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FREE SUBGROUPS OF GROUPS WITH NONTRIVIAL

FLOYD BOUNDARY

ANDERS KARLSSON

Abstract. We prove that when a countable group admits a nontrivial
Floyd-type boundary, then every nonelementary and metrically proper
subgroup contains a noncommutative free subgroup. This generalizes
the corresponding well-known results for hyperbolic groups and groups
with infinitely many ends. It also shows that no finitely generated
amenable group admits a nontrivial boundary of this type. This im-
proves on a theorem in [Fl 80] as well as giving an elementary proof of
a conjecture stated in that same paper. We also show that in case the
Floyd boundary of a finitely generated group is nontrivial, then it is a
boundary in the sense of Furstenberg.

1. Introduction

For a group Γ generated by a finite set S, one may associate the Cayley
graph C(Γ, S) where the vertex set is the group itself and two vertices are
connected by an edge if they differ by multipliation of an element in S on
the left. Freudenthal introduced the end-compactification of this graph as
the graph (or the group) union the set of ends of this graph [Fr 31], [Fr 42].
There is a natural topology and the compactification is independent of the
finite generating set. Hopf showed in [Ho 44] that a finitely generated group
has either 0, 1, 2, or uncountably many ends. It has two ends if and only if
it is virtually Z. Stallings proved in a remarkable paper [St 68] that a group
has infinitely many ends if and only if it is an amalgamated free product
A ∗C B or HNN-extension A∗C with C finite, |A/C| ≥ 3 and |B/C| ≥ 2.

There are many groups that have only one end, hence the compactification
is trivial. Examples of one-ended groups include fundamental groups of
compact hyperbolic manifolds. In [Fl 80] Floyd introduced a more refined
notion of boundary. It is obtained by rescaling the edge-path metric on
C(Γ, S) by a conformal factor of, for example, d(e, g)−2 and then taking
the metric completion. Floyd used this completion to study limit sets of
Kleinian groups. Gromov discussed similar boundary constructions in his
essay on hyperbolic groups [Gr 87]. The class of word hyperbolic groups has
a very satisfactory theory in the sense that several definitions of boundaries,
including the one in [Fl 80], lead in fact to the same boundary. See also
[Fl 84], [Tu 88], and [S 92].
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2 ANDERS KARLSSON

Just as the end-compactification often is trivial, the Floyd boundary con-
struction has in a sense a pathology: the boundary of the product of two
infinite groups is one point. (This can be avoided if one allows S to be infi-
nite or by considering boundaries of a coset graph Γ/H.) Even if the group
is not a product, the Floyd boundary may degenerate in the presence of too
many higher rank free abelian subgroups, as is the case for most mapping
class groups, braid groups and SL(n, Z) (n ≥ 3), see [KN 02].

A Floyd-type boundary is called trivial if it consists of 0, 1, or 2 points.
For finitely generated groups, the property of admitting a nontrivial Floyd
boundary (with respect to a finite S) is a quasi-isometric invariant. The
class of groups with nontrivial Floyd boundary contains nonelementary word
hyperbolic groups (see [Gr 87]), groups with infinitely many ends (a simple
fact), and nonelementary geometrically finite Kleinian groups (see [Fl 80]
and [Tu 88]).

Let Γ be a group generated by a countable (or finite) set S. The Floyd
boundary ∂Γ depends on S and a conformal factor f , see Section 2. A
subgroup Λ of Γ is said to be nonelementary with respect to ∂Γ if there
exists a sequence gn in Λ such that both gn and g−1

n converge to points of
∂Γ and Λ does not fix this or these limit point(s) setwise. Our main results
are:

Theorem 1. Let Γ be a group generated by a finite or countable set S and
let Λ be a subgroup. Assume that Λ is nonelementary with respect to ∂Γ and
that every infinite subset of Λ is unbounded in (Γ, d). Then Λ contains a
noncommutative free subgroup.

We refer to the paper of Woess [Wo 93] for a discussion and references to
previous results of this type. We also have:

Theorem 2. Assume that Γ is generated by a finite set S and that ∂Γ is
nontrivial. Then ∂Γ is a boundary of Γ in the sense of Furstenberg [Fu 73].

In order to apply Theorem 1 it is important to know criteria for the
existence of convergent sequences gn and for a subgroup to be nonelementary.
In section 4 we obtain in particular:

Proposition 1. Assume that g is an element of Γ such that d(e, gn) → ∞
as n → ∞. Then both gn and g−n converge to points (or the same point) in
∂Γ.

