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FREE-STREAMBOUNDARIES OF TURBULENT FLOWS 1

By STANLEYCORIISINand ALAN”L. KIsmm

SUMMARY

An experhentd and h?oretid study hm hen ma& of the
iwtantaneo-usly shurp ad irregular front which ia always

found to separti turbulentj?uid jrom cuntiguows %onhL.&w-

knt” $2@! at a free-stream boundury. This distind demarca-
tion h known to ~“ve an intemnitit character to hd-w”re

signals in tlu boundary m.

% ovti behavior oj the front is ok.wribedsta.tisticdy in

termsoj its m“nkle-amplitude growthand its lateralpropagation

relative to thejluid w junctionx of down&reamcoorditi.

It is proposed and just@d thut the jront actwally ctits

oj a very thin$uid layer in which direct viecous jorcm play the
central role of transmittingmean and $uctwuting mrticity to

prem”ou.dynonturlndentjluid. Outside this “laminar wper-
la~er” there is prtx-umably a ji.eld oj iwotutiomzl velocity

jhchuztimw (the ‘%onturbwlent” @w) with corwtunt mean
velocity. As &lined in the jolhwing paragraplw, t.lwreticcd
analyeis baaedon thie genera.?physicul picture gima rew.lts on

jront behavim which are in plausible agreement with .qwri-

mental results for three turbulent shear jlows: rowgh-ud
boundu~ lizyer,plane wake, and round jet.

It& shown thut tlw rate of increase of wrinkle amplitude of
the front can be rowgldy explained as a .Lagrangiundi$usion

process, w+n.ngthe statisticalproperties of the turbulence in tlw
fully turbwl.entzone.

The tranmersalpropagation velocity of tlw turlndencejront
is predictd by the beham.orof a phym&mdwmd ‘icd model of
th4 luminar superlayer. The model is a generalized Stoke&
Raybigh in$nile wall, oscil.k.tingin its own plane, translating

to give con-skvntmean vork%ity at the boumiiu-y, plu local

vorticity production and uniform suction velocity.

Find?y, vati stutistti propertia of the turbuikncefront

location a9 a stutionu~ random varide (jww downstream

position) havebeeneitherdirectlym.emuredor indirectly inferred
from hmown theorenw on Qau.98ianstochastic procamtx; it is

jownd thatfor boundiqt Lzyerjwake, and jet the front loca$ion
is vay nearly Qawmian. Speci@rUy, it ia possible, thwefore,
to edimate the amtocorrelationfunction of the front position.

INTRODUCTION

Until the last few years, basic experimental and (especially)
theoretical attacks upon the problems of turbulent flow have

centered on fully turbulent fields, both isotropic and shearing.

The experimental reaeamhes have been concerned with the
measurement of significant statistical quantities with the

hope that these w-illgive some insight into the mechanism of

fully developed turbulence and might even suggest a profit-
able theoretical approach.

In reality, however, every turbulent flow is bounded by
fluid not in a turbulent state. If the boundary spacingBcan
be made very large compared with the characteristic correla-
tion lengths of the turbulence, for example, integral scale and
dissipative scxde(microscale), then an %iinite field” approxi-

mation can be used. This haa been possible in research on
the decaying turbulence behind regular grids, a reasonably
good likeness of Taylor’s ideal concept of isotropic turbulence
(ref. 1).

It now seems probable that the classic turbulent shear
flows, boundtuy- layer, wake, jet, channel, and so forth have
transverwil integral scales not very small compared with
their characteristic widths. This has been shown experi-
mentally for the round jet (ref. 2), the plane half jet (ref. 3),
the boundary layer (ref. 4), and the channel (ref. 5). This
implies that the general behavior of these shear flows cannot

be fully inferred on a (still unsolved) homogeneous shear flow
basis but must involve the boundary phenomena.

Turbulent shear flow boundaries can be classifiedin various
ways. A conventional one is the division into (a) solid and
(%) free (or free stream) boundaries, depending upon the
presence or absence of a solid wall and excluding possible
s-ymmetryplanea from consideration as boundaries.

A further subdivision can be made in each class according
to whether the outside flow or wall is traveling fWer or
slower than the turbulent fluid just inside the boundary,
but this distinction is probably only a quantitative one
(because of the nonlinearity of the systam), not affecting the
nature of the boundmy phenomena; a comparison of wake
and jet boundaries would illustrate this remark. One can
also visualize a boundary state in which this mean velocity
difference is zero, that is, the c~e of uniform velocity field
including both turbulent and outside flow.

This investigation is concerned solely with the free
boundary condition. In practice, this case generally involves
a mean shear strws in the fully turbulent regtionjreducing
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to ‘zero monotonically toward the nonturbukmt z free-stream
flow.

The outstanding observable characteristic of free bound-
aries is the relatively sharp instanhmecus demarcation
surface between turbulent and nonturbulent fluid. This
shows up very clearly, for example, in short-duration ahadow-
graphs of the turbulent wwkesbehind high-speed projectiles
(@. 1). The sharpneasof the irregular bounda~ illustrated
persists as far downstream as pictures have been taken,
about several hundred wake diameters.

L–. . L-812XJ

FIWJREI.—Turbulentwakeof bullet. (Courkayof BallistioResearch
Laboratorks,AberdeenProvingGround.)

In rLmixed flow zone of this type, a probe stationary rela-
tive to the disturbance (e. g., the wall in a turbulent boundary
lnyer) will be swept over by successive sections of turbulent
and nonturbukmt fluid. With a hot--&re anemometer this
yields an intmrnittent signal of the type which led to the
discovery of this characteristic of free turbulent boundaries
(ref. 2). The relative time spent by the probe in turbulent
fluid vms first measured by Townsend (ref. 6) and called
the intermittence factor -f.

Most steady-state shear zones spread with increasing
downstream distance. Therefore, there cannot be even
rough overall flow similarity unless the average lateral
position and the wri.rddeamplitude of the sharp boundary
both increase at roughly the same rate as does the momentum
width of the shear flow. Since it is well known that most
“simple” turbukmt shear flows exhibit a rough overaII
similarity, it can immediately be anticipated that this
turbulence front must (a) propagate relative to the local
fluid in the same sense that a flame front propagates through
a combustible mixture and (b) increwe its geometrical
amplitude with increasing downstream coordinate.

The explanations of them necessary properties of the
turbulence front are two of the explicit purposes of this
investigation. The two properties are tQ be measured and
to be analytically related to physical properties of the turbu-
lence in the fully turbulent zone.

For any z-station, the intermittancy factor y(y) is just 1
minus the distribution function of Y(t), the instantaneous
location of the sharp front between turbulent and nonturbu-

lThetamzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWtmfnoP’isreSWWI f@amnturboJmt & w jn & w , & & @w h~~
fmerolmpmton~ ‘l!hhisi nw nbastw it hthetezmlnelogy inhtWucdln Meronco~
whemlunborwosusedtohdbtemynontnrbnlentfbw. ofmnrs+inpIwY@a “DXP
turbulent”SowmaybeoneWIUM9turbdencalevelk muohlowerbn tit ofthecon-
t47J09storbuklta3w.

lent fluid. For a fixed value of z, Y(t) is a stationary
random variable, and

Y(Y) =pmb[y= Y(t) s CD] (1)

Site 7(y) is d.iiYerentiable(in fact, nondHerentiable func-
tions cannot be experimentally so identified), &y/@ is tlm
probability density of Y(t).

A priori the fact that the free turbulence boundary
(vortici@ fluctuation boundary according to the physicol
picture proposed here) remains sharp can be attributed to
the continuous irregular stretching of the local vorhicity
gradient in the boundary, that is, to the fact that the vorbicity
propagation procew is nonlinear; for a given stretching mti,
the production of new vorticity is proportional to the amount
already present. This must be balanced on the w-emgc+
by the viscous diilusion of the vorticity gradient at the front.

It is obvious that the random vorticity field ordinarily
called turbulence can propagate only by direct contoct, as
opposed to action at a distance, because rotation can be
transmitted to irrotational flow only through direct viscous
shearing action. This insures that under ordina~ circum-
stances the turbulence front will always be a ccntinuoua
surface; there will be no islands of turbulence out in the frm
stream disconnected from the main body of turbulent
fluid.

The analytical estimates will include a hypothetical cam
in which the turbulent part of the flow field is also without
shear. This is perhaps the simplest conceivable case under
which turbulence propagates into nonturbukmt fluid—
provided that one can neglect the necessary monotonic time
decresses in turbulent energy per unit muss. Under them
conditions it is proposed that the distinction between turbu-
lent and nonturbulent zones is the presence or absmcq
respectively, of random vorticity fluctuations.

A more complex case is the one ordinarily encountered in
practice, as described before: a shearing turbulence m-
croaching on a nonsharing (irrotationaI) non turbulent fluid.
In this W, the average propagation velocity of the turbu-
lence front should also depend upon the mean shear stress
in the turbulent fluid near the front.

A somewhat difbmnt situation, not included fully in the
above classes, ocours in the transitional spreading of a turbu-
lent shear region into a shearing huninar region, w-hen tho
principal shear planes of laminar and turbulent flows are
parallel to each other but perpendicular to the mom propa-
gation front.

Such a phenomenon was tit studied experimentally by
Charters (ref. 7), who called it “transition by transveme
contamination.” Emmons (ref. 8) has given good wqxwi-
mentrd evidence that transition from lmninar to turbulent
flow may often occur in this way, usually from irregularly
generated “ignition” spots in the moving fluid, and a pre-
liminary analytical discussion of the turbulence sprend under
these conditions has been given by Mitchner (ref, 9). How-
ever, it appeara that Mitchner has omitted from hb non-
turbulent region the very shear which distinguishesthe tran-
sition problem. It is not intended that this important cam
be included in the present report. Although some of tho
same phenomena may occur as in the simpler nonshem
boundary, it is possible that the dominant turbulence propa-
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gation mechanism is diilerent. In particular, it may be
that ILdestabilization of the already rotational flow occurs in ~

addition to a transmission of random vorticity by direct

viscous action at the turbulent-larnimr interface.

When the present work was begun, it was hoped that the
problem of propagation of turbulence into a nonturbulent
flow could be studied at the boundary between a grid-

genemted isotropic turbulence and a nonturbulent flow
moying at the same uniform speed. This would eliminate
the shear stressentirely, although involving a relatively rapid

turbulence-level change due to viscous dissipation with “no ,
turbulent energy production.

The principal generating arrangement tried was a half grid

consisting of a conventional l-inch-mesh, %-~ch-dowel grid
covering half the tunnel cross section, with a fine me%h
screen of virtually identical static-pressure drop covering
the other half. Unfortunately, anomalous boundary be-

havior, mising from complexities in tbe flow around the joint
between grid and screen, could not be eliminated with a
reasonable amount of effort. Therefore, the turbulence
propagation has been studied in situ, chiefly at the outer
edgo of a low-speed turbulent bounda~ layer, with a few

measurements in a round jet for an additional check of some
particular phenomena. For completeness, some of Town-
send’s plane-wake data (ref. 10) have also been analyzed in
tho light of this investigation.

The general purpose of this investigation haa been to
measure statistical properties of the propagating turbulence

front to permit qualitative or even rough quantitative theo-
retical explanation of the phenomenon.

The work has been carried out at the Department of
Aeronautics of The Johns Hopkins University with the

financial assistanceand sponsomhip of the National Advisory
Committee for Aeronautics. The authors would like to
acknowledge the assistance of Miss Vivian O’Brien, Mr.

Aristoteles Scoledes, Mr. Donald Johnson, and Miss M. b
Emnmrt as well rIs the critical advice of Dr. Francis H.
Clmser and Dr. Mark V. Morkovin.
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SYMBOLS

characteristic ordinate in sketch (d)
random variable representing some flow

property
same property, taken in turbulent flow only

constant
random on-off signal, taken between zero

and 1
random variables

skin friction coefficient, a
!~ 2
2“

chuneter of rod used to produce plane wake
power spectra
scalar function
height of wall roughness
random variable
parameter in model of laminar superlayer,

equivalent to vortex stretching rate
wave number

transversal E&rian scale
Lagrangian time scale

Lagrangian length scale, u’.L
average pulse lengths of intermittent signal

empirical constant
exponent of boundary-layer power-law ve-

locity proiile

average frequency of occurrence of any
particular value of random variable l(t)

average frequency of occurrence of Y and.
zero, respectively, in fronklocation vari-
able Y(t)

cyclic frequency
total static pressure
probability densities of turbulent and po-

tential segment lengths, respectively, in
intermittent signal

total veloci~ vector

velocity fluctuation vector, Q-Q
dynamic pressure in free &t%n of wind

tunnel
instantaneous radial location of turbulence

front in romd jet
Lagrangian correlation function

shear correlation coefficient, Uii/UrVr
Reynolds numbers of laminar superlayar

turbulence Reynolds number, u’x/P .
coordinate vector
radial coordinate in round jet
jgt oriiice radius

radial position at -whichU=; U- at a sec-

tion of the jet

total shear force vector (per unit mea) at
turbulent side of superlayer, lying in
plane of snperlayer

segment (or pulse) lengths of turbulent and
potential signal, respectively, in int43r-
mittent signal

time
velocity along z, y, and z, respectively

mean velocity on axis of jet or wake

mean velocity in free stream of boundary
layer or wake

skin friction vdocity, WP

veloc i~ fluctuation along z, y, and z)
respectively

average velocity of propagation of turbu-
lence hont relative to fluid (perpendic-
ular to its own plane)

Carteskm coordinates (z is measured from
begiming of working section in bound-
ary-layer we)

Carteaian coordinates alined locally with
turbulence front
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X*

Y

Y, –Y–T
Y.

