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Free-Surface Effects in 3D
Dislocation Dynamics:
Formulation and Modeling
Recent advances in 3-D dislocation dynamics include the proper treatment of free
faces in the simulations. Dislocation interaction and slip is treated as a boundary-v
problem for which a zero-traction condition is enforced at the external surfaces o
simulation box. Here, a new rigorous method is presented to handle such a treatmen
method is semi-analytical/numerical in nature in which we enforce a zero traction co
tion at select collocation points on a surface. The accuracy can be improved by incre
the number of collocation points. In this method, the image stress-field of a subsu
dislocation segment near a free surface is obtained by an image segment and
distribution of prismatic rectangular dislocation loops padding the surface. The l
centers are chosen to be the collocation points of the problem. The image segmen
proper selection of its Burgers vector components, annuls the undesired shear stres
the surface. The distributed loops annul the undesired normal stress component
collocation points, and in the process create no undesirable shear stresses. The m
derives from crack theory and falls under ‘‘generalized image stress analysis’’ where
distribution of dislocation geometries or entities (in this case closed rectangular loo
and not just simple mirror images, are used to satisfy the problem’s boundary condi
(BCs). Such BCs can, in a very general treatment, concern either stress tractio
displacements.@DOI: 10.1115/1.1479694#
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1 Introduction
There has been a great deal of interest in the literature w

regard to treating the interaction of dislocations with nearby f
surfaces. As it turns out, this is a classical problem of interest
importance in dislocation theory. For example, it is known that
an infinite screw dislocation situated near a free half-plane,
other screw dislocation of opposite sign and mirror position
needed to annul the stress traction on the surface. The effect o
free surface in this simple but illustrative case is evident. Here,
closer the subsurface dislocation is to the free surface, the stro
~and faster! it gets pulled to the surface by the image dislocatio
assisting in its fast removal from within the crystal; bringing ba
the order of the atomic arrangement. For an infinite edge dislo
tion near a free half-plane, the image dislocation problem
much more complicated than the simple mirror solution of a sc
dislocation even though, configurationally, this is still a simp
problem.

Since near-surface dislocation is a problem of importance, s
eral researchers have investigated different aspects of it, and
led it in different ways. Initially, Yoffe@1# determined the elastic
fields of a dislocation half-line terminating at a free surface of
isotropic elastic body for any angle of incidence and any Burg
vector. Bacon and Groves@2# and Groves and Bacon@3# obtained
the displacements of an infinitesimal dislocation loop of arbitr
orientation residing in a semi-infinite isotropic elastic mediu
The elastic field of a closed finite or semi-infinite dislocation lo
can thus be obtained by means of area integration using the re
for the infinitesimal loop. Maurissen and Capella@4,5# derived the
stress fields of a dislocation segment~and half-line! parallel and
perpendicular to a free surface of a semi-infinite isotropic m
dium, respectively. Concurrently with the works of Maurissen a
Capella@4,5# Comninou and Dundurs@6# found the elastic fields
associated with an angular dislocation in an elastic isotropic
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space. They remarked that the fields of any polygonal loop co
be constructed by superposition using their results. For an a
trary dislocation in an isotropic, homogenous half-space, Gos
and Willis @7# have expressed the stresses as a line integral aro
the dislocation. For the special case of a dislocation half-line,
integral was evaluated analytically to yield closed form solutio
for the stresses. These in turn can be used to find the stresse
line-segment in the half-space. The aforementioned solution
rather difficult to use and implement. Later in the paper, we p
pose an alternative treatment. Finally, Lothe et al.@8# developed
an integral expression for the case of a dislocation terminatin
the free surface of an anisotropic half-space. In this work th
solved the problem by a planar fan-shaped distribution of infin
straight dislocations which replaced the condition of a free s
face. This idea is similar to solving crack problems by the pro
distribution of stress sources~i.e., dislocation entities!.

2 Overview of 3-D Dislocation Dynamics„DD…

A discrete dislocation dynamics~DD! model,micro3d, has re-
cently been developed by Zbib et al.@9# and Rhee et al.@10#. The
DD model is a powerful tool for investigating the mechanic
response of materials on a mesoscopic scale. In a DD simula
the plastic deformation of a single crystal is obtained by expl
accounting of the dislocation evolution history, i.e., their moti
and structure. The motion and interaction of an ensemble of
locations in a three-dimensional crystal is integrated in time.

A typical simulation domain is a box of 5-30mm side length.
Dislocations are discretized into straight-line segments, and
stress field produced by each segment is calculated. There are
commonly used explicit expressions for the stress field of a di
cation line segment. One is given by Hirth and Lothe@11# using
local or body-fixed coordinate system, and the other is provid
by DeVincre@12# with respect to a global coordinate system. D
rect reference to a global coordinate system eliminates the in
mediate step of stress tensor transformation, something that,
itively, should reduce the computational effort.

The Peach-Koehler forceF acting on a dislocation segmen
inside the computational cell is calculated from the stress fie

uest
002 by ASME Transactions of the ASME
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due to immediate neighboring segments, all other dislocations
other crystal defects, and the applied stress. The force per unit
length acting on segmenti is expressed as:

Fi5S S (
j 51,j Þ i ,

j Þ i 11,j Þ i 21

N

s j
D1saD •bi D 3j i1Fi ,i 111Fi ,i 21 . (1)

Here, the superscripta refers to applied stresses, the last tw
terms in the equation represent closest neighbors’ contributi
s j

D represent the contribution of all other segments evaluate
the midpoint of segmenti , bi is the Burgers vector, andj i is the
line sense.