Proposition 2. Let Γ be a group generated by a finite set S and let Λ be a
subgroup. If the limit set of Λ contains at least three points in ∂Γ, then Λ
is nonelementary with respect to ∂Γ.

Hence we have:

Corollary 1. Assume that Γ is generated by a finite set S. If ∂Γ contains
at least three points, then Γ contains a noncommutative free subgroup.

In view of the proof of Proposition 5 we have:
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Corollary 2. Let Γ be a group generated by a finite or countable set S and
let Λ be a subgroup. Assume that every infinite subset of Λ is unbounded in
(Γ, d) and that h is an element with two distinct limit points. If the group
generated by h and another element g does not contain a noncommutative
free subgroup, then hl = ghkg−1, for some nonzero integers k and l.

Amenable groups and torsion groups are among finitely generated groups
which have no noncommutative free subgroups. Observe also that ∂Γ, when
nontrivial, is a compact Γ-space without a Γ-invariant probability measure.

Corollary 3. If Γ is a finitely generated amenable group or a finitely gen-
erated torsion group, then every Floyd-type boundary ∂Γ is trivial.

The class of amenable groups contains every virtually solvable group and
every finitely generated group of subexponential growth. Therefore our
corollary generalizes one of the main theorems in [Fl 80] and shows the
truth of a statement significantly stronger than a conjecture formulated in
that same paper: Floyd proved that any finitely generated polycyclic group
of one end must have trivial boundary and conjectured that every finitely
generated group of polynomial growth has trivial boundary. The conjecture
was of course settled as a consequence of Gromov’s remarkable polynomial
growth theorem.

Here follow a few further remarks. Gromov wrote in [Gr 87] that ”[t]he
compactification of any Γ by [the space of ends] suggests a general notion of
(partially) hyperbolic boundaries [...]. In particular one may seek a maximal
hyperbolic boundary similar to the Furstenberg boundary (which is ∂Γ if Γ is
word hyperbolic).” As illustrated in the present paper the Floyd boundary is
a hyperbolic-type boundary. Moreover, it was shown in [K 01b] that when
the Floyd-boundary of Γ is nontrivial then it is maximal in the sense of
Poisson boundaries of Γ (with respect to reasonable measures).

In a recent article [M 01], McMullen stated a conjecture concerning the ex-
istence of a continuous surjective map from the Floyd-boundary of a finitely
generated fundamental group of a hyperbolic 3-manifold onto its limit set
on the boundary in hyperbolic 3-space. The question whether a similar
statement holds more generally occurs in [Gr 93] in line with the quotation
in the previous paragraph. In particular, the author asks whether every
nonelementary finitely generated subgroup of a word hyperbolic group has
nontrivial boundary.

After writing the first version of this paper I became aware of the pages
257-259 and 263-268 of Gromov’s substantial essay [Gr 93]. The discussion
there appears to overlap with the present paper and some results seem to
occur already in this reference. The reader is of course encouraged to read
the indicated pages in [Gr 93] although there are several omissions and some
errors as written. Moreover, I hope that the arguments in the present paper
may be of some additional interest as they avoid using compactness.

I am much grateful to the FIM and the ETH-Zürich for providing excellent
working conditions in a very pleasant and stimulating environment.
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2. Preliminaries

Let Γ be a group generated by a countable set S. The group Γ can be
viewed as a (metric) graph called the Cayley graph C(Γ, S). The elements
in Γ are the vertices and two vertices g, g′ are connected by an edge if there
is an s ∈ S such that g = g′s±1. Each edge is assigned length 1 (the edges
are isometric to a unit interval). This defines lengths of paths in this graph
and we can define a corresponding distance d. In this way (C(Γ, S), d) is a
complete geodesic space. The distance d is the word metric.

For a finitely generated group, this metric space is well-defined up to
quasi-isometry, in other words if we change S to another finite generating
set the two metric graphs will be quasi-isometric. When S is allowed to be,
or has to be infinite, pathologies may occur, for example: Γ is infinite but
the graph has finite diameter). Even so, we will suppress the dependence on
S and simply denote the metric graph by Γ and its distance d and speak of
geodesics (distance minimizing paths) as a subset of Γ in the obvious fashion.
A geodesic path between z,w ∈ Γ is denoted by [z,w]. The distance from a
point y to a subset A is

d(y,A) := inf
a∈A

d(y, a).