?’

apparent origin of wake, boundary layer,
or jet

instantaneous y –location of turb&nce
hnt for boundary layer and wake -

instantaneous yin-location of turbulence
front of plane+mke

in -wake

value of y at which mean veloci~ defect
ishalf maximnm

radian frequency of wall oscillation m
model of laminer superlayer

intermittence factor, relative time spent
by a fixed probe in turbulent fluid

instantaneous vector velocity jump across
laminar superlayer

boundary-layer thidmess, the value of y

at which B= U=
boundary-layer displacement thickness
thickness of laminar superlayer
model superlayer thickness for mean and

fluctuating vorticity, respectively
momentum tbiclmess of boundary layer
Lagranghm length scale in flow direction,

~L,
transvemal EuIerian microswde of turbu-

lence
Lagrangh time microscale

microscale of Y(t) times ~.
Lagrangian length microscale, o%,
viscosity coefhcient
kinematic viscosity coefEcient, jL/p

totalvorticity components in z – and z –
directions, respectively

total vorticity, Z 3 Q

vorticity fluctuation components along z, y,
and z, respectively

vorticity fluctuation, gf= ~ =$2—ii———
density

.——
0

r)

standard deviation of (Y– ~ - YI

stress tensor

time interval
skin friction stress
rate of dissipation of turbulent energy per

unit mass of fluid
IKolmogoroff (minimum) length, x = (d/@)ll~
autocorrelation function of YI(t)
autoccmelation functions of a, ~, and 6
autocorrelation function of trigger output
total vorticity vector

vorticity fluctuation vectm

average

“short” time or space aw&ge

( )L~ root mean square

( )T hypothetical variable equal to actual vmia-
ble in turbulent fluid only and obtained
by deleting potential fluid part of on
intermittent oscillogram

EXPERIMENTALEQWMENT AND PROCEDURES

=OD~AMIC EQUIPMENT

The wind tunnel (fig. 2) is an open-return NI?L typo with
a 2- by 2-foot working section and a free-stream turbulence

levd at entrance of u’/~=O.O5 percent and v’/~=O.O6 per-

cent at a mean velocity of U—=26feet per second.

FIGURE2.-Schematic diagramof windtunnel.

In order to have a reasonably thick turbulent boundary
layer in the relatively short working section, a wall was used
as a working surface, and it was roughened by corrugated
paper starting from the beginning of tie contraction. The
corrugations, set perpendicular to the flow, were roughly
sinusoidal, with about %-inch-wavelength and %-inch ampli-
tude (half height).

The extent of two-dimensionality in the boundary-layer
flow was checked by mean velocity profiles at several stations
across the 2-foot width of the working surface, at the farthest
downstrem station, z =102 inches. The uniform zone was
18 inches wide, with a boundary-layer thickuess of ~= 3
inches from wall to free-stream velocity and, estinmting from
reference 4, the transversalEulerian scale was about 0.5 inch.

The boundary-layer measurements were all made d u
free-stream velocity of 37 feet per second. The static pres-
sure was very nearly constant along the working section
(fig. 3). From comparisons with earlier work on this typo
of flow (ref. 11), it appears that the flow state is such m to
have a fully rough wall condition.

The round-jet unit is sketched schematically in figure 4.
The oriiice diameter was X inch and it was run at rm exit
velocity of 300 feet per second.

.04
t I

:L_———_J
o 20 40 m 80 100 120

x, m.

Fmmm 3:-Static-pressuredistributionalong wind-tunnelWorking
section. qmdynamiapressurein freestreamatz= O.
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l?mwm4.—Schematiodiagramof round-jetequipment.

HOT-WIRESET

Most of the measurements reported here were made tith
tbe ho&vire anemometer as sensing element,’ The basic
amplifier and compensation unit, constructed by Mr. C. L.
Thiele, is described in reference 12. The oscillograms were
taken with a General Radio Type 761 camera photographing
blue cathode-ray tubes. Measurements of the statistical

distribution of lengths of turbulent bumts were made by
scaling directly horn the recorded oscillograms.

The power spectra were measured with a Hewlett-Packard
Type 300A wave analyzer; followed by a vacuum thermo-
couple, The strongly fluctuating output ma averaged by
integrating with a flumneter and bucking circuit as illustrated
in referents 12.

The hot-wires used were either 0.00010 inch platinum or
0.00015 inch tungsten, with lengths of about 1.5 millimeters
for the u-meters and 2 millimeter for the X-meters used to
measure v’, w’, and ii5. No correction was applied for finite
wire length.

413072—U7+tl

MEASUllEMENTOFlNTERR~CY

Follo@ Tommnd (ref. 6) the intermittence ‘r is deiined
as the fractional time spent by the (fixed) probe in turbulent

fluid. To~nsend has measured -yin tio ways: (a) from the
“flattening factor” (or “kurtosis”) of the probability density
of the intermittent signal (ref. 6); (b) horn the mean-square
output of an on-off signal triggered by passing the intermit-
tent signal through a gate (ref. 10). The method used here

is a development of (b), the relative ‘(on time” being meas-
ured by counting a high-frequency pulse signal as modulated
by the on-off signal. This should give more accurate results

at low values of ?’.

The overall block diagram is given in figure 5. Figure 6 is
a further breakdom of the manipulative details, tith n

schematic diagram of a hypothetical signal as motied by
passage through the various blocks. The actual circuit

of this is given in figure 7. It is clear from figure 6 that the
number of pulses counted for a given inpt sibgnalvill be
a monotonically increasing function of discriminator setting.

One would like to find a wide range of discriminator settings

over which the count rate, for a given input signal, ~ould

be unchanged. Unfortunately, there is no such indication

Gxnpensoted
.klput frcm hot-vfia

&alit

I

7

Amplifier

n.Amplifier

I

E
I

cu.lief

l?mm~ 5.~Ovexall”blook-diagramof intermittmcy-measuring
arrangement.
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FIcwmE6.~Detailedblockdiagramof intermittenoy-meesuringdevice.

of a “correct” setting for the discriminator, possibly because
of the lag introduced in the necessary- smoothing process.

..—

A typical illustration is given in figure 8. :

In practice, the discriminator levil -wasset for each signal
by visual observation on a dual-beam oscilloscope of simul-
taneous traces of the differimtiatid”hobti-ir~-signal and the
corresponding trigger output (e. g., fig. 9). The settings of
the noise clipper and of the smoothing-flter time constant
were chosen by visual ccrmparisonat the begiming of the
sequence of tests and kept tied for the entire investigation.

The intermittence circuit was desgined and built by Mr.
Donald S. Johnson.

VORTICITYPLU~ATIONS

The pyramidal configuration of four hot%res connected
in a V7heatstonebridge responding primaril$ to the vorticity
fluctuation component along the flow direction is due to
Kovfisznay (ref. 13). Figure 10 is an isometric sketch and
a wiring diagram. Some of the pertinent details are given
in reference 14.

Calibration of sensitivity to vortici~ has been tried by
spinning the meter about its axis (ref. 13) in a uniform flow,
but for the measurements presented here an indirect method
WC-Sused: The readings in a decaying isotropic turbulence
were compared with the values of vorticity fluctuation level

computed from turbtience level and microsctde merumro-
ments. Estimates of the parasitic sensitivities, especially
to the three components of turbulent velocity, ~ere made by
measuring the steady-state yaw- and speed sensitivities in a
low--turbulence strem. These were found to be negligibly
small for the particular meter used in getting the # data.
No correction has been made for finite wire length (the
lengths were about 1 millimeter), and no correction has bem
made for the nonzero ratio of wire spacing to turbulence
microsoale, a characteristic giving parasitic sensitivity to the
second derivatives of velocity fluctuations.

MEANVELOCITYPROPILBS

A flattened no. 20 hypodermic needle was used as total-
head tube in the measurement of the mean velocity profiles
from which boundary-layer and jet thicknesses were de-
termined.

Although exact wall location is probably a memingleas
concept for rough-wall boundmy-layer flows, the choice of
such a reference value of y i9 convenient for preaentrbtionof
data in familiar coordinates. Therefore, a g =0 reference was
chosen by extrapolation to zero of the meon velocity profiles
fim a region outside the boundmy tangent to the corruga-
tion ~eaks. In order ti minimize scatter near the “wall,”
all to~al-head travenm were made at the same phase position
in the corrugation peak. A slight cutout on the downstream
side in each case permitted the total-head tube to go com-
pletely into the boundary.

Since the exact details of mmn velocity profile shape were
not of primary concern in this investigation, no correction
for the eilect of turbulence has been applied to the told-head
tube data.

MEASUREMENTS—

MEANiELOCITYFIELDS

Rough-wall boundary layer.—M&an velocity profiles as

determined from tetal-head tube measurements me plotted
in dimensionlessform in figure 11. There is reasonably olose
similtity. CMcourse, exact similarity is not to be espected
since boundary-layer Reynolds number variea consider~bly
with x and effective roughness varies slightly.

The momentum-thickness distribution

@+-y&)dY (2)

is given in figure 12. The solid line is n simple power law

drawn from the apparent origin z =z.. The similarity shown
in figure 11 is close enough so that the displacement thickness

**(z)=J”(,-$)dY (3)

and the total tbickneas 3(z), the value of y at which ~~ ~m,
are assumed proportional to O(Z) for the purpose of later
figures. The o(z) values are assumed to be more reliable
than 3“ because equation (2) reemphasizes the relatively
uncertain region near the wall. The values of 6*(z) rmd 6(x)
are then given by O(Z)times the average values of ~*/0 and
6/0. These values are 1.47 and 7.2, respectively.



(

FREE-STRDAM BOUNDARIESOFTURBULDNTFLOWS 1039

3cmv

oo3/vR150
Trigger

CU&Jt

17 T T

1-25/.Lpf

wg-,,----E

A A 1
Timeconstant

selector

m
I 1 L

_.

~‘;+’~:‘
I
/.+f

.O1

!5JJOoo ‘O/%?

47-
470,0W

~
●

-Z2.gv
d

-135V

0.3

Fmum 7.—Circuit~of~intermltkoy-mwtig device. Capacitancesare in microfaradsunlessotherwisenoted; resistances,in ohms. ~,
t% countrate.
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Fmum 8.—Intermittenoyreadingvemosdiscriminatorsettingfor a
typicalprobeposition.

(a) Diaoriminatorsettoo high(signaliE2J@t).
@) Gooddiscriminatoreottiig (signaliau(L)).

Frmrm 9.-OI3oillograma of hot-wiresignalandtriggeroutput.

—u

Fmmm

-out
10.—Vortici~meter.

The skin friction coefficient

To
cfs—

! ~ml
(4)

2

computed from O(X)by the Von IIArm&nintegral relation

(5)

is included in figure 12.

Round jet,—Figures 13 and 14 present data for the round

jet corresponding to the data for the boundary layer. The
tail depression is, of cm.rse, due to the directional sensitivi~
of the total-head tube; at the jet edge, the mean velocity
is chiefly radially inward. These measurements agree with
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Fmmm11.—Meanveloci~ profles at severalstationsin rough-wall
b&dary kyer.
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FIGURE 12.—Momentum thioknes.s and skin friction coefficient in
rough-wall boundary hlyOL

the results of references 2 and 12 on velocity proiile and
linearity of jet momentum spread with z. However, the
angle of spread is slightly greater than that in reference 2,
being 10.8° total angle for the half-velocity cone as against
9.5° in the earlier work

Possible factora in this difference are the following:
(a) Different oriiice boundary conditions: In reference 2

the jet emerged horn a plane mill about 25 oriiice diametem
in width; here there was no wall.

c+
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+
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E
I I I

-0 0

-2 + o I 2
rlr ,,2

FrGURE13.—Mean veloaity profiles for round jet.

?

l?rc+um 14.—Half-velocity radius of jet.

(b) Diilbrent Reynolds numbers: At the same x/r. this jot
field has a Reynolds number five times bigger than the one
in reference 2.

(c) Different measuring instrument: The mom velocity
profiles of reference 2 were measuredwith a hot-wire anemom-
eter while these were measured with a total-head tube.
In neither case -were the data corrected for the (different)

effect of turbulence on apparent mean velocity.
However, the diilerence is of no interest hem since the

principal concern is a comparison of the relative behaviora
of overall mean flow-field and irregular turbulence front.

CHARA- OF FLUCTUATIONS

The intermittent character of the outer part of the turbu-
lent boundary layer is indicated by typical oscillogmms.
Figure 9 includes u(t) and bz@, -while figure 15 includes
u(t) and E(t). Obviously there are still appreciable velocity
fluctuations in the nonturbukmt parts of the flow-. These
are of relatively low frequency. The typical time record of
vorticity fluctuations t(t) indicates that the nonturbtient

parts are irrotational, since the order of magnitude of the
low-frequency fluctuations visible between turbulent seg-
ments can be accounted for by parasitic sensitivity in this
particular vorticity meter.

~GUEE 16.—0sc~ognuus of votiioity fiuotuations and of longitudinal
velocity fluctuations in intermittent zone.

A definite property of the u(t) oscillograms is one-sidedness
of the turbulent bursts. This result shows that on tho
average the bulges of turbulent fluid are moving more
slowly than the nonturbulent fluid passing by the some
lateral y-position in the boundary layel. This is not sur-

prising, since such turbulent bulges must largely originate
from further in toward the fully turbulent region, which is a
region of low-er mean velocity in the boundary-layer case.

This one-sidedness is sharpened up a bit by the fact that
(as will be proved later) the irrotationally fluctuating fluid
must be traveling at the same mean velocity aa the free
stream.
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The qualitative description of the turbulence propagation
phenomenon given in the “Introduction” requires that it

actually takes place through a (presumably thin) viscous

shear loyer plastered all over the boundary. In fact, this
‘larnirmr superlayer“ is the boundary between turbulent
rmd nonturbulent fluid. Inspection of the oscillograms
reveals no clear similarity among all the beginnings and ends

of the turbulent bursts, but this is not a contradiction of the
physical picture. Any such tendency must be completely
masked by the randomness of velocity gradients (and hence

the shears) in the laminar superlayer. l?urthermore, the

boundary itself is an irregularly wrinkled surface in three
dimensions so that the relative orientations of hot-wire
and boundary at the moments of immersion and withdrawal

me also random.

TURBULENCELEVEJ..9

Turbulence-level distributions for the three velocity

components u’/~, v’~, and w’~ at the boundq-layer
station studied in detail (x=102 inches) are plotted in fiewe

16, with the corresponding mean velocity prof.le included

for reference. Clearly the velocity fluctuations due to the
presence of the boundary layer extend far outside the region
conventionally identified as the boundmy layer.

L -&o -1

—
y, in.

FIGURE 16.—Turbul6nce-level distributions at z= 102 inch~ in

boundary layer.