The result is used to advance the dislocation segment base
a linear mobility model:

vgi5MgiFgi (2)

wherevgi is the glide velocity of thei th dislocation segment,Mgi
is the dislocation mobility, andFgi is the glide component of the
Peach-Koehler force. In this equation,Fgi represents thenet force
causing glide after subtracting out the Peierls friction. Notice h
that the glide force,Fgi , represents the projection of the forceF
in the direction of the in-plane normal to the segment. Genera
Mgi is, among other things, a function of the dislocation charac
especially at low temperatures.

Based on the history of dislocation motion, one obtains a m
roscopic measure for the plastic strain rate tensorDP as

Dp5(
i 51

N
2 l ivgi

2V
~ni ^ bi1bi ^ ni !, (3)

whereni5vgi3j i is the unit normal to the slip plane of segme
i , l i is the segment length,V is the volume of the simulated
crystal, andN is the total number of dislocation segments. In t
DD code, only volume-conserving plastic deformation result
from dislocation slip is incorporated so far. On the other ha
nonvolume-conserving motion of dislocations~e.g., dislocation
climb! is not implemented. The stress rate is determined fr
Hooke’s law:

ṡ5 bCec~D2Dp! (4)

where@Ce# is the elasticity tensor, andD is the total strain rate
tensor.

In the simulation, segments that are on the verge of exp
encing short-range interactions are identified. Based on a se
physical rules, such reactions may result in the formation of ju
tions, jogs, dipoles, etc. The dislocations multiply by a variety
mechanisms that may involve jog collisions, standard Frank-R
source multiplication, and double cross slip. More details rega
ing the DD model can be found in the previous articles~Zbib and
co-workers,@9,10#!.

3 Theoretical Development
Consider Fig. 1 showing a subsurface dislocation segment~seg-

mentA1B1! in a computational cell representing a specimen o
single-crystal material. Here,XYZrepresent a globally fixed coor
dinate system. Without loss of generality, one can ascribe a l
coordinate systemxyz to the free surface, as Fig. 2 illustrate
Here,i, j , andk are an orthonormal basis for the Cartesian spa
n is a unit vector normal to the surface,b is the Burgers vector
associated with the segment,t1 is the line sense vector of th
segment. The condition of zero traction requires that the st
vector, T, associated with any surface point,P, is identically
equal to zero. In other words, we must haveT5sn50. This
translates to the condition:sxz5syz5szz50, at surface points. In
order to ensure no shear stresses at these points, it can be s
that a simple image construction across the surface~i.e., segment
A2B2 in Fig. 2, which is a mirror reflection of segmentA1B1!,
with the proper selection of the Burgers vector components,
fices to accomplish this task. In particular, this can be achieved
Journal of Engineering Materials and Technology
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A1B1 . This
can be proven after some careful analysis~details skipped! of the
stress fields associated with the two mirror segments. Form
for such fields are available in Hirth and Lothe@11#, and Devincre
@12#. This image solution, however, does not annul theszz com-
ponent of stress. In fact, this component turns out to be addi
for both segments at any surface point. The unannulledszz com-
ponent of these two segments together represent a contin
function of x andy, f (x,y), on the surface’s plane. To annul th
component of stress, there does not seem to be~at least intu-
itively! a simple image construction that would do so witho
causing shear stresses. Hence to annulszz component, a different
treatment is needed.

To annul theszz component, consider surfaceS in Fig. 3 on
which such annulment is desired. This surface represents a ce
portion of the total surface area, which can be small or big~up to
the total original surface area to which it belongs!. Lets further
subdivide S into N number of smaller square~or rectangular!
surface elements. The purpose of such division is to annul theszz
component in a discrete fashion by requiring it to be identica
zero at the centers of these elements. The satisfaction of su
requirement over all elements does not necessarily ensure its
isfaction at other surface points besides the centers of the
ments. Therefore this technique is numerical and approximat
character. More accuracy can be attained by further subdividinS
into an increasingly larger number of elements~i.e., using smaller
and smaller elements!. This further subdivision ofS works in

Fig. 1 A dislocation segment inside a computational box

Fig. 2 Segment A 1B 1 beneath a surface with ascribed local
coordinate system
JULY 2002, Vol. 124 Õ 343
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effect to ensure the satisfaction of the boundary condition at m
and more points on the surface~covering the whole surface in th
limit !.

So far, nothing has been said on how to achieve the nullifica
of theszz component at the midpoints, or centers, of the surfac
square~or rectangular! N elements. To accomplish this purpos
we propose to treat these elements as dislocation entities; in
mony with the idea of ‘‘generalized image stress analysis’’ d
cussed earlier. In particular, we propose to treat them as prism
dislocation loops. Figure 3 shows one of these rectangular d
cation loops, termedLoop i, illustrating its line sense and perpen
dicular Burgers vector with respect to a local or body-fixed co
dinate systemx8y8z8. The center of this loop in globalxyz
coordinates is (xO8

i ,yO8
i ,zO8

i ). The stress field of such prismati
loops can be derived by integration of the Peach-Koehler eq
tion, which expresses the stress field of an arbitrary curved di
cation in terms of a line integral~see the following!. Alternatively,
one can find the stress field of the loop as the additive sum, f
the principal of superposition, of the four dislocation segme
composing it. The stress field of a dislocation segment is give
Hirth and Lothe@11# and in Devincre@12# as discussed earlier.

