarkable is the cell capacitance value at 

low discharge rates, i.e. 165 mF cm-2, which is superior to the value obtained 

with the GP-solid state SC (108 mF cm-2) and among the best of those reported 

in the literature for graphene films 48, 49 and hybrid graphene films in H2SO4-PVA 

electrolyte,45, 53, 57, 58 and also for other flexible supercapacitors 59-62 (see Table 

S3). Moreover, the volumetric capacitance of the solid device is calculated to be 

18 F cm-3 at low discharge rates, which is higher than that of a graphene 

hydrogel film (8 F cm-3 at 1 A g-1, and 6 F cm-3 at 20 A g-1), flexible graphene 

(0.42 F cm-3 at 1 A g-1) 63 and a functionalized graphene hydrogel (1.4 F cm-3 at 
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1 A g-1).53 Finally, the electrochemical performance of the solid-state device was 

visually confirmed by powering a red light-emitting diode (LED) with a minimum 

operating turn-on potential of 1.7 V using just two supercapacitors connected in 

series (Figure S7b). 

The flexible solid-state SC also exhibits an excellent mechanical 

robustness in the bending test. Thus, the cyclic voltammograms obtained at 

various bending angles show nearly the same capacitive behavior (see Figure 

5c), which demonstrates that the change in the electrochemical properties is 

negligible under different bending angles. In order to test the durability of the 

solid-state device, galvanostatic charge-discharge was performed at a current 

density of 13 mA cm-2 under a bending angle of 180° over 5000 cycles. As can 

be seen in Figure 5d, the flexible device retains 91 % of its capacitance and the 

calculated coulombic efficiency is always above 96 %.  

 

Conclusions 

In summary, we have presented a procedure for fabricating free-standing 

flexible hybrid papers made up of porous carbon particles combined with 

wrinkled graphene sheets and graphene nanoscrolls. Such hybrid papers 

combine several important properties for their use as electrodes in solid-state 

supercapacitors: a) a high specific surface area, b) a good electrical 

conductivity, c) a high packing density and d) an excellent flexibility. The hybrid 

graphene papers exhibit a volumetric electrochemical performance which is 

clearly superior to that of the electrodes made with carbon particles 

agglomerated with a binder and, in consequence, they are able to deliver 50 % 

more energy density than these carbon particles and furthermore, they can 
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work at higher power densities. These hybrid graphene papers can also provide 

an excellent cell areal capacitance (103 mF cm-2) at current densities as high as 

1442 mA cm-2, an outstanding rate performance (65 % capacitance retention), 

and a long cycle life (> 96 % retention after 5000 cycles). In addition, they show 

high areal energy and power densities, being able to deliver a large amount of 

energy (~ 12 µWh cm-2) at high power densities (316 mW cm-2). A robust and 

flexible solid-state supercapacitor assembled using the hybrid paper GP-CS 

showed an enhanced capacitive performance, with an areal capacitance of 108 

mF cm-2 at 52 mA cm-2, which represents a capacitance retention of 58 % for a 

100-fold increase in current density. 



 16

 

Experimental 

Fabrication of the graphene papers 

Graphene oxide (GO) was prepared by using a modified Hummer´s method as 

reported elsewhere 64. The GO solid was dispersed in water by ultrasonication 

(Sonics, Ultrasonic Vivracell, 500 W, 40 %) for 1.5 h to make a GO aqueous 

dispersion with a concentration that was adjusted to 0.5 mg GO mL-1. To 

prepare an aqueous graphene colloidal suspension, 120 mL of GO dispersion 

(0.5 mg mL-1) was mixed with 0.24 mL hydrazine (35 wt % in water, Aldrich) and 

0.42 mL ammonia (30 wt %, Aldrich) in a Teflon vessel, stirred for 15 min and 

then treated at 100 ºC for 3 h [22]. The Teflon vessel containing the as-formed 

graphene dispersion was immersed in a nitrogen liquid in order to obtain high 

freezing rates. The frozen dispersion was placed in a lyophilizer (Telstar 

Cryodos) and freeze-dried at a temperature of – 51 ºC and at a pressure of 0.06 

mbar. The resulting graphene aerogel was dispersed in an aqueous solution of 

H2O2 (concentration: 0 - 5 wt %) and treated, under stirring, at 100 ºC (reflux) 

for 4 h.  The graphene paper (here denoted as GP) was made by vacuum 

filtering the oxidized graphene dispersion through a regenerated cellulose 

membrane (0.45 µm, Sartorius) and then drying it at 50 ºC. Subsequently, the 

film was subjected to a pressure of up to 500 MPa. 

In the case of the hybrid graphene papers, two kinds of carbon particles were 

used to obtain the final graphene hybrid papers, i.e. carbon nanosheets and 

carbon microspheres, whose detailed synthesis procedure is explained in the 

experimental section of the Supporting Information. For the synthesis of the 
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hybrid papers, the carbon particles were dispersed in water followed by 

ultrasonication. The graphene aerogel dispersed in an aqueous solution of H2O2 

was mixed with the carbon particle solution. The dispersion was then vacuum 

filtered through a regenerated cellulose membrane. Finally, the graphene hybrid 

paper was dried at 50 ºC and peeled from the membrane. The resulting 

graphene papers were denoted as GP-CK when the carbon particles used were 

carbon nanosheets and GP-CS when they were carbon microspheres. The final 

mass ratio of carbon particles in the total mass of graphene paper was 60 % for 

both hybrid graphene papers. 