Variation of turbulence level in the z-direction, for cor-
responding locations in the boundary layer, is indicated by

o’/~ versus x at several fixed valuea of y/~ (fig. 17). Since

J
the Prrmdtl friction velocity U,= ~ is probably the basic

refmonce quantity with the dimensions of Length/Time in
a solid-wall shear flow, one expects that, for corresponding
positions in the boundary layer, u’, o’, and w’ a U,. In

turbulent pipe flow, Laufer (ref. 15) finds that o’/U, versus
radius is independent of Reynolds nnmber except in the

vicinity of the wall. This suggests that, in the boundary
layer, o’/Ur versus y/8 maybe constant away from the wall.
l?igure 17 shows at lewt no clear-cut contradiction with
this hypothesis, within the overall experimental uncertainty.

TURBULENTSHEARSTRESS

The turbulent shear stress distribution –piiii (y), at
z =102 inch~, is presented in dimensionless form in figure

18 and shows the same behavior as in the smooth-wall cases
(refs. 4 and 16), approaching zero appreciably faster than
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I?IGUBE!17.—Boundary-layer turbulence level as a funotion of z for

corrqonding y-podions

the squared fluctuation intensities (u’)’, (o’)z, and (w’)’.
The shear correlation coefficient R~ uZ51U!V’becomes quite

uncertain in the outer part of the boundary layer because
the measurement then involve9 the taking of small differ-
ences between relatively large uncertain readings.

VORTICITYFLUCTUATIONLBVBL

The measured distribution of root-mean-square vorticity
fluctuation (f’, the z-component only) across the boundary
layer at z =102 inches is givm in figure 18. The instrument
ma by chance sufficiently symmetrical that, within the
purposw of this investigation, no correction for parasitic
sensitivitks was nece.sxmry.
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I?K+uwa18.—Votiloity fluctuation and turbulent shear-stress distribu-
tions in boundary layer at z = 102 inohes.

INTzlmrrrmxcx!

Boundary layer,—The traversal distributions of inter-
mittency~(y) at several cc-stationsin the boundary layer (typi-

cal comparison with ~/~m in fig. 19) show good similarity
when & is normalized with u(z), the square root of the
second moment of b-@y with y-origin chosen so that b-@.y
has zero first moment (fig. 20). As pointed out in the ‘Tn-
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tmduction,” b@y is the probability density of Y(t), the

instantmeous y-position of the front between turbulent and
nonturbukmt fluid, at a tied x. Then

o-(z)=[(y-~’]’~=[~m (y-m ~ d(+~ (6)
-.

where b@y is written as a function of (y – n. Therefore,
u(z) is a suitable measure of the width of the intermittent
zone, that is, of the wrinkle amplitude of the turbulence
front.
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Fmmm19.—Typical intermittence distribution across boundary layer.
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Fmum 20.—Intermittenoydistributionsfor severalz-strkionsin
boundarylayer.

Another important -statistical measure of the turbulence
front is its average location,

Jr(z)=“ ~dYay Y (7)
-.

Since bypy turned out to be symmetrical and, in fact,
virtually Gaussian within the experimental precision (see
section ‘~Probability Density of Y(t)”), the determination

of u and ~ was considerably simplified. Both a(z) and

~(z) are given in iigure 21 and 6(z) is included for compari-
son. The logari&mic plot was used to e9timate exponents
in power-law approximations for the three quantities.

The power-law fitting has been done with the best common
origin for the three sets of points in order to simplify the
comptin concept.

Jtound jet.—lhtermittency data for the round jet cor-

responding to the data for the boundary layer are given in
figures 22, 23, and 24.
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jet.
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(o) Slope=m
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FIGURE24.-Amplitude and average position of turbulence front in
round jet ax funotions of z12r..

Townsend’s plane wake,—For cormenient comparison

Townsend’s last published data (ref. 10) for the plane wake
hrive been put inti a form corresponding to that of the other
data (figs. 25, 26, and 27).

Since, however, only the points for x/d =800 and 950 are
in the fully developed wake, no attempt has been
determine separate power laws from his data.
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Fmcmm 26.—Intermittency distributions for several z-stations in
plane wake. (Data from ref. 10.)
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FIQUnE 27.—Amplitude and average position of turbulence front in
plane wake as functiom of z. (Data from ref. 10.)

parabolas have been drawn with his choice of apparent
origin simply to show that his results are not in contradiction

with the parabolic u(x) and ~(z) (predicted theoretically
in a later section).

STATIS~CAL ANALTSIS OF ON-OFF INTERMIIYENCY SIGNAL

(Output of Schdtt Trfmer)

h sketched in figure 6, one stage in the electrical signal
manipulation sequence is a two-valued (on-off) random
function. These flat-top pulses have duration equal to the
time spent by the hot-wire in turbulent fluid and spacing
equal to the time spent in nonturbulent fluid.

Two basic statistical characteristics of such a random
on-off signal are (a) its power spectrum and (b) the prob-
ability densities of its top lengths and its bottom lengths.
lllxcept in special cases, no one has yet deduced a relation
between these two functions (see section “Probability
Density of Pulse Lengths”).

Since the jumps in this signal are generated by the random
occurrence of a particular amplitude of a more general sta-
tionary random variable, that is, Y(t), its properties give
some information on tie propertka of Y(t). For example,
the probability densities of top and bottom lengths indicate
the statistical distribution of wave lengths of the turbulence
front, though less directly than the way in which W/@ gives
the statistical distribution of amplitudes. A detailed dis-
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cussion follows in the section “Statistical Description of
Turbulence Front.”

The power spectrum of the on-off signal must be related
to that of the total hot-wire signal, though not in any simple
fashion. As mullbe pointed out later, considering the total
signal as continuous turbulence modulated by this on-off
sigmd, it appears that carrier and modulation must be
statistically independent for the power spectra to combine
simply.

Figure 28 is a series of power spectra FJn) of the Schmitt
trigger output at various value9 of 7 for x =102 inches.
Statistical symmetry of Y(t) (indicated by the approximate
symmetg of ti~) requires that F.(n) for intermittence

Y =-ii be equal to F,(n) for intermittence y =1 –yl. Figure
29 gives the probability densities of tops and of bottoms at
the same hot-wire locations. These were obtained by direct
measurement of oscillographic records.

The solid line in fi.we 28 is the theoretical power spectrum
for a random flat-top signal whose jumps have a Poisson
distribution in time (see section “Power Spectrum of Schmitt
Trigger Output,” especially eq. (88)).
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THEOR~CAL EXfSTENCEOF TURBULENCEFRONT

Although tie relatively sharp front between turbulent
and nonturbnht fiuid has been well established experi-
mentally, this apparently ubiquitous phenomenon must still
be eqdained and esplored analytically. The oscillographic
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Fxc+mm29.—Probability densities of segment lengths of intormittcnt
signal for three dhTerent iutermittenci~ in boundary layer at z= 102
inches.

records indicate that it is likely to be a boundary between

rotational and irrotational motion. The theoretical dia.
cussion-dl therefore aim first at heuristic demonstmtion of
this concept by showing in this context the known fact tlmt
turbulent stretching of the vortex lima in a local vorticity
gradient tends to steepen the gradient (leading, of conme, in
the limit to zero vorticity on one side).

Succeeding sections will discuss some of the ramifications
of this physical picture, in preparation for the more cletniled
anal~es -whichfollow. The degree of agreement between the
predictions of these analyses and actual exprimentd results
will provide further indication of the validity of the hypoth-
esis that the nonturbnlent field is actually irrototional.

STZZPENING OF AVORTICZTY GRADIENT WITH LOCAL PRODUCTION OF

VORTICITY

Since the distinction to be made here between turbulent
and nonturbukmt flow is on the basis of presenco or absence,
respectively, of random vorticity fluctuations, the boundmy
phenomena must obviously be studied in terms of vortioity
as a principal characteristic variable.

The vector form of the vorticity equation for three-
dimensional incomprwaible viscous flow is

(8)
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(
a

where — = —& at+gV) is the Stokes derivative (following a

fluid element), ~ is total vorticit,y vector, ~ is total velocity

vector and v is kinematic viscosity.

Introducing a Reynolds type restriction:

Q(r,t)=~@+&) E30—.

G&)=gti+gkt) ~=o

equation (8) yields the mean-vorticity equation:

(Q”v)Q+(~s=(Q”mg+mg+v~: (9)

Subtracting equation (9) from equation (8) leaves the
equation for vortlici~ fluctuation:

~+(gv)~+(g”%+ (gY&(@Z=

(~v)q+~.qg+b.qq—k.qq+vva

The smlnr product of ~ with equation (10)
equation for instantaneous vorticity intensity:

;~g+Q.[(q.v)E]-g. [(gv)gl=g[@”v)g+

g. [(.gv)~] +Q. [(wA)ql—Q&V)~+VQ-(V2Q)

(lo)

ghw the

(11)

In Cnrtesian tensor notation, but keeping vorticity as a
vector instead of rm antisymmetric second-rank tensor,

where a repeated index indicates summation and a2=&&
The averaged equation is

It was Taylor (ref. 17) who fit identified t,fj ~ as the

rate of production of vorticity fluctuations by the random

stretching of vortex lines. It is largely the absence of this
effect that makes fully two dimensional motion trivial in the
problom of fully developed turbulence.

To demonstrate the tendency of a vorticity gradient to
steepen in the presence of this vorticity production effect,

consider the simplified form of equation (11a) for a flow with
no mean velocity or vorticity:

It appears that no conclusion can be reached without further
restriction. Since the vorticity spectrum varies like PF(k),

the running second moment of the veloci@ spectrum,

vorticity-dominated phenomena must be associated with the
line structure of the turbulence, especially for high values of
turbulence Reynolds number R~=u’hJv, where u’ is rook
mean-squsre velocity fluctuation in the z-direction and k is
the Eukrian microscale. For large enough values of I?x

there should exist a time long compared with that charac-

terizing the main body of vorticity fluctuations but short
compared with that characterizing the largest scale velocity
fluctuations, which dominate the convective properties of
the turbulence. For example, one can expect

(14)

where P is the root-mem-square z-component of vorticity
fluctuation and X, is the Lagrangian time microscale (ref. 1).

Introducing ~ =v’X, (ref. 18) and, with local isotropy, the
V’

isotropic relation &!=fi ~ equation (14) becomes

0.45
()
hKl
Aq

(15}

or, in terms of R~, the large RA approximation for h~, gives

(ref. 18)

(16)

I?or flows with equation (16) valid, equation (13) could be
averaged over a time long enough to average vorticity
phenomena but short for convective velocity phenomena:

(17)

where (s) = (-) for the fine-structure variables.
The veloci~ derivative h= characteristic time like that

of vorticity.

Since the objective is to show the steepening of the %
gradient in the absence of v, omit the last term and write

(18}

(19}

Taylor (ref. 17) has shown that ii.fj ~’>flL:4.isotropic
.

turbulence. In fact, since this inequality just expresses the

general tendency for fluicl lines to lengthen in a turbulent
?. 4

@>O in any turbulence. Then,flow, it seems clear that&& az,

—

if ~i$J az,@k monotonic with %, it follows from equation (19}

m

steepening of this d gradient.
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The physical reason for the steepening tendency is, of
course, just the fact that the rate of production of new
vorticity by line stretching is proportional to the vorticity
rdready present at any point in the fluid. Hence the higher
vorticity regious experience a greater rate of increase of
vorticity than the lower vortici~ regions, that is, the
gradients tend to steepem up, limited fially by wiscous
ditlusion and dissipation. Of course, the gradient of con-

cern here is thnt in the zone between fully turbulent fluid and
nonturbulent fluid. .4 steepening of this gradient means a

tendency toward a relatively sharp surface of demarcation
between the two states. The above discussion does not

treat the qudion ot the equilibrium thickness eof the laminar
superlayer that results; this will be estimated later. Of
oourse, for the turbulence front to be sharp as observed
experimentally, it must be shown that e@.

Although the rmabtis is valid only for extremely high
values of 1A, far higher, in fact, th~ those mat occur ~ tie
expwiments reported here, there appears to be no r-n for
the situation to cha~~e qualitatively at lower values of Rx,

as long as nonlinear effects in the Navier%okes equationa
remain important, for example, Rx>1O.

LAMmAR SUPERLAYER

Vorticity can be transnu.tted ti an titational flow only

through the tangential forces due to viscosity; it cannot be
transmitted to the irrotational flow by macroscopic Reyn-
olds type shear force9. It therefore follows that the

instantaneous border zone lying between turbulent fluid and
irrotational fluid must be a region in which viscous forces
play a central role, in spite of the presence of velocity

fluctuations which dominate the gross momentum transfer
of the turbulent field. This border zone may be termed the
laminar superlayer and is exactly what is also referred to in
this report = the turbulence front, although the latter
designation implies emphxis on its overall behavior rather
than its detailed structure.

‘II&3laminar superlayer d.iilemin function horn the well-

known laminar sublayer at the smooth solid boundary of a
chmnel, pipe, or bo~dmy-lay~ flo~. The sublay~ iS a
relatively fied region in which mean flow momentum is
transported primarily by a net mean viscous [laminar)

shear force. It tmmsnu“ts ~ttle mean vorticity (being a

zone of roughly constant Q(v)) and it remains “attached”

more or less to the swne fluid particles. On the other
hand, the superlayer is a (connectively) randomly mov-
ing layer of fluid which probably transports relatively
small amounts of mean momentum and vorticity by viscous
shear force9; its distinguishing function is transport of
vorticity fluctuations and mean vorticity, when present,
into what was preciously an irrotational field, and in so
doing it continuously propagates (relatively to local fluid)
normal to its local ‘rplane.”

Sketches (a) and (b) illustrate the concept of the super-

layer m a very narrow zone in which the vorticity flucturbtion
level and the total shear (if any) drop from values charac-
teristic of fully tnrbylent flow to practically zero.

Fluctuating @ential

U=oo ,

‘,

flow

,Lornhor superloyer

Turbulent flow

gketch (a).

—

Coordhote fixed in front
ond perpendicutor to it

,,
Turtdent I Lominor i Potentiol

71

fb I superloyer I
I ~

flovl

I

Sketch (b).

While the instantaneous local viscous shear force in a
laminar sublayer is predominantly in the direction of the
mean shear force, that in the superlayer must have a much
higher fluctuation level, often reveming its direction, for
example. In fact, in a flow field with constant mean velooity
everywhere, the superlayer viscous shear force would have
no mean value at all.