From studying the characteristics of these prismatic loops,
using thex8y8z8 coordinate system, it turns out that at the cen
of these loops the only nonvanishing component of loop str
~from amongsxz , syz , szz! is theszz component. In the curren
context, the center of the loops can be considered as Gau
points at which determination of numerical quantities~in this case
stress! is desired. Based on the above, the annulment of theszz
component of stress at the center of any loop,i , ~in the presence
of the segment and its image! can be stated as follows:

szz
i 52(

j 51
j Þ i

N

szz
j 2szz

A1B12szz
A2B2 , i 51¯N, (5)

whereszz
j is the stress associated withLoop j ~evaluated of course

at the center ofLoop i!, szz
A1B1 is the stress associated with se

ment A1B1 , szz
A2B2 is the stress associated with segmentA2B2 .

Note that the unknown in each of the terms in Eq.~5! is the
magnitude of the perpendicular orz-component of the Burgers
vector (bz) of the dislocation loops. For each of these stress ter
this component ofb premultiplies some other terms or kerne
~i.e., it’s a separable coefficient of the stress terms correspon
to the loops in~5!!. Hence, for each loop,i , Eq.~5! corresponds to
a linear relationship betweenN unknowns; representing the un
known bz magnitudes of the loops. Applying Eq.~5! N times at
the centers of all loops produces a set ofN linear algebraic equa
tions that can be conventionally solved using whatever sys
solver of choice.

Fig. 3 A mesh of rectangular elements, representing prismatic
dislocation loops, covering area S upon which surface traction
annulment is sought. The inset shows one of these prismatic
dislocation loops.
344 Õ Vol. 124, JULY 2002
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Note that the above devised numerical scheme is self-consis
geometrically, numerically, and within the context of dislocati
theory. Note also that the extent of areaS upon which the bound-
ary condition is enforced is a problem parameter and can be
tended almost indefinitely. Finally, note that the choice of dis
cation loops to annul any undesirable surface tractions
advantageous. This is because the stress field of such loops ra
decays~i.e., as 1/r 3, wherer is the distance from the dislocatio
core!. Therefore, the loop distribution on an external surface,
representing one of the boundaries of a finite computational c
will have little effect on the tractions on other nearby surfac
~which will be perpendicularly oriented in the case of a cub
cell!. In other words, an assumption of uncoupling in the ima
treatment of the different surfaces would not be far fetched h
The accuracy of the above scheme for a given area sizeS can be
improved, as discussed earlier, using finer meshing~i.e., largerN,
or smaller and smaller loop sizes!.

Consider Eq.~5! again. Notice that it can be rewritten a
follows:

(
j 51

N

szz
j 52szz

A1B12szz
A2B2, i 51¯N, (6)

where it is understood that evaluation of quantities in~6! is done
at the center of the loop in question~i.e.,Loop i!. Now let the area
of each of the discretizing loops tend to an infinitesimal valu
dA8. Obviously, for a given surfaceS, infinitely many such small
loops will be needed to cover it. Each of these infinitesimal loo
has associated with it an infinitesimal Burgers vector direc
along thez-axis ~i.e., dbz8!. The distribution of these Burgers vec
tors naturally introduces a density function defined on
xy-plane, B(x8,y8), such that~at a given surface point! dbz8
5B(x8,y8)dA8. This is equivalent to stating thatB(x8,y8)
5dbz8/dA8. Hence, the summation in~6! can be replaced with an
integral, and one can instead write:

E
S
B~x8,y8!K~x2x8,y2y8!dA852szz

A1B12szz
A2B2, (7)

whereK(x2x8,y2y8) is the kernel of the stress term associat
with the infinitesimal loop located at (x8,y8) and discussed pre
viously. Now, assumingB(x8,y8) to be piecewise area constan
i.e., constant in value overN finite area elements, one can furth
write:

E
S
B~x8,y8!K~x2x8,y2y8!dA8

5(
j 51

N E
Aj

B~x8,y8!K~x2x8,y2y8!dA8

5(
j 51

N

Bj E
Aj

K~x2x8,y2y8!dA8, (8)

whereAj is the area of elementj .
Furthermore, the integral in Eq.~8! can be evaluated to firs

order as follows:

E
Aj

K~x2x8,y2y8!dA85K~x2xO8
j ,y2yO8

j
!Aj . (9)

In Eq. ~9!, the evaluation of the kernel is done at the center
element orLoop j. Finally, observing thatBjAj5bz

j , one can see
that combining this observation with Eqs.~9!, ~8!, and~7!, Eq. ~6!
results. Hence, the original statement of Eq.~5! represents a spe
cial case of~7!. Notice that although~7! is the more general state
ment of the problem, the equivalent statement, Eq.~5!, was ar-
rived at intuitively. The form of Eq.~7! is analogous to crack
Transactions of the ASME
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problems~see, e.g., Hills et al.@13#! which utilize a distribution or
pileup of dislocations to annul undesirable tractions on a cra
face.