The action by Γ on itself (or C(Γ, S)) by left translation is an isometric
action. For more details on these standard concepts, see [BH 99].

We now wish to define a boundary of Γ following the construction in
[Fl 80] ”which is based on an idea of Thurston’s and inspired by a con-
struction of Sullivan’s”, see also [Gr 87]. Let f be a monotonically decreas-
ing function N → R>0 such that f(0) = 1 and given k ∈ N there exists
M,N,L > 0 so that Mf(r) ≤ f(kr) ≤ Nf(r) and L−1f(r) ≤ f(s) ≤ Lf(r)
for all natural numbers r and r − k ≤ s ≤ r + k. In addition we require f
to be summable:

∞∑

j=0

f(r) < ∞.

(For example, we may consider f(r) = 1/r2 for r > 0.)
We define a new distance d′ by modifying the length of the edges. Let e

denote the identity in the group, for two adjacent vertices g, h we define

f(d(e, {g, h}))

to be the length of an edge connecting them (instead of 1). This defines
d′-length Lf of a path α = {xi} in the graph:

Lf (α) =
∑

i

f(d(e, {xi, xi+1}))

and the new distance is

d′(z,w) := inf
α

Lf (α),
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where the infimum is taken over all paths α connecting z and w. It is straight-
forward to verify that d′ satisfies the axioms of a metric. In particular, since
(Γ, d) is a geodesic space any two points z,w can be joined by a geodesic β,
so d′(z,w) ≤ Lf (β) < ∞. (When we speak about geodesics it will always
refer to the distance d.) Note also that Γ has finite d′-diameter because f is
summable.

We now define Γ to be the completion of (Γ, d′) in the sense of metric
spaces and the boundary is ∂Γ = Γ\Γ. The metric structure d′ gives rise to
a topology on this completion and boundary. Note that we are suppressing
the dependence of S and f , and refer to ∂Γ obtained as above as a Floyd
type boundary of Γ.

As mentioned above Γ acts on its Cayley graph by isometries. This action
extends to an action of Γ by homeomorphisms of Γ. To see this, note that
for a fixed g ∈ Γ we have

|d(e, gw) − d(e,w)| ≤ d(e, g) =: k

for any w ∈ Γ. Together with the basic assumptions on f we immediately
have that

L−1d′(z,w) ≤ d′(gz, gw) ≤ Ld′(z,w).

This estimate shows that g±1 takes Cauchy sequences to Cauchy sequences,
equivalent ones to equivalent ones, in a continuous fashion. Finally, since
g is an isometric automorphism, the map g : Γ → Γ (or ∂Γ → ∂Γ) is a
bijection.

3. Contractive properties

The following lemma is crucial for the present paper.

Lemma 1. Let z,w be two points in Γ and let [z,w] be a d-geodesic segment
connecting z and w. Then

d′(z,w) ≤ 4rf(r) + 2

∞∑

j=r

f(j),

where r = d(e, [z,w]).

Proof. Let a denote the distance to z from a point m on [z,w] closest to e
and let R = d(e, z). The triangle inequality implies that a ≤ r + R. Let
xj , j = 0, ..., a be the points (vertices) of the geodesic segment [m, z] ⊂
[w, z]. Because of the minimality of r and the triangle inequality we have
the following estimates:

d(e, xj) ≥ r

d(e, xj) ≥ R − (a − j) ≥ j − r.
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We hence get, using monotonicity and summability of f :

d′(m, z) ≤
a−1∑

j=0

f(d(e, {xj , xj+1}))

≤
2r−1∑

j=0

f(r) +

a−1∑

j=2r

f(j − r)

≤ 2rf(r) +

∞∑

j=r

f(j).

By the same consideration with w instead of z, the lemma is proved. �

Let

(z|w) =
1

2
(d(e, z) + d(e,w) − d(z,w))

be the so-called Gromov product. It is a simple fact (see e.g. [KN 00]) that

(z|w) ≤ d(e, [z,w])

for any geodesic segment [z,w]. Essentially following a nice argument of
Woess in [Wo 93] dealing with Gromov hyperbolic, proper metric spaces we
can now prove the following contraction property :

Proposition 3. Let gn be a sequence in Γ. If gn → ξ ∈ ∂Γ and g−1
n →

η ∈ ∂Γ, then gnz → ξ for any z ∈ Γ \ {η} and this convergence is uniform
outside any neighbourhood of η.