The discussion headed “Steepening of a Vorticity Gradicmt
With Local Production of Vorticil#’ is a justification
(not a proof) of the experimental fact thot the continuous
fluid-line stretching due to the velocity fluctuations tends
to steepen up the lamimu superlayer. This steepening
effect is reinforced by the propagation and must, of coume,
be balanced out at some state by the Wusive action of
viscosity, so that the superlayer must bave some average
tihickmss. From the oscillograms, it appears that this
quanti~, c say, is very small.

Some heuristic comments can be made about this thickness.
First of all, since the layer is primarily a vorticity-propagfbting
device, its thickness should be less than a length character-

izing vorticity fluctuations on the turbulent side of tho
boundary, for example, the dissipation scale X (T&ylor’s
microscale). In fact, as a characteristic viscous sheer
length, it might be expected to be the same order as

(9

1/4
Eohnogorofl’s -m length ~ ~ where @ is the rate

of tilpation of turbulent energy per unit mass of fluid.
A second intuitive specification is that, as a violently

disturbed free laminar shear layer, its characteristic Reynolds
number should be on the order of the lower critical Reynolds
number for free huninar ahear layers. A possible choice of
characteristic instantaneous Reynolds number would be
that based on thickness and instantaneous tangential
velocity dMerence ~ acros9 the superlayer. When the
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A
instrmtfwxms viscous ahem force, &-p ~ per unit area in

the plane of the front, has a nonzeru average (i. e., a pre-

ferred direction), a plausible average Reynolds number
might,be

,R,=A77 (20)

where A is the magnitude of ~. Of course, A and e are
doubtless negatively correlated, but inclusion of such a

refinement wotid be inconsistent with the crude nature
of the discussion.

I?or turbulence fronts in which there is little or no mean

velocity difference across the superlayer, the above definition
is innpplicablc and might be replaced by

~ AG
9 c=~ (21)

again omitting the implications of Ae correlation.

Since, however, there still exists no analysis relating ~

to the properties of the turbulence, a third definition, re-
placing 1,ZR, and inoluding such properties, is preferable:

R, =~’ (22)

In fact, this definition is not too d.@rent horn the other two:
A/e must be of the same order as the neighboring turbulent
vorticity fluctuations.

Given an order of magnitude of the lower critical Reynolds
number for free laminar shear flow plus a mwwuroment or

F-“estimate of a’= &+ # + ~~m the turbtience new the front,
an estimate can be made for Z

The only information available for estimating the desired

Reynolds number is the partial analyBisof Lessen (ref. 19),
a small-perturbation analysis. Extmpolation of his neutral

stability ourm (a highly inaccurate process) suggests an
estimate

1<R.<1O

Tbe measured turbulent value of :’ for a typical case
(fig. 18) is about 400 per second, which gives u’=700 per

second, if there is approximately local isotropy. With
v= 0.15 square centimeter per second the edmata of super-

layer thickness turns out to be

0.015<Z<0.05 centimeters

This appears to be n reasonable order of magnitude since
xs ().2 centimeter in this part of the flow. The JKohnogoroff

(?

114
length ~ is roughly 0.03 centimeter.

In concluding this section it should be mentioned that,

although no systematic meaenrements of ~ have been made,
rough estimates from oscillograms in the intermittent zone
of the boundrwy layer indicated the order of 0.05 to 0.10

times u.. This average velocim defect indicates the

obvious fact that turbulent boundmy bulges origgate in a
region of lower mean velocity and also represents the presence
of vorticity and of locally laminar shear.

A simple mathematical model of the huni.nar superlayer
will be taken up as a separate section in the discussion of
propagation velocity of the turbulence front.

Th3 following important inference can be made on the basis
of the highly localized character of the laminar superlayer:
Since no appreciable viscous eflects extend beyond this thin
[ayer, and since only viscous effects can transmit vorticity,
it follows that the mem velody eu.mywhre in the potential

put of ti$ow mwt be cOn@nt and @ to thui & ‘%..niiy.”

This is a consequence of the fact that the mean vorticity is

ii~ Zm/2q/.
Tti” conclusion will be analytically emphasized in the

following section. It is in contrast with an assumption of

Townsend (ref. 10) that the nonturbulent fluid lying between
bulges in the turbulence front “is constrained by pressure
gradients to move at the same mean velocitf’ M the fluid

in the adjacent turbulent bulges.

IRROTATTONALJTY AND REYNOLJ)S SHEAR

In view of the evidence that the fluctuations outside a

turbulence front are irrotationalj it is pertinent to take n
look at the customary turbulenhflow equations (actually
valid for any stationary fluctuations) for the particular case
of irrotational fluctuations. The hope is that some drastic

simplification will appear.
In Cartesian tensor notation, the Reynolds equation for

steady mean motion is

The last term is the turbulent apparent, forco vector or
Reynolds vector.

For irrotational fluctuations,

(24)

which shows that the Reynolds force reduces to a normal
force only, since it is expressible as the gradient of a scalar.

The Reynolds equation can then be written

(25)

and this form emphasizes the fact that, regardlessof the mean
velocity field, ixrota.tiona.l$uctuutions give no net apparent
shearforcex on a$uid elemm.t.y

This does not necesswily mean, how-ever,that the Re~olds
shear force on a plane is zero or that the Reynolds stiess
tensor —P?ZiZ has only leading diagonal terms. Also there
may mill be a continuous “production” of fluctuating kinetic
energy, that is, a transfer from the mean motion kinetic

JThlsfa&was@ntaimtby Dr.F.H. 018nser.
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Comparison of equations (23) and (25) for the case of
motion two-dimensional in the mean (three-dimensional
irrotdional fluctuations) yields the rdations for the Reynolds
shear force components

(26)

(27)

which may also be regarded as a pair of diihrential equations
relating the four nonzero components of the Reynolds stress
tensor.

Two provocative forms follow horn alternative combina-
tions of equations (26) and (27):

and

(28)

(29)

Equation (28) gives the interesting conclusion that if ~ –~
is constmt in either z or y the turbulent shear stress satisfies
a homogeneous plane-wave equation with characteristics at
&45° in the xy-plane.

For the particular flows studied in this report, the experi-
mental results show that Zi5approaches zero faster than u’v’
as y (or r) is increased. This seems tmindicate that iiii=0

in the potential fieId. However, insuilicient coverage and
accuracy of the data preclude the possibili~ of checking
this through equation (28). Since Zi7=~=~=Ofor y==,

such a check would require that ~2=7 throughout the po-
tential field.

Parenthetically, viscous fluids with zero net shear force on
a fluid element but with nonzero shear stiess are far tim
unknown mathematically: Any irrotational laminar flow of
a viscous fluid is such a we (aside bm the trivial case of

Q =Constant). The requirement on a stress tensor au

that it producs only normal forces is that

~a_a 13
axt a%

(30)

where G is a scalar.
The principal significance of equation (25) in the general

problem under investigation is as follows: Assuming that
the fluctuations on the free-streani side of the turbulence
front are actually irrational, as both measumamentsand
heuristic reasoning indicate, the mean velocity there must
be equal to that for y = ~. This verifies the physical infer-

ence drawn in the previous section from the concept of the
localized lwninrwsuperlayer.

It appears paradoxical that the mean flow kinetic energy

should be unchanged in a zone where there has appeared an
appreciable kinetic energy in veIoci@ fluctuations. How-
ever, the latter can come from the turbulent part of the field
through nonviscous effects, leaving mean flow kinetic energy
in the potential zone unchanged. This would be consistent
with the inference that ~= 0. .

COMMTIT3JBFOR AERONAUTICS

Probablv the hizhest intensitv random irrotational fluc-.
tuations easily available in the laboratory are those in the
“potential cone” of a round turbulent jet. These apparently

get as high as u’1~=5 percent (ref. 2).
Equation (28) also can be deduced for the special case of

a constant mean velocity field with arbitiary fluctuations,
provided only that the mean valuea are plane, that is,

:Zm=o.

THEOR~CAL BEHAVIOROF TURBULENCEFRONT

As mentioned in the “Introduction,” two of the fluid
mechanically pertinent characteristics of the relatively
sharp boundary between turbulent and nonturbulent fluid
are (a) its mean rate of increase of wrinkle amplitude in the
downstmun direction and (b) its mean velocity of propaga-
tion transverdy into the irrotational fluid. The folIowing
sections represent crude theoretical attempts to predict
these two c@racteristics in terms of the statistical properties
of the fully turbulent fluid on one side of the boundary.

W~~ RATE

In turbulent flows with RAgreater than about 10, there is
no reason to expect any particular chunk of fluid to return
to the nonturbulent state once it has become turbulent.
Therefore, the presence of turbulence in n small piece of
fluid can be regarded as an indelible tagging, somewhat lilm
heat or a ahemical contaminant. Were it not for the con-
tinuous propagation of the turbulence. front into new fluid,
this front would always consist of the srune fluid particles
and would obviously be susceptible to a Lrqgrangiaa study
in terms of Taylor’s theory of d.ifhsion by continuous move-
ments (ref. 20), as has been applied to the wrinkling rate
(identical to turbulent diffusion rate) of n very thin sheet
of thermally tagged fluid in a turbulent flow (refs. 1 and 18).

In fact, a uniform translational velocity ~ of the tagging
attribute relative to the fluid does not render Taylor’s con-
cepts invalid; it does, however, require a generalization of
the analysis to a mixed Eulerian and Lagranginn trmtrnont,
though somewhat diiferenkfrom the relative dispersion case
set up by Brier (ref. 21) and by Batchelor (ref. 22).

Clearly in the limit of V%’ (e. g., wrinkling of n IMaoh
wave propagating through low-speed turbulence) it reduces
to a simple Eulerian dithsion problem, while in the limit of

~<<o’ the purely Lagrangian analysis of Taylor applies.
For the present problem it appeam that neither of these

limiting conditions holds, although the latter is closer.
Co&id&. the rough-wall bouncl~- layer
as an example: -

~~d
~=px~p–a”)=o.l

at z =102 inohes

where tf/~ is taken in the fully turbulent zone adjacent to
the intermittent zone. This formula is deduced in tbo

section “Applications to Particular Turbulent Flows.”
Since the basic problem (d.ifhsion of a front propagating

through a homogeneous turbulence) has yet to be analyzed,
the present phenomenon will be estimated as though
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Pa’. Subsequent approximations are consistently rough.
o Another peculiar property of the present problem is that

the surface whose turbulent diffusion is of interest has

turbulent flow on only one side; the thermally tagged sur-
frtce used in conventional diffusion studies has tie same
kind of turbulence on both sides. However, the theory of

diflusion by continuous movements is simply a kinematic
analysis based on the presumably given velocity statistic

of the fluid particles in the surface. If these are correctly
given, no further information or restriction is necessary.

Therefore, since the purpose of this section is to predict the

form of u(z) =-in terms of the properties of the

fully turbulent zone, the only additiomd assumption neces-

sary is that the velocity fluctuations of the fluid particles in
the front are proportional to those in the fully turbulent fluid
near the front.

The analysis of one-dinmnaional diffusion by continuous
movements for a homogeneous field with no mean motion
leads to

(31)

where a is the standard deviation of the distance traveled due
to turbtient convection and R~is the Lagrangian correlation

coefficient. For times long compared with that for which

R~= O, the familiar asymptotic form results:

u(t)=0’ m (32)

J

m
where LI = .l?~dtis the Lagmngian (time) scale.

o

If a relatively high uniform mean velocity in the z-direction

is introduced @>>o’), equations (31) and (32) can be inter-

preted approximately in spatial terms since ~t -z for any
particle (refs. 1, 18, and 23). Then

(33)

where AL~ULt is an approximate longitudinal Lagrmgian
length scale.

It has been pointed out in previous publications (refs. 18
and 24) that the most concise represautation in such a flow
follows from introduction of a tmmsvemalLagrangian length
scale LL=v’Lt. Then

u (z)= J()2$LQ (34)

which gives the dispemion (identical to surface wrinkle
amplitude) at large distances from a tied source of tagging,
when o(t) following a fluid particle is a stationary random

varinble and ~ is constant.
For the hypothetical case of the turbtience front bounding

a turbulent motion homogeneous in the stream direction, this
asymptotic form would pertain; the “source” lies indefidely
far upstream. However, in virtually all turbulent flows of

interest, the statistical properties of the motion vary with x.
Consequently, application of equation (34) ta these case9
implies the further restriction that these z-variations be slow,
thnt is, that there be little change in an z-interval compmable

tith AL

A particular example of the degree of validity of this
restriction can be drawn from the cwe of decaying isotropic
turbulence, where Lagrangim scales have actually been

measured (ref. 18). At 43 mesh lengths behind a l-inch-

square mesh grid of ji-inch dowel, with ~=25.8 feet per

second, it is found that u’~=2.O percent, AL= 17 inches, and

dt?/dx corresponds to a change of about ~ in v’~ over an

x-interval equal to AL.
‘owever’ k 2 ‘L k ‘dy ‘n ‘8

order of 0.03.

In most shear flows, the o’~ changes will be slower than
for this deca@g isotropic turbulence while the LL changes

may be slightly faster. In general, it can be anticipated that

in the application of equation (34) to boundary layer, jet,

and wake the requirement of slow z-variations in turbulence

properties will be satisfied at least as well as the previously
mentioned restrictions for this Lagrangian treatment. These
applications and comparison of computed values of a(z) with
experimental results will be presented further along, under

the appropriate section headings.

PROPAGATION VELOCITY BY DIMENSIONAL REASONING

The average velocity of propagation of the hminar super

layer (or turbulence front) relative to the local fluid ~ must
be monotonic with the average magnitude of the inetan-

(
taneous (laminar) shear stressin the superlayer proportional

)
to & . However, the ratio is not a directly measurable

quantity and must be replaced by something more tractable.
As has been mentioned in the section ‘Tmnimw Superlayer,”
when there is no mean shear stress A/e must be of the same
order as the vorticity fluctuations in the turbulent fluid near

the front. Therefore 7* shouId be monotonic in a’. Since
this is a viscous phenomenon, it must also depend upon v.