4 The Stress Field of a Rectangular Prismatic Disloca-
tion Loop

As the section before explained, one needs to know the st
field of a rectangular prismatic dislocation loop. For one thing,
szz stress component of such a loop is needed in the annulme
traction forces as prescribed by Eq.~6!. Furthermore, once the
bz’s for all surface loops are determined, one would need to
culate all the stress components by these loops, along with
stresses induced by the image segmentA2B2 , at the center of
segmentA1B1 in order to evaluate the Peach-Koehler force act
on it.

To derive the stress field of a rectangular prismatic disloca
loop, one needs to integrate the Peach-Koehler~PK! contour inte-
gral for the loop geometry described in the inset of Fig. 3. The
equation is a line or contour integral that sums the stresse
differential dislocation line elements as one traverses a clo
loop ~of any curvature or shape! in the direction of the disloca-
tion’s line sense. The dislocation can have three component
the Burgers vector and the integration can be carried out w
respect to any coordinate system, in principle.

The PK equation is given by the following~see Hirth and Lothe
@11#!:

sab52
G

8p R
C
bm

P ima

]

]xi8
¹82Rdxb82

G

8p R
C
bm

P imb

]

]xi8
¹82Rdxa82

G

4p~12n! R
C
bm

P imkS ]3R

]xi8]xa8]xb8
2dab

]

]xi8
¹82RD dxk8 (10)

wherebi is the ~i th component of the! Burgers vector,P is the
permutation symbol,G is the shear modulus, andn is Poisson’s
ratio. The prime, used as a superscript, indicates quantities
longing to a traced differential line segmentdl8 of the dislocation
loop. The vectorR, with magnitudeR5uRu, is the difference
vector between the position vector ofdl8 ~i.e., rW85(x8,y8,z8)!
and position vector of a field point P~i.e., rW5(x,y,z),! i.e., R
5rW82rW.

To perform the integration, the indices in~10! should first be
expanded. This gives six independent equations, one for e
stress component~sx8x8 , sy8y8 , sz8z8 , sy8z8 , sx8z8 , andsx8y8!,
corresponding to a permutation of thea andb indices from 1 to 3.
We also note that the dislocation loop is chosen to lie in thexy
plane~i.e., z850!, and that¹82R52/R. In what follows, we omit
the lengthy integration steps for brevity and simply provide
final result in the Appendix~for details on the integration proces
the reader is referred to other previous work by the authors,
Khraishi et al.,@14,15#!. Note in the Appendix thata stands for
half of the loop’s side length in thex-direction~see Fig. 3!, andb
is half the side length in they-direction.

5 Numerical Implementation of the Problem
An alternative form for Eq.~6! is:

(
j 51

N

szz
j 522szz

A1B1 , i 51¯N, (11)

where the 2 in the right-hand side of the equation comes from
fact that the contributions of segmentsA1B1 andA2B2 are equal.
Journal of Engineering Materials and Technology
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Knowing that theszz stress component of a prismatic loop
equal to abz multiplying a kernelK(x,y), whenz50 ~see Ap-
pendix!, and thatszz

A1B1 evaluated in the plane under considerati
~i.e., S or the collocation points’ plane! is also a function ofx and
y only, one can express the last equation as:

(
j 51

N

bz
j K~xO8

i
2xO8

j ,yO8
i

2yO8
j

!522szz
A1B1ucenter of Loop i

52 f ~xO8
i ,yO8

i
!i 51¯N. (12)

For simplicity and without loss of generality, if one chooses t
sub-plane segment and its mirror image to lie in thexz-plane, one
can then write the functionf (x,y), using DeVincre’s expression
~Devincre@12#!, as:

f ~x,y!52~szz* ur
B1
8 2szz* ur

A1
8 !, (13)

szz* ur 85
G

pY2F 2~bxYy2byYx!tz1
2byYztx

12n

2
term*

12n
@~byYz2bzYy!tx1~bxYy2byYx!tz#

G ,

r 85~x8,y850,2z8!,

Yx5~x2x8!1Rtx ,Yy5y,Yz5z81Rtz ,Y5AYx
21Yy

21Yz
2,
(14)

R5A~x2x8!21y21z82,

term* 511tz
21

2Yz

Y2 F2~z82Ltz!1
L

R
YzG ,

L5~x2x8!tx1z8tz .

For a square prismatic loop~i.e., a5b!, the szz stress compo-
nent evaluated in the plane of the loop~i.e.,z50! simplifies to the
following form:

szz5bzK~x,y!

5
Gbz

4p~12n!

3S A~a2x!21~a2y!2

~a2x!~a2y!
1

A~a1x!21~a2y!2

~a1x!~a2y!

1
A~a2x!21~a1y!2

~a2x!~a1y!
1

A~a1x!21~a1y!2

~a1x!~a1y!

D .