Proof. (Note that for any z ∈ Γ, we clearly have that gnz → ξ, because
d(gn, gnz) = d(e, z).) Let U and V be neighborhoods in Γ of ξ and η
respectively. By definitions, we can find a small ε > 0 and large n0 > 0 such
that

{gn : n ≥ n0} ∪ {ξ} ⊂ Bε/3(gn0
) ⊂ Bε(gn0

) ⊂ U

and

{g−1
n : n ≥ n0} ∪ {η} ⊂ Bε/3(g

−1
n0

) ⊂ Bε(g
−1
n

0

) ⊂ V.

Here Ba(x) denotes the open metric ball with center x and radius a in
distance d′. Let z ∈ Γ with d′(g−1

n0
, z) ≥ 2ε/3, so d′(z, g−1

n ) ≥ ε/3 for any
n ≥ n0. Because of the properties of f, there exists for any δ > 0 a constant
R(δ) such that the right hand side of the inequality in Lemma 1 is less than
δ for every r ≥ R(δ). In view of the lemma, we therefore have for any n ≥ n0

that

d(e, [z, g−1
n ]) < R(ε/3).
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But then

d(e, [gn, gnz]) ≥ (gn|gnz)

=
1

2
(d(e, gn) + d(e, gnz) − d(z, e))

= d(e, gn) −
1

2
(d(e, gn) − d(g−1

n , z) + d(z, e))

= d(e, gn) − (g−1
n |z)

≥ d(e, gn) − d(e, [g−1
n , z])

≥ d(e, gn) − R(ε/3),

which tends to infinity as n → ∞. Again by the lemma there is therefore
n1 ≥ n0 such that

d′(gnz, gn) < ε/3,

for every z as above and n ≥ n1. As every ζ ∈ ∂Γ \ V can be approximated
by elements z in Γ outside of B2ε/3(g

−1
n0

) and by continuity of the action of
Γ, the proposition is proved. �

Inspired by an argument on p. 264 of [Gr 93] we prove the following
lemma, which will be used in combination with Proposition 3 at one point
in the next section.

Lemma 2. Let gn be an unbounded sequence in Γ, that is, d(gn, e) is un-
bounded. Assume there is a point ξ ∈ ∂Γ such that gnξ → ξ. Then there is
a subsequence nk such that at least one of gnk

or g−1
nk

converges to ξ.

Proof. Let xj be a d′-Cauchy-sequence representing ξ, so xj → ξ. Assume
first that for any R > 0 there exists an N such that

(gn|gnxj) ≥ R

for all n ≥ N and j ≥ 1. Then for any ε > 0 it holds for every sufficiently
large n and j that

d′(gn, ξ) ≤ d′(gn, gnξ) + ε ≤ d′(gn, gnxj) + 2ε ≤ 3ε

in view of Lemma 1. This proves the lemma in this case.
In the complementary case we hence have that there is an R > 0 and

subsequences nk → ∞ and jk such that

(gnk
|gnk

xjk
) < R.

As in the proof of Proposition 3 we have

(gnk
|gnk

xjk
) = d(e, gnk

) − (g−1
nk

|xjk
).

As gnk
→ ∞, we have that (g−1

nk
|xjk

) → ∞ and so in particlar xjk
has to

go to infinity, hence converging to ξ. Lemma 1 now implies that g−1
nk

also
converges to ξ as desired. �
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4. Nonelementary subgroups

We now turn to the question of the existence of doubly convergent se-
quences {gn}

∞
0 ⊂ Γ, that is, gn → ξ+ and g−1

n → ξ− for some boundary
points ξ+ and ξ−. We call ξ+, ξ− the limit points of the sequence (it is al-
lowed that ξ+ = ξ−). An element g ∈ Γ is called unbounded if d(e, gn) is
unbounded in n. A subgroup Λ is called nonelementary with respect to ∂Γ
if it contains a doubly convergent sequence such that Λ does not stabilize
its limit point set. The limit set of a subgroup Λ consists of every element
ξ ∈ ∂Γ which can be represented by a d′-Cauchy sequence with elements
only in Λ.

In the case of infinite number of generators the existence of doubly con-
vergent sequences does not seem so clear. Here is one argument which may
apply to a nontorsion group:

Proposition 4. Assume that g ∈ Γ is unbounded. Then there exists a
subsequence ni such that hi := gni is a doubly convergent sequence. The
limit point(s) ξ± are the unique fixed points of g. In the case d(e, gn) → ∞,
then both gn and g−n converge to points (or the same point) in ∂Γ.