In fact, the inference that ~=~ (v, @ can be made on a
much more direct and superficial level. Since the larninar
superlayer is a device for the viscous propagation of vorticity
fluctuations into an i.rrotational fluid (in the case of zero
mean shear), the propagation velocity must depend at le~t
on to’ and on v. Furthermore, these alone are sufficient to

produce a parameter with the dimensions of velocity.
The only combination giving the appropriate dimensions

gives, by inspection,

T*K ~z (35)

for zero mean shear stress} Of course, ~“ is directed per-
pendicular to the local tangent plane of the turbulence front.
The effects of nonplanarity of the whole front w-illbe noted
later in this section.

Equation (35) wouId be expected to apply, for example,
in the case of the boundary between a homogeneous tur-
bulence and a nonturbulent fluid, with ~ constant over the

entire flow field.
At the free boundary of a turbulent shear flow it is to be

expected that the shear force vector of the laminar super-
layer will have a mean value which will also promote ~.

4It shotdd&a h notedthattheawmpttonthatR(where-~#fi) h 8%nlver!al’r
avwwetine CO~INf@ tu8IowauiticalReynoldsnwntarcotnddeswM”the pkmlble
dimensionalhy@hc@& that ?amti.
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If the whole front were nearly flat, this mean value would
be a function of yin the superlayer and also proportional to
the mean shear in the turbulent fluid just inside the tur-
bulence fiont~ varying horn equality on the turbulent edge
tO zero on the he~tream side. Sketch (b) includes this

concept in a coordinate system attached to the laminar
superlayer.

In-t&is more general case, the physical picture suggests
that V* depends upon the average magnitude of the total
shear in the superlayer: ~=~@), where ~(t) ‘~+~(t) iS

the shear force vector on a unit area on the turbulent edge
of the superlayer. With Cartesiamcoordinab system zl, Yl,
and Z1fixed in and alined with the turbulence front (yI per-
pendicular to front), the fluctuation ~ has only z1- and

zl-components. Then, with gross mean shear directed along
xl, P=zlg+q+q.

Dimensiomd reasoning gives

(36)

If the random slope of the turbulence front in the z-, y-,
and z-coordinates is smell on the average, the z1-, y]-, ~d

zl-system can be replaced by z, y, and z, and ~ is propor-
tional to the mean shear stress in the turbulence. Further-

?. Asinmore, with 10MLIisotroP.Yin the turbuhmce, ~=%
the &mpler case, th~~ are proportional-
equation (36) can be written

to (m’)’. Then

(37)

where B is a numerical constant, probably of order unity.
This reduces to equation (35) for a shear-free turbulence.
For each particular type of turbulent shear flow, E can be
taken proportional to some characteristic mean shear stress.
No application of equation (36) or (37) is made later in
this report.

Handling of the propagation problem in terms of a plane
turbulence front implies that Z is much smaller than the
rdii of curvature of the front. The degree of validity of
this assumption is not easy to check directly from the sta-
tistic of the turbulent fluid; it requires fairly detailed infor-
mation on Y(z,t). However, the measurements on statisti-
cal distribution of pulse lengths coming out of the trigger
circuit (fig. 29), transformed by ~. from time to length,
give indirect indication that the assumption is well satiaiied.

Conversely, since ~ is normal propagation velocity of
the front (especially in the case with zero mean shear),
propagation with constant ~ over the whole front would

tend tmintroduce a skewness into the probability density of
Y, as in sketch (c). This is the effect mentioned by’lIarlovitz
(ref. 26) in accounting for the skew nature of the flame front
as observed in a turbulent bunsen flame.

The highly symmetrical shape of &t/by (indicated by

linearity in fig. 32) shows that this effect, if present, is
negligible in the phenomenon considered here.

-.
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Sketch (c).

This negligibility is an indication that the radii of curva-
ture of the front are large compared with the wave lengths.

l%is means that ~ is directed very nearly perpendicular to

the ~(z) surface. For two-dimensional flows in which the
boundmy-layer approximation applies, this in turn is nearly

parallelto the zz-plane, that is, ~—/o?&<l. Therefore, within
w corresponding approximation, the surface area of the
turbulence bmt on a two-dimensional flow is equal to ita
projection on the cm-plane,and the average rate of conquest

of new fluid by the turbulent state is ~, in units of volume
per unit time per unit area of contact. A sirnihr concept
holds for the axially symmetric flows.

It is obvious that a turbulent shear flow can hav e similarity

only if both u(z) and ~(z) are proportional to the boundaW-
layer thiclmeas 6(z) (which, of course, must be proportional
to any other characteristic thicknws defined in terms of the
mean velocity prcdile). Stated in different but related
terms, the average rate of flow of turbulent fluid passing
through any constant z-plane must be proportional to the
rate of flow of boundary-layer fluid passing through the plane.

MODEL OF LAMfNAR SUPERLAYER

Dimensional reasoniug as employed in the preceding sm-
tion, and m earlier ones, gives at best the functional forms
of the laminar-superlayer characteristics in terms of the
statistical properties of the turbulence with which it is
associated. Fully quantitative results follow only through

deductive analysis, that is, actual solution of an appropriate
boundary-value problem. Since the actual problem appears
to be too complm for full solution at present, n simple
physicomathematical model will be used w-h%the expectation
that the results, after interpretation in terms of pertinent
variables in the actual problem, will give a proper order-of-

magnitude relation among these variables.

The model proposed is a generalization of the Stokes and
Rayleigh problem of the idinite wall moving in its own
plane (ref. 27). The first extension is the addition of a

-xmstant suction velocity ~(<0) with, of rxmrse, wall

?orosity. The veloci~ T corresponds to propagation ve-

.ocity of the turbulence front. The differential oquatiom

me thus

(38a)

(38b)

Since the U and W equationa are independent they can be
heated separately. In the absence of mean shear they am
identical, and only one need be considered.
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Since equations (38) are linear, the vorticity components

ZE3U/by and EEhW/by obey the same equations as the

velooitiea:
az –. ?)Z a’z
~+v ~=v ~ (39a)

(39b)

These equations are to be solved with boundary conditions

.Z(t,~)=Z (t, m)=O (40a)

Z(t, O)=z+fo sin cd (40b)

E (t, O)=go sin & (40C)

Since Z has only a fluctuating part, and since linearity

permits separation of the steady and fluctuating parts of Z,
the problem becomes

–_az lrz
‘–dj=vq

with Z(~) =0 and Z(O) =~., and

(41)

(42)

with ~(t,~ ) =0 and r(-t,O)=s?o sin at. There is an identioal
boundary-value problem for f(t,y).

To get closer equivalence to the fully three dimenaiomd
problem a purely mathematical extension can be made, cor-
responding roughly to the physical phenomenon of contin-
uous vorticity fluctuation production (by fluid-line stretch-

ing) at n rate proportional to that already present. This
is most simply done by adding a linear term to the t equa-
tion, giving

(43)

where K is like a constant average vortex-line stretding
rate.

No corresponding term is added to equation (41) because
the plane form of the mean-vorticity equation for turbulent
flow (eq. (9)) shows no term identdiable m production of
mean vorticity due to random turbulent stretching of

vortex lines.
The solution of equation (41) is

n2?=2?0exp ~ y (7<0) (44)

The solution of equation (43) is

(45)

with a similar expression for .f. Here the negative root has
been oho~en so that equation (45) reduces to Stokes’ solu-
tion for V=K=O.

I?rom equations (44) and (45) it is desirable to ~xtract an
expression for the thickness of the disturbed layer. A con-
venient meaeure of thickness is simply the inverse of the
coefficient of —y in the exponential of both solutions:

~=—:
v

(46)

Application of equations (46) and (47) to _tie laminar-
superlayer problem requires identdkation of V, q and K

with measurable variables in tlie ‘turbulent fluid near the

superlayer:
(1) –T=V, the propagation velocity.
(2) a=&’, the root-mean-square value of any one of the

three orthogonal turbulent vorticity fluctuation mmpo-

nents. In other words, root-mew-square vortici~ may be
regarded as a characteristic frequenoy of turbulence. For
large values of Rx, g’s q’ =f-’ by local isotropy.

with local iso~py, K; ?;fi is a measure of the rate of
fluid-line stretching.

Substituted into equations (46) and (47), these ‘~ve “

“’g+*{J-+(g)’-+}’”
(49)

A simpler, more approximate form for % is attained af~
inspection of the experimental orders of magnitude of V*
and 1’. For example, at the inner side of the intermittent
zone, in the rough-wall boundary layer at z= 102 inches,
~s 1.3 inches per second and ~’=400 per second. Therefore,

it turna out that equation (49) can be simplified by liberal
employment of chopped-off binominal expansions. The
roughest (and simplest) resulting estimate i~

(50)

Since the lamimw superlayar can be assumed to exist even
in the absence of a mean vorticity field, it is reasonable to
assume that the fluctuating part of the superlayer model is
the more pertinent one. Then one may take %to be 7, giving

the theoretiwd prediction

as an order of magnitude. This is consistent with the earlier
conjecture cmthe constancy and order of a possible Reynolds
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number R. =Z%lv. It does not appenr to be susceptible to
direct experimental ve.riiication,but, M mentioned earlier, is
of the same order as the Kohnogoroff (minimUrn).length

(51)

which follows from equation (50EL)and the relation between
x rmd A.

No estimate of ~“ follows from equation (5o) and, insofar
as a strictly fluctuating lamimu superlayer is concerned, the
dimensionally induced equation (35) remains as sole prwl.ic-
tion of propagation velocity.

However, equation (48) for the mean thiclmess gives

(52)

If there is o single layer, ~’ should be the same for both fluc-
tuating and average vorticity. H q happened to be o~tie
same order as ~, equations (51) and (52) would give V*=

O(W, but there seems to be insuilicient a priori bask to
make this guess a formal part of the analysis.

LNPERENCE OF TURBULENCE PEOPEETIES FROM INTEZmENT SIGNAL

Townsend (refs. 10 and 28) has suggested that it may be
possible to compute the statistical properties of the turbu-
lence inside the convex bulges of the turbulence front fxom a
knowdedge of the corresponding statistical properties of the
full intermittent signal plus the intermittancy factor 7. His
hypothesis is that, in effect,

(53)

wherea(t) is a random proper@ of the flow and w is the same
proper~ but confined to the turbuhmt parts of the total sig-

2M+$ ~ ‘,&e
nal. For example, Townsend refers to ~

mean turbulent intensity within tbe jets” (identical to
bulges) ,

Actually, the applicability of equation (53) is contingent
upon very dcdi.niterestrictions. For discussion purposes,
suppose that a(t) is the complete sign-d ~d b(t) is the inter-
mittent (O or 1) siggal. Obviously, b=b’=~, the intermit-
tence factor. Also q(t) is a hypothetical signal whose phys-
ical nature is the same as a(t) but appliea ix turbulent fluid
only. If * is chosen to have a mean value of zero, then it is
necessary to introduce a constant quantity A. which is the
d~t.ante between the zero line of ~(t) and the signal level
corresponding to 6(t) at zero.

Sketch (d) illustrates tbe definitions. Implicit in this for-
mulation and sketch is the restriction that a (or G) is a physi-
cal property which is zero in the potential flow region.

Zem lim3 of f+ l.!jl—-. — —— —

Zero h of wble A

Sigml o i

\ r \
,

I
Sketch (d).

With this representation, the total signal mprmsecl in
terms of the other quantities is

a(t) =Z@ [w(t) +A]—G—Ay (54)
——

since ii=O by definition and b(a~+A) =6 G+AY. Wllencoj

the mean-square value can be written as

7=~+2A7w— (ba=)2—.2Ay~G+Y(l —Y)AZ (66)

The objective is to express @as a function of 7Zand other
necessary parameters. Obviously this is impossible without
introducing some further restrictions, especially on the
statistical relation between w(t) and b(t). Therefore,

aswme

(a) G=O (whence ~==0, since V=6

}

(66)
(b) W=FX2=’YG

A sufficient but not necessary condition for theso two is
that 13(t)and m(t) be statistically independent.

With restrictions (56), equation (55) reduces to

Ff=7z+’y(l-@l* (67)

and the turbulence property @ can be computed from the
cmresponding total-signal property plus measurements of
Y and /4.

For some physical vmiablea a(t) it will turn out tlmt
A =0 and then equa~ion (57) reduces to equation (63).

For the quantity ~ to have any simple interpretation it
must of course be wumed that the physical vmiable it
represents is a homogeneous random variable in the turbubnt
fluid.

Summarizing the conditions nece9sary for equation (53)
to lead to meaningful results, the following restrictions are
necaary:

(1) The physical variable must be zero in tlm potential

%Ow.
(2) The ph~ical variable must be homogeneous in tho

turbulent tiOw.

(3) The physical variable (and its square) in the turbuhmt
flow must be u.rworrelatedwith the location of the front.

(4) There must be no mean value in the variable between

turbulent and potential flows for the same volue of y.
The first condition immediately eliminates velocity fluc-

tuations from this sort of treatment. This renders uncertoin
Townsend’s turbulent energy application, mentioned above.
However, vortici~ fluctuation and turbulent shear certainly
satisfy it, as may temperature or concentration fluctuations
and heat or mass transfer, when these are present.

The second requirement is probably not satisfied by any
variables in flows with transport, including, of course, the
commonest example, shear flow. This follows from the
fact that, even in spatial zones with Y =1 everywhere, there
are gradients-in all of the”quantitiw which-have been meas-
ured. Consequently, the entire concept of VN as a function
of position in a shear flow must be semiquantitative at best.

It seems unlikely that the third requirement is satisfied by
all of the physical variables, but for most of them it maybe
close enough that equation (57) would be appro.xinmtoly
true.
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Fimdly, the occurrence of n mean value between potential
and turbulent fluid must also depend upon the particular

physical vminble under consideration. It certainly does

occur for longitudinal velocity at the boundary of a turbulent

shear flow. It certainly does not occur for z-component.
velocity in a shear flow -which is two-dimensional in the
mean with gradients all in the z- and @irections. For
many physical variables its occurrence or absence is not a

priori obvious. In any case it can be handled by resorting
to equation (57).

For complm cw.es, when even equation (57) is believed to
be inadequate, possibly because the variable is not zero in
the potential zone, it is still possible to obtain statistic-al
information on the signal structure within the turbulent

bursts by laborious computational procedure for the oscillo-

graphic trrme.