(15)

Here,K(x,y) is the sought after kernel in Eq.~12!
Considering Eq.~12!, one can see thatN equations correspond

ing to N collocation points will be generated. The collocatio
points correspond toN rectangular prismatic surface loops wit
unknownbz’s. Hence we have at hand anN3N system of linear
algebraic equations:

(16)

In ~16!, the @A# matrix contains the interacting kernels and t
$C% vector is like a forcing vector that contains the negatives
the function f (x,y). This system of equations can be written
expanded form if desired but is skipped here for brevity. By e
amining the expanded form, it turns out that the@A# matrix is
fully-populated, symmetric~for equally-sized square loops!, and
diagonally dominant. The fully-populated feature is self explan
tory. The symmetry feature is due to the fact that for a squ
prismatic loopi , its kernel evaluated at the center of loopj is
exactly equal to the kernel ofj evaluated at the center ofi . Fi-
nally, the matrix is diagonally dominant because its kernel eva
JULY 2002, Vol. 124 Õ 345
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ated at its own center is much larger in magnitude than when
evaluated at other loops’ centers. As a matter of fact, the ke
decays as 1/r 3.

6 Results and Discussion
In the previous chapter, we have developed the theoretical

numerical treatments for the problem of a subsurface disloca
segment~segmentA1B1!. The problem was solved using an imag
dislocation segmentA2B2 ~of fixed Burgers vector! and a distri-
bution of N rectangular prismatic dislocation loops padding t
surface area in question. Here, the treatment leads to a li
system of algebraic equations the solution of which is the Burg
vectors of the surface loops. Once the Burgers vectors of the
face loops are known, one can compute the Peach-Koehler f
at the center of the segmentA1B1 as follows:

FA1B15S S (
i 51

N

s i1sa1sA2B2D •bA1B1D 3jA1B1. (17)

In Eq. ~17!, the superscriptsa and A2B2 refer to the applied
stresses and the image segment stresses, respectively. The su
tion in the above equation accumulates the effects of allN surface
loops ~as mentioned earlier, the stress field of a loop is given
the Appendix!. Note that the quantities in Eq.~17! can be first
evaluated with respect to a local or surface-attached coordi
system and then transformed back to a global reference fra
Note that based on physical intuition, the Peach-Koehler fo
acting on a subsurface segment~Eq. ~17!! tends to pull the seg-
ment toward the surface in order to minimize the crystal ener

Now in a finite simulation box as the ones typically consider
in 3-D DD studies, a segment in the box theoretically feels, t
greater or lesser extent, the effect of the different surfaces bo
ing the box. There are six surfaces in a cubical computatio
domain. To quantify the effect of each of these surfaces on
enclosed segment, using the above-described method, the bo
faces are padded or meshed with square surface loops. Th
depicted in Fig. 4. Each of the surfaces is numbered for iden
cation and a local coordinate system is attached to it. Notice
our global coordinate system is located at the center of the b

Now every segment in the box is reflected across the diffe
external surfaces as shown in Fig. 5. This provides for im
segments using the above-described method. Each one of
surfaces, of course, is padded with square dislocation loop
alluded to earlier. Once all of the above is in place, the surf
effect on a segment is the summation of the effect ofall six
external surfaces, calculated separately one at a time. To reite
we calculate the Peach-Koehler force on a segment from eac

Fig. 4 Faces of a DD computational box uniformly meshed
with square elements representing prismatic dislocation loops
346 Õ Vol. 124, JULY 2002
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the surfaces individually and independently, and later sum up t
contributions. This amounts to solvingsix linear systems of equa
tions for localbz’s corresponding to each of the surfaces. All
this has been implemented in themicro3dDD code. A variety of
results using this implementation have been obtained and are
sented below.

It is appropriate here to mention that, given the limits of ela
ticity theory, the force on a subsurface segment can only be
culated to within a core distance or depth~i.e., z-depth
50.5b-4b! from the surface. This is in harmony with other D
calculations which take this limitation into account and deal w
it similarly. This has to be taken into account, otherwise the d
location segment might overlap the core of surface disloca
loop; an invitation for numerical problems! This is not a serio
limitation by any means, as we will see later, because the fo
acting to pull the segment toward the surface at these small de
is tremendously high and causes the rapid vanishing of such
ments.

A note now on the solution of the linear system of algebr
equations~Eq. ~16!! is in order. To solve this system one ca
choose a solver of personal preference. For example, one
choose the Gauss-elimination method with partial pivoting a
scaling~see Chapra and Canale@16#!. Now due to the fact that the
@A# matrix in ~16! is diagonally dominant, one can be assur
convergence, if an iterative method like the Gauss-Seidel met
with relaxation ~see also the last reference! is chosen. Iterative
methods are known to be much faster than traditional Gau
elimination, especially for solving a large system of equatio
and can thus result in substantial timesavings. In addition,
precision of the final solution~i.e., the number of significant dig
its! is controllable when using iterative methods. More details
these issues, if needed, can be found in Khraishi@17#. Finally, it is
worth mentioning that both methods have been tried and prod
identical results as expected.

In order to test the above treatment of traction-free surfaces
most trivial study case is that of a subsurface screw disloca
segment that is parallel to the plane. Here the subsurface seg
had a length equal to the finite surface area dimension in
y-direction. The solution to this scenario has been compared w
the solution provided by Maurissen and Capella@4# for a horizon-
tal segment beneath a half-plane. It turns out that both solut
are identical~not shown here for brevity!. The reason for this is
trivial and it is because the screw horizontal segment does
create any undesirableszz stresses on the surface in need of a

Fig. 5 A dislocation segment in a DD computational box re-
flected off of the six external box surfaces
Transactions of the ASME
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nulment. This leads to a zero$bz% vector in the solution of~16!. In
other words, the solution for a subsurface horizontal screw di
cation segment is simply the image segment solution and is v
over the whole half-plane and not just the finite surface area. T
is identical to the treatment of infinitely long screw dislocati
lines parallel to the surface.