Proof. This follows an argument in [K 01a]. Let an = d(e, gn). Select ni →
∞ such that

ani
> am

for every m < ni. Then for every k < ni

(gni |gk) =
1

2
(d(e, gni ) + d(e, gk) − d(gni , gk))

≥
1

2
ak.

In view of Lemma 1 and since ani
→ ∞, the sequence hi := gni

is a Cauchy
sequence and hence converges to a point in ∂Γ. For the same reason, since
d(e, g−n) = d(e, gn), also the sequence h−1

i converges in Γ to a point in ∂Γ.
By continuity and contractivity we have

g(ξ±) = g( lim
i→∞

g±ni) = lim
i→∞

g±nig = ξ±

and that no other point can be fixed. �

Note that in the case S is finite, an element g is unbounded if and only if
d(e, gn) → ∞, because otherwise gN = 1 for some N ≥ 1.

Lemma 3. Assume g ∈ Γ such that

g(∂Γ \ U−) ⊂ U+

for two disjoint nonempty sets U+ and U−. Then gk 	= 1 for every k 	= 0
and g generates a rank 1 free abelian group. If each d-metric ball contains
at most finitely many distinct elements of the form gk, then gk → ∞.
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Proof. It is clear that gk(∂Γ \ U−) ⊂ U+ for k > 0, since U+ ⊂ ∂Γ \U−,
and hence hk cannot be the identity. (If U− = U+ then g could have order
2.) If some subsequence gnk stays inside of a ball which have only finitely
many distinct elements of this form, then gnk = gnl for two distinct indices,
which implies gk = 1 for a nontrivial k. �

By adapting a nice argument of Gehring and Martin [GM 87], see [KN 02],
we get:

Proposition 5. Let g and h be two unbounded elements in Γ. Assume
that every infinite subset of the subgroup generated by g and h contains an
unbounded sequence. Then the fixed point sets of g and h are either equal
or disjoint.

Proof. Both fixed point sets are nonempty by Proposition 4. In the case
both g and h have only one fixed point, the statement is trivial. Assume
now that Fix(h) = {ξ+, ξ−}, (h±njx → ξ±) and ξ− ∈ Fix(g). We need to
show that ξ+ is fixed also by g and we may therefore assume that ∂Γ contains
at least three (hence infinite number of) points. Choose neighborhoods U−,
U+ in Γ of ξ− and ξ+ respectively so that

(4.1) hU− ∩ U+ = ∅,

which is possible because h is continuous and ξ± are fixed points of h. Let
E = Γ \ (U+ ∪ U−) 	= ∅. Since negative powers of h contracts toward ξ−, g
is continuous and fixes ξ−, we have that

gh−nj (E) ⊂ U− \ {ξ−}

for every large j. Because of (4.1) we may pick the smallest k = k(j) such
that

(4.2) hk(j)gh−njE ∩ E 	= ∅.

Now let gj = hk(j)gh−nj and note that

(4.3) gjξ
− = ξ− and lim

j→∞
gjξ

+ = ξ+,

since k(j) → ∞ as j → ∞ and gh−nj ξ+ = gξ+.
We assert that gj is bounded. Suppose not, then by Lemma 2 (or by com-

pactness if S is finite) there is a subsequence ni such that g±1
ni

x → η± ∈ ∂Γ.

From (4.3) it is clear that {η±} = {ξ±}. But from the contraction property
we should also have that gni

E ⊂ U+ for all large i, which contradicts (4.2).
Hence gj is bounded and by the properness assumption on Λ, gj = gi for

some distinct i and j. Therefore hk = ghlg−1 for two nonzero integers k and
l.

We claim that it now follows that gξ+ = ξ+. Applying the obtained
identity to gξ+ we have

hk(gξ+) = ghlg−1gξ+ = gξ+.
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As h̄ := hk is unbounded it can have at most two fixed points, namely the
same as h, that is, ξ±. So we have that gξ+ is either ξ+ or ξ−, but the latter
is impossible becuase gξ− = ξ− and g is bijective. �

Proposition 6. Assume that Γ is generated by a finite set S and let ∂Γ
be a (nontrivial) Floyd boundary. If the limit set in ∂Γ of a subgroup Λ
contains at least three points, then it is nonelementary with respect to ∂Γ.
In particular, if ∂Γ is nontrivial, then Γ is nonelementary.