Material Characterization 

Scanning electron microscopy (SEM) images were obtained on a Quanta 

FEG650 (FEI) instrument, whereas transmission electron microscopy (TEM) 

images were recorded on a JEOL (JEM 2100-F) apparatus operating at 200 kV. 

The specific surface area of the hybrid graphene papers synthesized at low 

temperature was determined by the methylene blue adsorption method as 

described by McAllister et al.65 X-ray diffraction (XRD) patterns were obtained 

on a Siemens D5000 instrument operating at 40 kV and 20 mA, using Cu KR 

radiation. The Raman spectra were recorded on a Horiva (LabRam HR-800) 

spectrometer. The source of radiation was a laser operating at a wavelength of 

514 nm and at a power of 25 mW. X-ray photoelectron spectroscopy (XPS) was 

carried out on a Specs spectrometer, using Mg KR (1253.6 eV) radiation from a 

double anode at 150 W. The dc electrical conductivity of the graphene papers 

was determined on a homemade apparatus by pressing the papers between 

two plungers into a hollow Nylon cylinder (inner diameter of 8 mm), and 
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applying a pressure of 7.1 MPa. Elemental analysis (C, H, N and O) of the 

samples was carried out on a LECO CHN-932 microanalyzer. 

 

Characterization of the electrochemical supercapacitors 

The electrochemical measurements were performed in two-electrode 

Swagelok™ type cells using 1 M H2SO4 as the electrolyte. The electrochemical 

capacitors were assembled using two graphene paper/carbon electrodes of 

comparable mass and thickness, electrically isolated by a glassy fibrous 

separator. In the case of the graphene hybrid papers, the electrodes were cut 

directly from the prepared papers. Meanwhile, in the case of the carbon 

particles, the electrodes were prepared by mixing  85 wt % of active material, 10 

wt % of polytetrafluoroethylene (PTFE) binder (Aldrich, 60 wt % suspension in 

water) and 5 wt % of the conductive additive Super C65 (Timcal company). 

Electrochemical characterization was performed using a computer-controlled 

potentiostat (Biologic VMP3 multichannel generator) and it consisted of cyclic 

voltammetry experiments, electrochemical impedance spectroscopy studies 

(EIS) and galvanostatic charge/discharge cycling tests (CD). 

Electrochemical impedance spectroscopy (EIS) measurements were 

performed at open circuit voltage (i.e. 0 V) in the discharged stated within the 

frequency range of 1 mHz to 100 kHz and a 10 mV AC amplitude. Bode plots of 

the dependence of the capacitance on frequency and Nyquist plots were 

recorded to characterize the impedance of the tested samples. The specific 

gravimetric capacitance of the supercapacitor, CEIS (F g-1), was calculated 

according to the following formula and normalized with respect to the highest 

specific gravimetric capacitance, i.e. capacitance at 1 mHz: 



 19

       (1) 

where f is the operating frequency (Hz), and Im(Z) and Re(Z) are the imaginary 

and real components of the total device resistance (Ohm). The relaxation time 

constant, τ0, which separates the capacitive and the resistive behavior of the 

supercapacitor, was deduced from the frequency f0 as follows: τ0 = 1/f0, where f0 

is obtained from the real capacitance plot at C’ = C1mHz/2. The equivalent series 

resistance (ESR) was calculated from the intercept of the high frequency 

semicircle loop with the real impedance axis at the highest frequency.66, 67  

Cyclic voltammetry experiments (CVs) were performed between 0 and 

1.1 V at increasing sweep rates from 1 mV s-1 to 5 V s-1. Plots of cell areal 

capacitance vs. voltage were calculated using the formula: 

                (2) 

where I = current, ʋ = scan rate and S = geometrical area of the device. 

The electrode specific capacitance was calculated on the basis of the 

total mass of the electrode, which in the case of the carbon particles includes 

the carbon black added and the binder. Plots of differential capacitance vs. 

voltage were traced using the formula: 

          (3) 

where I = current (A), ʋ = scan rate (V s-1) and m = total mass (grams) of both 

electrodes in the supercapacitor. 

Galvanostatic charge/discharge cycling was performed in the same 

voltage range at increasing current densities from 0.2 to 1442 mA cm-2. The cell 



 20

areal capacitance determined from the galvanostatic cycles was calculated by 

means of the formula: 

            (4) 

where dV/dt = the slope of the discharge curve.  