More comparisons between our solution for horizontal and v
tical segments beneath a finite surface area have been made
the solution provided by Maurissen and Capella for a half-pla
At the outset, one needs to recognize that the two solutions
not match due to area size differences. However, if one choos
large enough area, and a small enough segment away from
area corners and close to the finite plane, one should expe
good resemblance between the two solutions. This is underst
able because such a situated segment would ‘‘see’’ the large fi
area as if it were infinite! In all of the results below, the segm
length L, the shear modulusG, and Poisson ration, were set
equal to 100b, 42.25 Gpa, and 0.383, respectively.

Consider first a vertical subsurface segmentA1B1 . Segment
A1B1 lies along the negativez-axis. The line sense vector, how
ever, points in the positivez-direction, i.e.,j5~0,0,1!. The coor-
dinates ofA1 andB1 are~0,0,21100b! and~0,0,21000b!, respec-
tively. The Burgers vector has two nonzero componentsb
5(1/A3,0,1/A3). This choice of nonzero Burgers vector comp
nents corresponds to the choice made by Maurissen and Cape
their work. The finite surface areaS represents a square with
side of 20,000b. If one compares thesxx , syy , andszz compo-
nents using the above method with the method of Maurissen
Capella for an area division of 10310 intervals, i.e., 10 intervals
along a side totaling 100 surface loops, one gets Fig. 6. In
plot, the field or evaluation points are chosen to lie along an a
parallel to they-axis with x50, and at a depth of 400b from the
surface.

In Fig. 6, the stresses obtained by the two methods follow si
lar trends but noticeably differ in value. Perhaps this is due to
relatively low loop density~i.e., coarse mesh! used in conjunction
with the current solution. Therefore, one remedy might be to
crease the meshing density, i.e., decrease the loop size and
fore decrease the spacing between the collocation points on
surface. Intuitively speaking, increasing the number of collocat
points on a given surface should improve the performance of

Fig. 6 Comparisons of the stresses from the current work
„TK… versus the work by Maurissen and Capella „MC… for a sub-
surface vertical segment. Stresses are in Pa. The segment
points in the positive z-direction, has a zero y -component of b,
and a length of 100 b . The stresses are plotted along an axis
parallel to the y -axis at a depth of 400 b . The surface is 20,000 b
on each side and has a mesh density of 10 Ã10 loops.
Journal of Engineering Materials and Technology
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current solution. Figure 7 illustrates this idea using the hig
density of 30330 loops. In this figure we notice that the agre
ment between the two methods is better than before but is still
so great. If one increases the meshing density further as was
in Fig. 8 using a 50350 division, one sees that the two metho
give almost identical results. Increasing the meshing density
ther will only enhance the agreement between the stress com
nents obtained using the two methods~the plots from the two
methods will perfectly collapse on one another!.

Two comments are in order regarding Figs. 6-8. First, it is no
that the agreement between the current solution and that by M
rissen and Capella reached a climax, roughly, in Fig. 8 for wh
there were 50350 loops padding the surface~note that 50350 is
the largest mesh density of surface loops used here!. This meshing
density translates roughly to an average separation distanc
about 400b in between the collocation points. Incidentally, this
the same subsurface depth chosen for the evaluation points in
figures. This should come to no surprise if one reviews
premise of the current method. Here we are seeking the annulm
of szz stresses at the traction-free surface. We are achieving th
a discrete manner by enforcing compliance with the bound
condition at selected collocation points~which happen to be the
surface loops’ centers in this case!. This problem is basically an
elasticity problem and its solution has been formulated in t
context. St. Venant’s Principle of elasticity theory, however, sta
that agreement between an exact solution and an approximate

Fig. 7 Same as Fig. 6 but with a surface mesh density of
30Ã30 loops.

Fig. 8 Same as Fig. 6 but with a surface mesh density of
50Ã50 loops
JULY 2002, Vol. 124 Õ 347
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functionally equivalent, one at a boundary will be achieved if o
considers field points that lie more than a ‘‘characteristic’’ d
tance away from the boundary. The characteristic distance in
case can be thought of as the average separation distance be
collocation points where the boundary condition is enforced.
the meshing density is increased and the characteristic distan
decreased one expects that our approximate numerical sol
will coincide with the exact solution in the limit.

Now if one plots instead the variationsxy , sxz , andsyz along
the same axis as before, one would basically get similar resul
the sxx , syy , and szz cases described earlier, i.e., good agr
ment between the current solution and that of Maurissen
Capella. Figures are not shown here for brevity. Hence, it se
that the current solution, so far, checks very well against ot
existing solutions in the literature.

Now if one evaluates the stresses at depths from the surface
than the average separation distance between the colloc
points, one would see oscillations in the plotted curves. Th
oscillations are an inherent feature of the current solution and
be annihilated by simply increasing the mesh density to the ex
that the average separation distance between collocation po
equal or less than the field points depth. Also, if one determin
least squares high-degree polynomial fit for the oscillatory curv
one finds out that the oscillations occur about the correct beha
~i.e., they closely resemble the solution by Maurissen and Cap!
and are not oscillating vigorously. It is noticed here that the per
of the oscillations is equal to the average separation distance
tween the collocation points and that the oscillation amplitu
diminishes with increasing mesh density. More on this and p
illustrating this phenomenon can be found with reference
Khraishi et al.@18# and Khraishi@17#.