A more detailed question maybe raised at this point as b
the influence of intermittence upon the mwwred power

spectrum of velocity fluctuation. Again the answer is
certain to be simple if the four conditions listed above are
satisfied. In that case, with probe signal a(t) =a=(t) b(t), the

autocorrelation functions of the three variablea are related by

4.(T) =4q(T)*b(~) (58)

where r is time interval. The power spectra are simply the
Fourier cosine transforms of the correlations and, since the
transform of a product is equal to the convolution integral
of the individual transforms, the three power spectra are
related by

Fa(n)=Jm FaT(nl).l%(7L-7@7tl (59)

where F=(n) can be measured directly from the output of the
hot-wire anemometer; .F~(n)=F.(n), the spectrum of the
Schmitt trigger output in the intermittence-measuring

circuit (see fig. 28); and I?q(n) is the spectrum of a hypo-

theticrd homogeneous turbulence variable which should give
the nature of the fluctuations within the bulges of the

wrinkled front.
Equation (59) is a Fredholm integral equation of the &at

kind, readily solved in principle by Fourier integral methods—

which corresponds in effect to going back to equation (58).
No attempt has been made to apply this relation because

the eqerimental results appear too uncertain to merit such
detailed manipulation. It is hoped, however, that such a
study can be made in later shear-flow research.

APPLICATIONSTO PARTICULARTURBULENTFLOWS

Application of the foregoing general concepts and theoreti-
cal predictions on the behavior of the turbulence front to
particular turbulent flows involves two explicit aspects:

(a) Comparison of directly measured u(z) and ~(z) with
measured values of characteristic shear-layer thicknesses, for
example, O(Z)( a6* a6) in the boundary layer.

(b) Compmison of U(Z) and ~(z), as computed from
measured turbulence data, with directly measured values of

u(x) and ~(z).

The firststep is the strictly experimental process of &x-

- a new aspect of the degree of similarity to be found
in the detailed structures of the vtious turbulent shear
flows.

The second has as its purpose the approximate verification
of the rather crude hypotheses leading to prediction of the

turbulence front behavior, that is, to equations such as (34)
and (35) .

ROUGH-WALLBOUNDARYLAYZR

Fitting the experimental results on boundary-layer thickn-
ess by a simple power-law relation (see appendix), it turns

out that, neglecting Reynolds number effects,

~a6*aOa(z—zo)O-61*0”1 (60)
numerically,

6=0.19 (z—zO)O”eljn.

a*so.13(&zo)o.ol in.

}

(60a)

os 0.026(z—zO)0.81in.

The fitting of a power law to a set of points without origin
involves two steps: (1) An origin must be chosen by trial and

error to give the closest approximation to linearity on
logarithmic graph paper, and (2) the ‘best” straight line
must be drwwn through the resulting plot. This procedure
was also applied to the fitting of power-law approximations

to the experimental data on u(z) and ~(z). Figure 21

illustrate the degree to which a power-law fitting is success-
ful. The latter quantities are then given by this “direct”
measurement as

a s ().()22(z-@o.~*o.l h. (61}

7?=o.14(z-zo)o”~*o.l fi. (62}

The ‘(best” common origin is xO=–20 inches.

Comparison of equations (61) and (62) with equation (60)
shows that, within the prectilon of these experimentalresults,
the turbulence front both progresses laterally and increases
in amplitude at the same rate as the mean boundary-layer

flow grows. The uncertainty range indicated is a crude
estimate of standard deviation, not the maximum.

~erification of equation (34) requires knowledge of both

o’/U and ~ (the transvd Lagrangian scale) as functions
of z. On the basis of theo’/~measurements at corresponding

positions across the boundary layer at four different z-
stations (&g. 17), it is assumed for the sake of this calculation
that da U,, as dimensional reasotig and Laufer’s pipe
measurements (ref. 15) also indicate. The U, is obtained
from the measurements of o(z): U. az-o.n for very large
values of z.

Unfortunately, there exist no measurements of Lagrangian

scale in turbulent shear flows. However, the ratio of La-

grangkm to Eulerian scale ~L has been measured as a
function of o’L/Y for isotropic turbulence (ref. 18). These
highly scattered measurements show ~L to be a slowly

decreasing function of dL/v. In order to estimate ~(x)
for substitution into equation (34) it is rsumed that iihis
-variation holds roughly for shear flow. Further, there is
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good evidence that for a given shear flow the EuIerian scale
is proportional to the charactmistic width of the shear zone;
that is, in this case, L a~ and the constant of proportion-
ality is taken from the smooth-wall boundary layer of

Schubauer and 133ebanoff(ref. 4) at a station where d~/dx =0.
Their data give L= 0.173.

With this estimate of L/&o’L/v m the present boundag-
Iayer goes from about 300 to 500 in the principal test area:
20 inchea<z<l10 inches. But over this range of v’LJv,
figure 34 of reference 18 indicates @y extrapolation) little

change in L~L. Therefore, for purposes of the present
rough estimate, it is assumed that L aL a & With

6a&~ (eq. (60)) and v’ a UTaz-o.a, the resulting
theoretical prediction (eq. (34)) is

u(z) a (z—z.)”-’ (63)

which agrees with the directly measured exponent (eq. (61))
perhaps better than the accuracy of either measurement or
theoretical approximation.

Verification of equation (35) requires information only on
&’(z) at corresponding y-positions in the bound~ layer.
Since this information is not yet directly available, one

measured and X(Z) can be inferred by using the well-known
x

()
7V 1J2

isotropic cdimate 6 —= —
L v’L

and assuming L=o.176 as

before. Using the experimental value of ~(z) (eq. (60a)),
this calculation gives

P(z) a (z–qJ4mU. (64)

I?or comparison with experiment this is next translated
inti ~(z). Since ~ is propagation veloci~ relative to the
fluid, one can write the approximate relation

g-=v(y)+v=

ax D(T)
(65)

which should hold for any rwwmably flat turbulence front.
The term ~ is the mean fluid veloci~ in the y-direction.
Equation (65) is approximate becaus~ (a) in some flows the
front is not very flat and (b) at y =Y the mean velocity of
the turbulent fluid is_wmewhat hss than that of the non-
turbulent fluid (i. e., U.).

For the boundary layer, it h well known that

(66)

which is easily shown horn the definition of 6*(z).

Since experiments show that ~(~ = ~(a) = U., one can

infer ~(~ =~(@, so that, for the boundary layer, equation
(65) giVt?S

(@? (L3*
ax U.+Z

CTbeconstantofpmpxtfmdlty fsobtafmxl emPlrfcaIIYfrom reference!29.

(67)

Since equation (60a) gives the experi.mentrdresult

(68)

it is cIear that the power-law approximation to 7(Z) will

lie between 0.70 (if the ~-term dominates in eq. (67))
and 0.62 (if the 6*-term dominates). In fact, if the propor-
tionality constant of equation (35) is determined from the
data at x =102 inches,

F=o.5.@ (69)

If this is used with equations (67) and (68) to predict

~(~) s 0.18(z –zJO.U (70)

the agreement with the directly measured result, equation
(62), is good.

It should be remarked parenthetically. that, although ade-
quate measurements of y(z,y) are still not available on the
smooth-wall turbulent boundary layer, an indirect verifica-
tion of equations (34) and (35) follows from appro.simrde
agreement between the experimental (or analytically in-

ferred) 3(z) and the predicted u(z) and ~(z), using reason-
ing like that presented in detail for the rough-wall case.

TWO-DIMENSIONALWAKE

The measurements of Townsend (ref. 10) in the plane wake
far behind a circular rod provide another case in which
equations (34) and (35) can be checked against experiment.

From conservation of momentum and the assumption of
similarity, dimensional reasoning yields the experimentally
verified predictions that far behind the obstacle a turbulent
wake spreads parabolically (6a#~ and that the char-
aoteri$tic mean veloci@ defect decreasea parabolically

((~= – ~0) az-’i~ (ref. 30). This means that the plane
wake is a’ constantReynolds number shear flow and there-
fore signiiicantiy simpler than, for example, the boundary
layer.

Far behind the wake-producing obstacle, where the fully
deveIoped wake is finally reached, the difference between
minimum and mh~ velocity
tion (67) can be approximated by

Since there are only two points
z-range, it has not been possible

is so small that equa-

(71)

in the fully developed
to determine emptilcal

power laws for 6, ~ and u. The pertinent experimental
redt is simply that within the experimental uncertainty
the points in the fully developed range are consistent with
parabolic growth for all three lengths.

V&cation of equation (34) again requires data on $ (z)

and ~(z). As can be anticipated for a constant Reynolds
number flow, the roo~mwm-square turbulent velocitioa are
proportional to the characteristic mean velocity (mean
velocity difhrence in the wake) so that u’ arl/*. In this

asymptotic state, the mean velocim difTerencee are all
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*m&u r. –m
<<1 so that ~= Constant= Dm. Further-

Vm
more, constant Reynolds number implies Lagrangian scale
proportional to Eulerian scale (~(z) aJ(z)), and with the
general assumption of La6 it follows that ~ azlJg. Equa-
tion (34) then gives as prediction for the variation in wrinkle
amplitude of the turbulence front

u(z) o&2 (72)

in agreement with the directly measured result, in the simi-
larity (large x) zone.

For the comparison of equation (35) with experiment, no
data on /’ are available. A in the boundary layer, it will
therefore be assumed that :’ on?/k. Since u’ ax-’12 and

Xazl/2, equrbtion(35) predicts

7* az-lls (73)
whence

~azln (74)

again in agreement with the directly mewmred result.

ROUNDm

Since fairly detailed turbulence data were already avail-
able for the case of the round turbulent jet (refs. 2 and 31)

entering fluid at rest, intm-mittency surveys Y(Z,T)have been

made during the course of this investigation to provide
further experimental check on the proposed physical picture

of the turbulence front.

I?rom conservation of momentum and the assumption of
similarity dimensional reasoning yields the experimentally

verified predictions that far from its source the round turbu-
lent jet sprends linearly (rl,zaz) and that the characteristic
mean velocity decreasea hyperbolically (~o az-l) (ref. 30).

Thus, the round jet is another constant Reynolds number
flow and therefore relatively simple.

The new measurements made in the course of this study
(fig, 24) give as power-law approximations with the ‘Twat”

common origin,

()

1.mM.06
T1/2K ~3 (75)

(76)

1.iM*o.a5

ua ():–3 (77)

which may all be taken as linear within the experimental
uncertain@.

Previous measurements have shown o’/~ to be constant
and independent of z at corresponding radical positions in
the jet. Furthermore, the constancy of Reynolds number
again permits the inference that ~ aL. With the assumpt-
ion that L Wrl,z, equation (34) predicts

ua (z—zo) (78)

in reasonable agreement with equation (77).

For the ~(z) evaluation it is again assumed that &au’/k

With u’ a(z–x.)-’ and AaL WT112a(z–zo) equation (35)

gives

Fa(z–zJ-l (79)

and the comparison with _meriment can be mad~by using
equation (79) to predict l?(z), merely replacing ~ by ~ in

equation (65). Instead of attempting a detailed proper cal-
culation only a rough estimate was made by assuming

F(x,R) a~(z,~) aD(z,O)

Then the prediction is

~(z) a (z–zO) (80)

in reasonable aggeement with equation (76). In fact, a be-
lief in full similari~ for constant Reynolds number shear
flows suggests that equation (80) may be more nearly correct

than equation (76).

~mZNCY ANDMEASURED~ QU~TrYIZS

As pointed out emlier in the section on “Inference of
Turbulence Properties From Intermittent Signal,” there
seems to be only a restricted likelihood of extracting from
the measured statistical characteristics of the intermittent

signal respectable quantitative results on the statistical
properties of the turbulent flow in the convex bulges of the
turbulent front. Probably the broadest obstacle to simple
physical interpretation of results computid from equation

(53) or (57) is the lack of homogeneity within a fully turbu-
lent zone supporting transfer.

Nevertheless, it seems worth while to present, for some
fluctuating variables which are zero in the potential fluid
(i. e., satisfy the first requirement), the results of applying

these two operators.

No detailed quantitative information has yet been obtained

on the mean-value jump for any physical variable. A rough
check from u(t) oscillograms in the rough-wall bound~
layer where -y=0.4 indicated that the jump in longitudinal
velocity was about 5 to 10 percent of ~..

Unfortunatelyj this still does not permit calculation of Z
because all velocity fluctuations violate the fit condition;
that is, they are nonzero in the potential flow.

For &vorticity, which does satisfy this first condition, no
mean-value jump is observable on the oscillograms. This is
not surprising since this z-component has no corrwponding,
mean vorticity in this flow field. It may be anticipated
that the z-component ~ will be found to have a jump, if and
when it is measured. A plot of ~=~iy is given in figure 30.
To insure y-coordinate consistency, this particular y(y) has
been measured with the vortici@ meter as sensing element.
It does not differ appreciably from -y(y) as determined from
the differentiated signal of a u-meter.

In the outer part of the intermittent zone ~/7 turns out

to be roughly constant, leading to the possible conclusion
that P is relatively homogeneous in the turbulent fluid.

The Reynolds shear stress –wV has been inferred to be
zero in the potential field outside a turbulence front. There-
fore, it may also be interesting to estimate – ~7F.
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FIGmm 30.—Distribution of mean-square vofilcity fluctuation divided
by intmmittenoy in boundary lay~ at z= 102 inches.

Using a representation like equation (54) for u(t) and o(t)
separately and -uming (a) no mean jump in o(t), (b)
~ =m =0, and (c) b’~=u. ‘b%,o~, it follows that

——

(81)

I
—

Townsend (ref. 28) has plotted Z5 Y% versus y without

attempting a justification.
Figure 31 shows the result of applying equation (81) to

the measured Reynolds shear stress in the rough-wall
boundary layer and in Townsend’s plane wake (ref. 10).
The nonconstancy of ?i5/-rw probably be attributed largely
to nonhomogeneity within the turbulent field.

In concluding this section it may be remarked that, if an

existing nonhomogenei~ for any variable in the turbulent
part of the field depends only upon distance in from the front,
a first-order estimate of its tiect can be made by computing
the average value generated at a tied point by random
motion of a “tied” pattern like that in sketch (e).