The specific gravimetric capacitance of a single electrode (F g-1) 

determined from the galvanostatic cycles was calculated by means of the 

formula: 

        

 (5) 

Taking into account the dependence of specific capacitance on the 

voltage in the present materials due to the presence of pseudocapacitance, the 

selection of an appropriate voltage range for the determination of the slope is 

very important to avoid overestimating the specific capacitance. As most 

supercapacitors are operated in the range of Vmax to approximately ½ Vmax, the 

upper half of the discharge curve was used to determine the slope of the 

discharge curve.68 

To trace the Ragone-like plots, the areal energy (μWh cm-2) and the areal 

power (mW cm-2) densities were calculated using the following formulae: 

  
2

dcell ΔVC
2

1
E =              (6) 

dΔt

E
P =           (7) 

where ΔVd is the operation voltage (Vmax – IRdrop) and Δtd is the discharge time. 
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Fabrication of all-solid-state supercapacitors 

The PVA/H2SO4 gel electrolyte was prepared as follows: 2 g of PVA (MW: ∼ 

9000, Aldrich) was dispersed in 20 mL H2SO4 1 M and, then the mixture was 

heated at 50 ºC under continuous stirring until the solution became transparent 

(around 30 min). After that, the graphene paper electrodes (size: 13 mm × 26 

mm) were immersed in H2SO4 1 M and dried at room temperature. In order to 

assemble the solid-state device, the H2SO4-PVA was poured on a glassy 

fibrous separator. The two electrodes were then attached to the separator on 

one side and to a graphite film collector on the other. Finally, the symmetric 

supercapacitor was fabricated by sandwiching all the components between two 

flexible PET films and pressing them so that the polymer gel in the separator 

would infiltrate into the GP and GP-CS. 
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List of Tables and Figures  

 
 

Scheme 1. Illustration of the synthesis procedure. 

 

Table 1. Textural properties of the porous carbon particles 

Sample Code SBET (m
2
 g

-1
) Vp (cm

3
 g

-1
)
a
 Vmi (cm

3
 g

-1
)
b
 Vmeso (cm

3
 g

-1
)
c
 

CK 2230 1.11 0.84 0.27 
CS 3230 2.2 1.01 1.19 

a Pore volume determined at P/P0=0.95. b The micropore volume was obtained 
by applying the Dubinin-Radushkevich (D-R) method to N2 adsorption branch. c 

The mesopore volume obtained from the difference between the pore volume 
(Vp) and micropore volume (Vmi).  
 

 

Table 2. Chemical composition and electrical conductivity of the samples. 

Elemental analysis (wt %) 
Sample 

C H O N 

(C/O) 
Atomic 

ratio 

Conductivity 
(S m

-1
) 

GP 71.3 0.99 25.85 1.86 3.7 5.2 
CK 91.52 0.22 8.48 nil 14.4 371.3 
CS 88.5 0.69 6.37 4.47 18.5 103.8 
GP-CK 77.88 0.65 20.21 1.26 5.1 75 
GP-CS 78.2 0.89 17.36 3.55 6.0 10.4 
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Table 3. Properties of the electrodes after subjecting them to a pressure of up 

to 500 MPa. 

Type of electrode 
Sample 

Code 

Packing density 

(g cm
-3

) 

Thickness 

(µm) 

Areal Density 

(mg cm
-2

) 

Paper (Binder-free) GP 0.8 30 2.38 

Particles with binder CK 0.35 75 2.50 

Particles with binder CS 0.32 75 2.35 

Hybrid paper (Binder-free) GP-CK 0.66 35 2.31 

Hybrid paper (Binder-free) GP-CS 0.66 35 2.30 
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Figure 1. (a) Digital images of the HGP paper (GP-CK), (b) cross-section of a 

HGP (GP-CS), (c) SEM and (d) TEM images of the GP-CK film, and (e) SEM 

and (f) TEM images of the GP-CS film. 

 

 

 
Figure 2. (a) High-resolution XPS C1s spectra, (b) XRD patterns, (c) Raman 

spectra, and (d) specific surface area of the GP, GP-CK and GP-CS papers. 
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Figure 3. Variation of the electrode volumetric capacitance with the current 

density for (a) the CK and GP-CK samples and (b) the CS and GP-CS samples, 

(c) capacitance retention and (d) Ragone-like plot in volumetric units for the CK 

,GP-CK, CS and GP-CS samples. Electrolyte: 1 M H2SO4. 
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Figure 4. Cyclic voltammograms at different scan rates for the (a) GP-CK and 

(b) GP-CS papers, (c) cyclic voltammograms at 5 mV s-1 for the different 

graphene papers, (d) galvanostatic charge-discharge cycles at ~ 230 mA cm-2, 
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(e) variation of the areal capacitance with the current density and (f) Ragone-

like plot for the GP, GP-CK and GP-CS papers. Electrolyte: 1 M H2SO4. 

 

 
 

Figure 5. Solid-state supercapacitor performance (electrolyte: H2SO4-PVA): (a) 

cyclic voltammograms at 20 mV s-1 and (b) rate dependence of GP- and GP-

CS-based supercapacitors, (c) cyclic voltammograms at 5 mV s-1 at different 

bending angles from 0° to 180° and (d) coulombic efficiency and long-term 

stability evaluated by charge-discharge cycling at a constant current of 13 mA 

cm-2 for the GP-CS supercapacitor at a bending state of 180°. 
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