Finally, it must be mentioned that if one instead compares
Maurissen and Capella’s solution for ahorizontalsegment instead
of a vertical segment with the current method introduced in t
paper, one would also find satisfactory agreement. This was d
in Khraishi et al.@18# and Khraishi@17#.

More results can be obtained that tend to support the cur
method. For example, consider a subsurface horizontal disloca
segmentA1B1 . As the depth of the segment decreases, i.e.,
segment approaches the surface, the Peach-Koehler force p
it toward the surface should accordingly increase. In other wo
there is an inverse relationship between the Peach-Koehler fo
pull toward the surface and the segment depth. Figure 9 supp
this physical intuition. In addition, as the dislocation segm
length increases, the Peach-Koehler force acting on it and com

Fig. 9 The Peach-Koehler force pulling a subsurface horizon-
tal segment towards the surface versus the segment depth for
a fixed segment length
348 Õ Vol. 124, JULY 2002
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from the image stress analysis, should also increase becaus
segment has a ‘‘stronger presence’’ now. Figure 10 is a plot of
force pulling the segment toward the surface versus the segm
length. One can see that the plot is meaningful, since it extra
lates back to zero as the segment length completely diminish

Finally, some results from incorporating the above method
treating traction-free surfaces into themicro3d DD code are ex-
hibited. Figure 11 show stress-strain diagrams obtained from
simulations for cubic specimens 10,000b in size containing a dis-
location source close to one of the external surfaces. The sp
men was subjected to a tensile straining rate of 10 s21. In the
figure, a case of no surface loops~i.e., no treatment of the bound
ary condition! is compared to cases of surface padding of 10310,
20320, and 30330 loops. In this figure, one can clearly notice th
surface effect. Here the curves with boundary condition treatm
saturated at a higher stress than the curve obtained with no su
loops. This is understandable since the dislocation source is c
to an exterior surface, thus it is difficult to propagate dislocatio
away from this nearby surface~part of a typical Frank-Read

Fig. 10 The Peach-Koehler force pulling a subsurface horizon-
tal segment towards the surface versus the segment length for
a fixed segment depth

Fig. 11 Stress-strain diagrams from DD simulations for one
operational Frank-Read source in a cubic cell that is 10,000 b in
side length. The source is close to the cell’s external surfaces.
The continuous line correspond to no treatment of the traction-
free boundary condition, and the dashed lines corresponds to
an external surface mesh density of 10 Ã10 loops, 20 Ã20 loops,
and 30Ã30 loops.
Transactions of the ASME
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source action! thus reducing the extent of plastic flow for a give
applied stress. In other words, as the source tries to operate
mally as it would by emitting dislocation loops, it is held back b
the attraction of the nearby free surface. The effect of this is
cause a higher saturation level for the cases with surface loop
opposed to the case with no loops. If the dislocation source w
located to the interior of the simulation cell however, far aw
from surface effects predictably, one would notice the reverse
fect to what is above. In particular, the saturation level of
stress-strain curve for the surface-treated case would be at a l
level than that with no surface treatment. This is to be expec
since the surfaces would here assist in the operation of the so
and the glide of dislocation segments as opposed to hinde
them. Such a result was presented earlier by Khraishi et al.@18#.

7 Conclusions
This work presents a numerical treatment of the dislocat

image stress problem applicable to three-dimensional disloca
dynamics~DD!. The method meshes the external surfaces of
DD computational box with prismatic dislocation loops~which
are fictitious dislocations used as mathematical convenienc
provide auxiliary self-equilibrated stress terms in the problem f
mulation!. By utilizing ‘‘image’’ dislocation segments and findin
the Burgers vectors of the surface prismatic loops, one can sa
the traction-free boundary condition at select collocation po
~taken here as the loops’ centers although they don’t have to!
on the computational box’s external surfaces.

There are few things to notice about the current method. Firs
is computationally intensive adding to theO(N2) that dislocation
dynamics naturally poses. This is not a major drawback since
method can be accelerated using parallel processing techni
and because of nowadays Gegahertz computer processor sp
Journal of Engineering Materials and Technology
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Second, there are other methods to treat traction-free boun
conditions within the context of dislocation dynamics. The finit
element method~FEM! is popular in this regard. The advantage
this method over the FEM is that here there is no need to spe
displacement boundary conditions~which might not be appropri-
ate in some instances! to compute a numerical solution. Anothe
advantage is that in the FEM, one has to solve for displacem
at the FE nodes in a 3D spatial nodal array although the des
result from the solution is a derived one~i.e., stress values!. In this
context then, this would represent an extra step that is not f
utilized in the final analysis.

Third, very close to the corners of the computational box,
numerical solution calculated here is not completely accur
This is due to the use of the image dislocation segments since
help annul shear stresses on their symmetry surfaces but no
orthogonal ones at the corners. This also is not a major drawb
since instances of dislocation segments in corner regions
probabilistically small. Therefore, their effect on the total stre
solution is inherently minimized.