\ -Nonrero slof)e (correspwiding tomnhorrqeneity
,.-

‘- OfOintwhkntfluid)

>

Rigid potlem ftuctuotes
rondomly Ike Y(t)

Y
-Y

Sketoh (e).

STATISTICALDESCR~ON OF TURBULENCEFEONT

The position of the turbulence front Y(z,t) is a random
variable stationary in time and nonstationary in z. The
purpose of this section is to report some further measure-
ments which have been made on its statistical properties,
especially those of Y(t) for a tied value of z. Earlier
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(a) Boundarylayerat x=102 inches.
(b) Plane mike at z=800 inches. (Data from ref. 10.)

Fmurm 31.—Distributions of Reynolds shear stress divided by intor-
mittency.

sections have emphasized its statistical variation with x,
particularly through ~(z) and the standard deviation a(z).

It is of course possible for Y to be a multiple-valued func-
tion (see, e. g., fig. 1), but in most flows tho occurrence of
multiple values appeara to be sticiently rare that a discus-
sion predicated upon a single-valued Y is applicable with
good accuracy. This is wpecially true for the boundary
layer, where turbulence levels tend to be appreciably loww
than, for example, in jets entering a still medium. This
conceptual restriction to single-valued Y, exercised through-
out the report, will be justified empirically for the boundary
layer by showing that the average wavelength is considerably
greater than the average wrinkle amplitude.

As a stationary random function IT(t) is susceptible of
quantitative statistical description in various ways, not rdl
independent. Perhaps the two most common mutually

independent functional representations for such variables
are the autocorrelation function (or its Fourier transform,
the power spectrum) and the probability density (or its
Fourier transform, the characteristic function). Usually
the lower order moments of the density and spectral func-
tions, which have simple physical interpretations, are the
most easily measured statistical properties.
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The problem of acquiring detailed statistical information
on Y(t) is novel in the sense that nowhere in the experiment
is there a signalwhich is simply proportional to the stationary

variable under study. Therefore, the conventional statistical

functions (above) are not readily measurable by standard
techniques. It is fortuitous that the &similar character of
the fields on opposite sides of Y(t) gives such a convenient
meth’od of measuring probability density. However, the
autocorrelation or power spectrum apparently cannot be
directly measured, and therefore other direct statistical data
have been sought, in particular, the probability density of

“pulse lengths,” actually the statistical measure of the times

between successive occurrencesof any .particuhmvalue of the
primary variable Y(t).

A challenging problem in the theory of stochastic processes
is that of relating (if possible) these densities to the more con-

ventional statistical measures. Up to the present time, only
a few fringe results seem to have been obtained by workers

in the field; these will be mentioned in appropriate context.

PROBABILITY DENSITY OF Y(t)

As has been pointed out in the “Introduction” (eq. (l)),
the intermittence factor ~(y) is simply the distribution

function of Y(t) and, therefore, &y/by is its probability
density.

Calculation of b/by shows that, except in the two tails of
the function, it is remarkably symmetrhd. Furthermore,
the. physical picture given here of front wrin.khg as pri-
marily a (bgmngian) turbulent diffusion phenomenon then
suggests a check to see how nearly @/@ approximates a
Gaussian function, since studies of scalar diffusion in iso-
tropic turbulence have shown a closely Gaussian density.

Figure 32 shows this check. It includes typical plots on
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Fmurm 32.—Typical intermittenoy distributions for boundary layer,
jet, and wake plotted on Gaussian probability male.

Gaumian paper of 7@) for the boundary layer and for Town-
send’s wake, as well as y(r) for the round jet. Clearly all

three distributions are Gaussian within the experimental
preckion except in the tail regions.

Deviations from symmetry must, of course, occur at the

tails since the boundary conditions on the two sid~ are
vastly difkmmt.

Since the nearly Gaussian character of dispersion in iso-

tropic turbulence is still unexplained theoretically, it is not

to be expected that this much more complex phenomenon
can be clarified at present. Also, it must be emphasized that

even in the former case it is not necessarily true that the
probabili~ densities are precisely Gaussian; the current con-

clusion is only that a Gaussian curve fits the data as closely

w present experimental techniques produce data. very
likely it is the devkitions (however small) which, when
measured, will shed more light upon the central property of
turbulence, the nonlinearity.

Batchelor (ref. 32) has pointed out that the Gaussian dis-

persion pattern observed at very large distances downstream
from a contaminant source in a turbulent flow may be simply
a consequence of the central limit theorem,’ since the relative
position of a fluid particle a long time after tagging may be
regarded as the sum (time integral) of a large number of
small displacements, which are at least unccrrelated for mod-

erate intervals if not exactly statistically independent. In
fact, if this reasoning does apply, it is doubly effective:
Particle displacement, the principal variable, is itself the
integral of partiile velocity, so that the long-time displace-
ment is the sum of a collection of sums.

Apparently, the central limit’ theorem has not been ex-
tended to integgals of continuous random variablw, but some
pertinent work has been done by Kac and Siegert (ref. 33),
who showed mathematically that passage of a particular
skew (probability densii@ random signal through a low-pass

filter reduces the skewness This prediction has been experi-
mentally verified by Jaatrwn (ref. 34) and by Iribe (ref. 35)

A low-pass filter is, of camae, qualitatively equivalent to
integration.

PROBABIWl?YDENSITYOFP~E LENGTHE

Experimental resu.lts.-From a sketch of Y(t) as a sta-

tionary random variable, it is easily seen that the intermiti
tent signal from a fied probe provides a direct means of
measuring the statistical distribution of the time intervals
between successive occurrences of any particular value of Y.

Y

f

Sketch (f).

I In effeotjW stab that thomm of annmk of statlsUmIIYlnde~dent randomvarfabk

apprcachw Oandan chamctm as the number lnuwse9 W’lthmt llmlt (providd that no

flnlta glWJpdomlnati the sum).



1058 REPORT 124&NATIONAL ADVISORY COMMI’JWQDFOR AERONAUTICS

From the fluid-mechanical point of view this gives a conven-
ient measure of the wavelengths of the mountains and valleys
in the turbulence front. The laminar superlayer is thin

enough to be considered a discontinuity in all of this analysis.
If 2’, is the duration of the probe in a turbulent zone and

T2, the duration in a nonturbulent zone, figure 29 gives the

probability densities PI(TJ and pl(T~) at three difbrent
values of transversal position, that is, three different value9
of the intermittence factor.

By definition (of probability density), the curv= in figure
29 are normalized to unit area. A check on their accuracy

is given by the more or lW obvious condition

T,
-=7’
TI+T,

(82)

J J
.

where ?,= “ T,pl(T,)dTl and ~.= Z’,pJTs)dT,.
o 0

The terms ~1 and ~, are average pulse durations in units
of time and are functions of y or, alternatively, of ~ since ~(y)

is monotmic.
The computations horn iigure 29 give (for 6=3.5 inches):

T

gj& &

-1=
ii,SW %Seo q F: l,, in Zqln.

memmed

0.72 0.76 0.0166 0.00@ o.n 7.0 Z7 “

o.M o.K1 o.O1O% o.00S2 O.m 48 3.7

I o. B
I

0.2s
I

0.03s2 I 0.0133
I

o. M

I

al

I

ho

I

where 11=~. ~1 and 22=~. T9 are appro&ate measures of
the spatial extension of the average intervals in this z vicini@-.
This interpretation of the i!%as average intercept lengths for
the random variable Y(z) gets increasingly accurate as the

velocity fluctuation level decreases. This time-space trims-
formation is, in fact, identical with that fit proposed by
Taylor for an isotropic turbulence (ref. 36) and discussed in
more detail by others (refs. 37 and 18).

A comparison between ~ (1,+1,) for 7=0.50 and the stan-

dard deviation u of Y,(t) at the same z-station gives a rough
measure of the flatness of the wrinkled turbulence front.
For this particular station in the boundary layer,

—=0.13
L?L

(83)

which indicates a rather flat front, as assumed in the earlier
theoretical discussion on the propagation of the laminar
superlayer.

Inspection of figure 29 shows the following traits of the
data:

(a) The points are rather scattered.

(b) For -r=0.50, p, and p, show an appreciable diflerauce.
(c) The ~ =0.25 and Y=0.75 cases, which might be ~-

pected to have identical curves with reversed labels, show
this character qualitatively, though not accurately.

Properti@ (b) and (c) can apparently be attributed chiefly
to the shortnes9 of oscillograph.ic sample9;8 therefore, the

: About 3&won&%as cnmprful with tbs 2mlnu= IISW3in obtdrdng tlm -r’sdkectly.

curves in figure 29 have been labeled with the y’s actually

given by these short samples, and the apparent discrepancies
(b) and (c) are qualitatively explained. In other words, a
short sample with actual y =Y, drawn from an infinite record
with 7=72 can be expected to show other statistical proper-
ties rcaembling those of an infinite record with Y =71.

Two other sources of uncertainty in the data of figure 29
are (1) the natural uncertainty of measurement in the
presence of noise, even with perfect equipment, and (2) im-

perfections in measuring equipment and techniques.
The fit of these difficulties aflects all intermittence rneas-

ureinents and is basically insurmountable. Of course, the

noise level could be reduced somewhat and, under simplifying
statistical assumptions on both noise and signal, some esti-
mate of the effect could be made.

The second di.flicnlty probably aflects PI and p~ measure-
ments more seriously than direct -r measurements, For ex-
ample, suppose that the measuring proccas misses a sizable
number of the shortest turbulent bursts. This fault will
scarcely ailect the directly measured Y since these contain
only a small part of the total number of pulses to be counted
.(&cept foi Y<<l). On the other hand, this frudt will not

orily change the character of PI(TJ for small values of T1but
-alsowill change the level of PZ(TJ for large values of Ta,sinco
the very short turbulent bursts subdivide long potential
‘bm%ts&b shorter ones. Hence, this fault wi.11.11seriously

tiect T2 and, therefore, 7 as computed from T1 and ~Z.
Precisely this fault is observable on the oscillogrnphic trnces.

Other defects similarly observed are the (relatively in-
frequent) missing of short potential bursts and the occasional
overhang of the trigger signal beyond the duration of a tur-
bulent burst. The last of these faults ailects the direct ~
measurement a-swell.

b obvious way around some of these diflicultics is the

direct use of f(t) or% (t) oscillogrmns to compute p, and p,.

To some extent this ma done, and the extreme tediousness
of this method is exactly why the samplea processed are so
short.

This inadequate sample length (fault (3)) most. seriously

afects the results in the large T, and Tqranges. The relative
seriousness of this limitation for long versus short pulses is
not given (as might be guessed at first blush) by the ratio of
sample length to pulse length but by the ratio of samplo
length to the inverse of the frequenoy of occurrence of the

particular length of pulse (actually a small range) in question.
For example, in a 3-second oscillographic sample, the points
on the tails of PI and p~ may represent as few as one or two
actual occurrences. With this in mind it can be con@uded

that the agreement between values of y obtained via Tl and
~, and values of -r directly measured is surprisingly good.

It would be interesting to know whether pl and P2approxi-
mate exponential distributions for large values of T1 and TX.
However, the uncertainty of the points in just this range is
so great as to render such a quantitative question unanswm-

able. Some very imlirect evidence via the power spectrum
of the Schmitt trigger output for 7=0.50 will be discussed
in a following section.

Since the small TI and TJranges of PI and pi are quite un-
certain (i.e., for bursts shorter than 2 milliseconds), some
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qurditrttive rmalytical consideration of the anticipabd be-
hrwior in this range is in order. These short “segments arise
whenever the hot-wire passea just below a local maximum
(for turbulent fluid) or just above a local minimum (for po-
tential fluid) in Y(t).

The variable Y(t) must be differentiable (since it occurs in
a continuum); therefore, its extremes have horizontal
tangents. Thus, a Taylor seriesexpansion of Y(t) about any
local mtreme t=~ starts with a term proportional to (t–&)’.
The limiting behavior of pl and p can thus be obtained by

considering a parabola C=Di as in sketch (g). The problem
is then as follows: Suppose O has a flat probability density

PCI(~;o what is the probability densi~ p= of D=@’

c

D

Sketch (g).

In general, if C= C(D) is unique,

PD(D)=PO(q ~ ‘ (84)

.,

whence, for this particular problem

PD(D) C@ (85)

It follows from this calculation that theprobabiMy d.en.dy
of the interuds betweensuccewbe occurreruxxof any particular
value of a di#ereti&ble random nzriu.blemwt sturt & (a)

from the origin and (b) linearly. Specifically, pl(TJ and

P~(TJ must behave ~ this fwhion, even tho%h the measured
curves do not all show this tendenq- in the range covered.

By reasoning similar to the above it is obvious that for a
continuous but nondiflerentiable variable (corresponding to
pointed but uncusped extremes) the corresponding density
starts out at a finite value.

Status of random-variable theory.-The mathematical

problcm of relating the probability density of the intervals
between successive occurrences of any particular value of a
continuous random variable to the ordinarily more accessible
statistical functions (probability density of the primary
variable, power spectrum, etc.) has apparently not been
solved, even for a Gaussian variable.

Rice (ref. 38) has deduced the probability of a zero of a
Gaussian variable l(t) in an interval (t,+h),(h+h+dt)

when there is a zero at tl. However, the probability densi~

of intervals between successive zeros (or successive occur-
rences of any other particular value) doea not appear to

*Tb8very smnUrongetob@dl@ thatwjust thebmnedfatavldnltyofanextmme,
pmoltsnpproslmnttnganysmellsegmentofafinitem’otabflltyde.nattybyaomstantvalue.

follow easily from Rice% r-emdt. Of mm-se, in the particdw

case when succea@ve ihtervals are’ statistically independent,

the occurrence numbers have a Poisson density, and the
interval lengths have a simple mponential probability

density.
A more directly applicable result, apparently due to Rice

(ref. 38), relates the expected rate of occurrence of any
particular value of a Gaumian variable I(t)to the probability
density of the variable and the autocorrelation function

behavior in the vicinitg- of zero:

N’”e$[-%ll”(86)

where #(T) is the nonnormilized autocorrelation function

I(t)l(t+ ~) and a prime indicates di@r@iation. The

proof of equation (86) requires also that I(t)and I’(t) be
urmorrelated-which is automatically satisfied for a station-

ary variable.
However, it must be emphasized that the pristine simplicity

of this theorem is dependent upon the restriction to n

Gaussian variable. Two of the seemingly inexhaustible
number of fortuitous properties of the Gaussian probabili~
density are:

(a) If a variable ie Gaussian, so is its derivative. -

(b) If two Gaussian variables are uncorrelated, it follows
that they are statistically independent.