Proof. The existence of doubly convergent sequences is a simple consequence
of compactness: given ξ ∈ ∂Γ in the limit set, take any Cauchy sequence
gn of points in Λ converging to ξ, and select by sequential compactness a
subsequence nk such that also g−1

nk
converges, say to ξ−. Let hn be another

doubly convergent sequence in Λ but with forward limit point η different
from ξ and ξ−. If it is the case that h−1

n converges to a point different from
ξ+ or ξ+ then we are done by Proposition 3. Therefore we may now assume
that ξ = ξ−.

As gnη → ξ by the contraction property, it follows that either the orbit
{gnη}n>0 contains infinite number of points or gnη = ξ for all large n. In
the former case, the proposition is proved. In the latter case, as all elements
are bijections, gnξ 	= ξ for all large n. Hence, in any case we have found
a doubly convergent sequence whose limit points are not invariant as a set
under Λ. �

5. Noncommutative free subgroups

We now prove Theorem 1. Let gn be a doubly convergent sequence with
limit points ξ+ and ξ−. Assume that p ∈ Λ is such that pξ+ /∈ {ξ+, ξ−}.
Note that by Proposition 3, gn contracts all of ∂Γ \ {ξ−} towards ξ+, and
that pgnz → pξ+ for z outside ξ− and (pgn)−1z = g−1

n p−1z → ξ− for z
outside pξ+.

In view of Proposition 3, Lemma 3, and pξ+ /∈ {ξ+, ξ−}, we can find N
such that gk → ∞ for g := pgN (by the properness assumption) and the two
limit points ξ+ and ξ− (which exist by Proposition 4) are distinct.

Since the point pξ+ is contracted by gn towards ξ+, the set {gnpξ+ :
n > 0} ∪ {gnξ+ : n > 0} is infinite: the sequences gnpξ+ and gnξ+ must
get arbitrarily close to each other (and close to ξ+) without ever coincide
(because gn is invertible). Thus we can find η of the form gMpξ+ or gMξ+,
different from ξ+, ξ−, ξ+, ξ− and pξ+, and such that for hn := gMpgn or
h := gMgn we have hn → η and h−1

n → ξ−.
Therefore we can again (as with pgn and g above) find a number L such

that h := hL is an unbounded element with two distinct fixed points η±
such that η+ is different from ξ+ and ξ−. Proposition 5 implies that also
η− /∈ {ξ−, ξ+}.

Since all the four limit points ξ±, η± are different and in view of Propo-
sition 3, we may now use the standard so-called ping-pong lemma (see e.g.
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[Ti 72] or [dlH 00]) on some powers of g and h to conclude the proof of the
theorem.

6. Strongly proximal boundaries

In [Fu 73] Furstenberg defined a boundary of a group which records con-
tractive phenomena which is opposite to amenability. A compact metrizable
space X on which Γ acts by homeomorphisms is called a boundary in the
sense of Furstenberg if it is minimal, meaning that every Γ-orbit is dense,
and strongly proximal, meaning that Γµ contains point-measures for every
probability measure µ on X.

We now give the proof of Theorem 2. Assume that Γ is generated by a
finite set S and ∂Γ is nontrivial.

From section 2 we know that ∂Γ is a compact, metrizable space on which
Γ acts by homeomorphisms.

Assume that a nonempty subset A ⊂ ∂Γ is Γ-invariant. By the con-
traction property, every doubly convergent sequence must have at least one
limit point in A. The only possibility (in view of the existence of doubly
convergent sequences) is that A = {ξ} or A = ∂Γ. If A is just one point ξ,
then because of the nontriviality of ∂Γ we can find two doubly convergent
sequences hn → η1 and fn → η2 with η1, η2 and ξ distinct. As in section 5
we can now find h and f such that hk converges to η11 and fk converges to
η22, again distinct and different from ξ. By the invariance of A we have that
h−k → ξ and f−k → ξ, but this contradicts Propostion 5.

As in section 5 we know that ∂Γ is infinite. Moreover, for any ξ ∈ ∂Γ
we can find a sequence of group elements gn → ξ and we can assume that
this sequence is doubly convergent thanks to sequential compactness. It
follows that ∂Γ is a perfect set, hence uncountable. Finally, as a probability
measure µ cannot have uncountably many atoms we see that we can pick a
nonatom ξ ∈ ∂Γ and a doubly convergent sequence gn such that g−1

n → ξ.
Proposition 3 now guarantees the required strong proximality property.
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