Whhout these built-in conveniences, it seems likely that
such a theorem could be deduced. only with the general
assumptions that the variable and its derivative are statisti-

cally independent.

For the expected rate of zeros, equation (86) reduces to
(ref. 38)

‘“+$?1’2 (87)

Equation (87) has been used by Liepmann, Laufer, and
Liepmann (ref. 39) to measure -the.microscale in a decaying
isotropic turbulence. It @l be -uw$dhere to obtain w’(0)

for the turbulence front Y(t).

Measurements have also been made of the average rate of
occurrence of the values of Y(t) corresponding to 7=0.25
and 0.75 in the intermittent zone of the rough-wall boundary
layer. In figure 33, the three experimental points are

compared with equation (86). The ‘~y location of the
u

three experimental points has been chosen according to the
value of Y of the short samples (from -which the N’s were
measured; ?ee the preceding table] rath,er than the true
physical locations of the probe. The agreement is better
than can be expected with the uncertain~ of the measur~

ments and therefore fortuitous. The number given for the
rate of occurrence of zeros, NO= 108 per second, is inter-

polated along the Gaussian curve.

Measurements of the probabfity density of zeros in the
fluctuating part of the signal horn a human voice have been
reported by Davenport (ref. 40).
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FIQUELFJ33.—Frequency of occurrence of zero and two other particular
valuea of Yl (t) in boundary layer at z= 102 inches. Solid curve is
that of a strictly Gawmian variable. No= 108.

Pomim SPE~UM OFsmrhmrr TRIGGEROUTPUT

As indicated in figure 6, the output of the Schmitt trigger
is in principle a random flat-top signal which is on whenever
the probe is in turbulent fluid and off whenever it is in poten-
tial flow. Obviously the statistical properties of this signal
must have some relation to those of the primary variable
Y(t), and therefore two convenient properties have been
measured. The fit is the probability density of pulse
lengths, tops and bottoms separately; these are, of course,
just p,(!f’,) and ~(Z’,) @g. 29). The second is the power
spectrum of the trigger output, measured at the same loca-
tions as the densities (@g. 28).

The three spectra have the same general shape, with power-
law decrease for high frequency as indicxked in the figure.

It n@ht be expected that a relation should exist between
the pulse-length densities of any flatAp signal and its power
spectrum, but a search of the literature has uncovered no
such analytical results except in special cases, one of which

is used below.

The simplest of the three signals is that corresponding to
7=0.50, and in figure 28 this power spectrum is seen to agree
closely with that for a “Poisson type” flatAop signal (see,
8. g., ref. 38):

fln)ap~h. (88)

-whereM is the average number of jumps per second and n is
cyclic frequency. For this application and 7=0.50, ilI#iVo,

the average number of zeros per second in ~—~, since the
distribution of zeros cannot be truly Poisson.

The very good agreement in figure 28 implies only that in
this casepl(T,) and pS(TJ could be exponential away from
the origin, even though the directly measured data are too
uncertain to permit any estimates. How-ever, no assertion
can be made, sinca the —2 power spectral decrease is charac-
teristic of most signals with “discontinuities.” ‘

AUTOCORRELATIONFUNCTIONOFY(t)

The approximately Gaussian character of ~–~ permits
application of equation (87) relating the zero occurrence rata
and the autocorrelation. For this purpose the nomormal-
ized autocorrelation is defined by

~T)=~,(t)~,(t+T) (89)

where YI = ~—~. Obviously *(O)= # and, since No ond u
are the measured quantities, equation (87) is written

1#”(0)= –##No’ @o)
where

2

‘0 – ~,+T2
—v zeros/see

For the rough-wall turbulent boundary layer at x=102
inches, u=O.55 inch and NO= 108 zeros per second, so

V’ (O)=3.4X1O’ sq in.lse~ (91)

A corresponding characteristic length mathematically equiva-
lent to the tilpative scale (microscale) in turbulence can
be deduced by the time-space transformation mentionod
earlier:

(92)

For this particular case,

Ay=l.9 in. (93)

which is a bit smaller than 11and ~ in the preceding tablo
for Y= O.50.

For low turbulence levels, one might mpect the quantity

v’
~ k= to be of the order of the Lagrangian spatial microscale

b=~tu’ (rti. 18), which is roughly equal to the Eulorian
~icroscale h over a wide range of Ri in isotropic turbulence

(ref. 18). In this case,
(u)

< xr- =0.09 inch. This is the sumo

order as A in the neighboring turbulence. Since RX for this
turbulence is roughly 70, which (in isotropic turbulence)
gives ~= 1.5A, the conclusion here is that

(94)

or, since 0=77., the Lagranghm time mocroscale of the
neighboring turbulence is given roughly by

(CM)

Equation (9o) gives only the vertex curvature of the auto-
cordation function. Because of the Gaussian character of

Y(t), it is possible to estimate the entire +(r) from the spec-
trum of the trigger output. It has been shown by North
(see ref. 41) that the autmorrelation function of a strongly
clipped Gaussian variable is simply related to the autocor-
relation function of the variable itself:

(96)

A strongly clipped variable is just a flatdop signal which
changea sign whenever the primary variable passes through
zero-which exactly describes the relation between the triggm
output and the primary variable I’(t).



FREE-STREAM BOUNDARIES OF TURBULENT FLOWS 1061

Since, as shown by Wiener (ref. 42), the autocorrelation
function of rLstationary random variable is just the Fourier

cosine trmsfonn of its power spectrum (and vice versa),

J+.(T)=‘F= (n) cm 2rrnrdn (97)
o

sFe (n)=4 ‘$0 (r) cm 2Mr dr
o

the autocorrelation of the trigger output is computed from
the measured power spectrum. The good agreement of

Fa(n) with the form in equation (88) permits using a simple
mponential for 1.(7) (ref. 38):

(98)

Thenj equation (94) gives the autocorrelation function of
the turbulence front location:

%“‘iGe-=”r) (99)

which is plotted in figure 34. The vertex osculating parabola

corresponding to W’(O) as given by equation (87) and the
directly measured zero occurrence rate are dram-nin for com-

parison. The former parabola should give the origin be-
havior of ~(~) more accurately than equation (99).

1.0

h
\

.8

\

\
\
\

.6 \ ‘i,

+(r)

m

FIGurca34,—Autooorrelationfunotion of turbulencefront location
asa funotionof timeinboundarylayeratz= 102inoh~.

As should be expected, the calculation of W’(O) for equa-
tion (99) givca

(loo)

identical with equation (87), if &l~iVO.
In fact, it found experimentally that i14=2~o for this in-

vestigation. This is not surprising since the differentiability
of Yl(t), whose zeros give the square-wave jumps, leads to
a considerable deficit of short pulses as compared with a
truly Poisson square wave (see the section “Experimental
results” under “Probability Density of Pulse Lengths”).

Of course, the power spectrum of Y,(t) could be calculated
by taking the Fourier cosine transform of fi~) but the data

41867w747

are su.flicientlyinaccurate that further manipulation scarcely
seems worth while.

Other charackristic lengths of the wrinkled turbulence
front can be estimated from the integral of ~(~), mathemati-

cally analogous to the integral scale of turbulence, but th~e
may be less pertinent thsn, for example, 11and ~, the aversge

pulse lengths:

whence,

which turns out to be the same order M 11and L.
Alternatively,

fm

s&o Mr) dr=O.35 in.

both values being for the rough-wall boundtuy- layer at
z=102 inchw.

CONCLUDINGDISCUSSION

From the analytical and experimental results reported

here on the problem of the relatively sharp instantaneous
front separating turbulent fluid from nonturbuhnt fluid (as
at a bee-stream boundary), the follow-ing new conclusions
are drawn:

1. The nonturbulent region is a field of irrotatiomd fluc-
tuations.

2. The front separating turbulent from potential flow is

actually a very thin fluid layer in which viscous forces are of
primary importance. The role of this ‘laminsr superlayer” is
the propagation of vorticity (both mean fluctuating) into
the potentkd field. It is maintained thin by propagation
relative to the fluid and by the random stretching of vortex
lima in its local vorticity gradient.

3. The common occurrence of contiguous rotational and
irrotationsl velocity fluctuation fields underscores the useful-
nes of coniining the word “turbulent” to random rotational
fields only.

4. The rate of increase of wrinlde smplitude of the turbu-
lence front can be roughly predicted in terms of a Lagrangh
diffusion analysis, using the statistical properties of the
turbulence in the fully turbulent zone. The actual edii.mati
is given by equation (34).

5. By dimensional reasoning and, independently, through
a model of the laminar superlayer, the thiclmcss of the super-
layer can be estimated. The simplest approximation is
equation (51), giving a thiclmes of the same order as the
Kolmogoroff (minimum) turbulence length.

6. The propagation velocity 7* of the turbulence front is

taken by dimensional reasoning to be proportional to @.
This is roughly veritied by experiment.

7. The downstream rate of growth of the turbnkmce hnt,
as measur_ed by standard deviatiofi a(z) and transvemal
position Y(z), is found to be proportional to the shear-zone
thickness, within the experimental precision, for plane wake,
round jet, and rough-wall boundmy- layer. This is shown
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independently by direct experiment and by application of
the results outlined in the previous paragraphs.

8. The probability density of the turbulence front location
at any tied downstream station is Gaussian within the
precision of the measurements everywhere except at the tails.

This is found experimentally for all three types of turbulent
shear flow studied.

9. The probability density of the pulse lengths in the
intermittent signal deviates strongly from the simple tmpo-
nential type, presumably because Y(t) is diilerentiable.

10. The autoc.mmdationfunction of Yl(t) for the boundary
layer is found very indirectly from experiment to be as
shown in figure 34.

It seems likely that the presence of the turbulence front
with its attendant detailed statistical properties will have
to be included in bssic research on turbulent shear flows
with free-stmemnboundaries. It is not quite so clear that
it must be explicitly included in semiempirical engineering
estimates concerned only with overall transfer; so far no
case has been encountered in which the fint grows at a
rate distinctly di.flerentfrom the gross shear-layer growth.

It appears that at present this new physical picture
introduces at least as many new questions as it gives expla-
nations of older observations. Insofar as it is concerned
with a boundary condition, it tells nothing about tmmsport
phenomena within a turbulent region. Yet,_since the
wrinkle amplitude u(z) and transversal travel Y(z) of the
turbulence bnt appear to be governed by (or related to)
properties of the contiguous turbulence, any gross assump-
tion on these variables implies consequent re.Iationsamong
the turbulence properties.

It should especially be pointed out that the present
investigation does not appear to shed any light on the

characteristic difference between transport rates of vector
(momentum) and scalar (heat, mass) properties. In fact,
since it is concluded that no mean momentum can be trans-
ported beyond the turbulence front it appears that (for
lamirmrI?randtl and Schmidt numbers not very much smrdlor
than unity) the front should apply equally well to heat or

chemical composition. Oscillographic observations (not
mentioned in the body of the report) in a hot jet show a
temperature fluctuation intermittence, presumably coinci-
dent with the vorticity intermittence. If this infmmco iE
true, then the vector ve~us scalar transport rata difference
will have to be explained in terms of properties of the en-
tirely turbulent region.

Interesting speculations in this direction have been made
by Townsend (ref. 10), who suggests that momentum iE
largely transported by relatively high wave number flucturL-
tions whiIe heat is transported by both low and high wovc
number fluctuations, that is, by jet convection rmd b~
gradient diflusion, respectively. However, there am twc

dubious minor postulates in his analysis (mentioned here
in the section “Inference of Turbulence Properties From
Intermittent Signal” and at the end of the section ‘~aminal
Superlayer”) and also he has not clarified the principa
assumption vish-vis the known fact that the shear correhu
tion Zii appmrs to get ever increasing contributions towarc
the low wave numbem (ref. 43). Finally, his inference tho
the lateral jets (bulges) convect little longitudinal momentum
appears to be in contradiction to the fnct that the inter
mittent veloci~ sigmd. shows an appreciably lower meru
in the turbulent segments that in the potential ones, a
seen in figures 9 and 15.

THE JoHNsHOPKINSUNIVERSITY,
BAL~ORE, MD., Janwzry 20, 1963.
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APPENDIX

GROWTH OF ROUGH-WALLBOUNDARYLAYER

Although the growth of turbulent boundwy layers with

zero stutic-pressure gradient is better approximated by a
]ogmithmic function (ref. 11), the exploratory purposw of
this investigation are satisfied by the simpler and less
accurata power-law treatment.

The momentum integral relation for turbulent boundary
layer with zero static-pressure gradient can be written
approximately aa (ref. 11)

(if-J

z’& (Al)

The following rough assumptions are made:
c (r$ Simple geometrhd similarity in mean velocity profiles:

(b) “IMY rough” wall conditions:

U,h
— 2100

v

Therefore,

TOa p[U(h)]J

where h is effective roughness height.
(c) Power-1aw velocity profile:

I?rom assumptions (a) and (c)

whenca the second assumption gives

(A2)

(A3)

Since Ocd, substitution of equation (A3) into squation (Al)
giveE

(A4)

for h= Constant. Therefore,

@<(z—zJ&l (A5)

Equation (A5), a simpie power law, permits approximation
to the actual boundary-layer growth with accuracy adequate
for the present investigation.

In fact, since both m and the exponent in equation (A3)
have been measured independently, there is opportunity for

an experimental check on the accuracy of the present crude

approach: Mean velocity profiles (@. 11) give m= 1/3.5.

Therefore, the analysis predicts

ecc(z-zJo”~

whereas measurements of boundarylayer growth (fig. 12)

give
Oa(z—zo)O”aM.l

It should be pointed out that boundary layers in general
cannot have simple geometrical similarity because their

characteristic Reynolds numbers increase with z.
This particular “rough-wall” boundary layer is fully rough

all the way downstream (from z=O to z=102, UJ/V falls
from 200 to 145), if the peak-to-peak height of the corruga-

tion is interpreted ash.
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