Fourth and last, it is worth noting that the solution methodolo
presented in this work is applicable to anisotropic as well as
tropic elasticity problems. However, calculating the stresses
in-the-box dislocation segments using anisotropic elasticity the
is an endeavor far from being trivial and the dynamic analysis
the problem would pose an even more formidable task.

Appendix
The stress components of a rectangular prismatic disloca

loop of side lengths 2a and 2b along thex and y-directions,
respectively, are:
sxx5
2Gbz

2p S ~2a1x!~2b1y!

~~2b1y!21z2!A~2a1x!21~2b1y!21z2
2

~a1x!~2b1y!

~~2b1y!21z2!A~a1x!21~2b1y!21z2

2
~2a1x!~b1y!

~~b1y!21z2!A~2a1x!21~b1y!21z2
1

~a1x!~b1y!

~~b1y!21z2!A~a1x!21~b1y!21z2

D 2Gbz

4p~12n!

3

¨

2
~2a1x!~2b1y!~2~2a1x!21~2b1y!21z2!

~~2b1y!21z2!~~2a1x!21~2b1y!21z2!3/2 1
~a1x!~2b1y!~2~a1x!21~2b1y!21z2!

~~2b1y!21z2!~~a1x!21~2b1y!21z2!3/2

1
~2a1x!~b1y!~2~2a1x!21~b1y!21z2!

~~b1y!21z2!~~2a1x!21~b1y!21z2!3/2 2
~a1x!~b1y!~2~a1x!21~b1y!21z2!

~~b1y!21z2!~~a1x!21~b1y!21z2!3/2

2
~2a1x!~2b1y!~2~2a1x!41~~2a1x!22z2!~~2b1y!21z2!!

~~2a1x!21z2!2~~2a1x!21~2b1y!21z2!3/2

1
~2a1x!~b1y!~2~2a1x!41~~2a1x!22z2!~~b1y!21z2!!

~~2a1x!21z2!2~~2a1x!21~b1y!21z2!3/2

1
~a1x!~2b1y!~2~a1x!41~~a1x!22z2!~~2b1y!21z2!!

~~a1x!21z2!2~~a1x!21~2b1y!21z2!3/2

2
~a1x!~b1y!~2~a1x!41~~a1x!22z2!~~b1y!21z2!!

~~a1x!21z2!2~~a1x!21~b1y!21z2!3/2

©
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sxy5
2Gbz

2p S 1

A~2a1x!21~2b1y!21z2
2

1

A~a1x!21~2b1y!21z2

2
1

A~2a1x!21~b1y!21z2
1

1

A~a1x!21~b1y!21z2

D 2Gbz

4p~12n!

31
2

~2a1x!21z2

~~2a1x!21~2b1y!21z2!3/21
~a1x!21z2

~~a1x!21~2b1y!21z2!3/2

1
~2a1x!21z2

~~2a1x!21~b1y!21z2!3/22
~a1x!21z2

~~a1x!21~b1y!21z2!3/2

2
~2b1y!21z2

~~2a1x!21~2b1y!21z2!3/21
~b1y!21z2

~~2a1x!21~b1y!21z2!3/2

1
~2b1y!21z2

~~a1x!21~2b1y!21z2!3/22
~b1y!21z2

~~a1x!21~b1y!21z2!3/2

2

szz5
2Gbz

4p~12n!

¨

2
~2a1x!~2b1y!~~2a1x!41z2~3~2b1y!214z2!1~2a1x!2~~2b1y!215z2!!

~~2a1x!21z2!2~~2a1x!21~2b1y!21z2!3/2

1
~2a1x!~b1y!~~2a1x!41z2~3~b1y!214z2!1~2a1x!2~~b1y!215z2!!

~~2a1x!21z2!2~~2a1x!21~b1y!21z2!3/2

1
~a1x!~2b1y!~~a1x!41z2~3~2b1y!214z2!1~a1x!2~~2b1y!215z2!!

~~a1x!21z2!2~~a1x!21~2b1y!21z2!3/2

2
~a1x!~b1y!~~a1x!41z2~3~b1y!214z2!1~a1x!2~~b1y!215z2!!

~~a1x!21z2!2~~a1x!21~b1y!21z2!3/2

2
~2a1x!~2b1y!~~2b1y!41z2~3~2a1x!214z2!1~2b1y!2~~2a1x!215z2!!

~~2b1y!21z2!2~~2a1x!21~2b1y!21z2!3/2

1
~a1x!~2b1y!~~2b1y!41z2~3~a1x!214z2!1~2b1y!2~~a1x!215z2!!

~~2b1y!21z2!2~~a1x!21~2b1y!21z2!3/2

1
~2a1x!~b1y!~~b1y!41z2~3~2a1x!214z2!1~b1y!2~~2a1x!215z2!!

~~b1y!21z2!2~~2a1x!21~b1y!21z2!3/2

2
~a1x!~b1y!~~b1y!41z2~3~a1x!214z2!1~b1y!2~~a1x!215z2!!

~~b1y!21z2!2~~a1x!21~b1y!21z2!3/2

©

syz5
2Gbz

4p~12n!

¨

~2a1x!z

~~2a1x!21~2b1y!21z2!3/22
~2a1x!z

~~2a1x!21~b1y!21z2!3/2

2
~a1x!z

~~a1x!21~2b1y!21z2!3/21
~a1x!z

~~a1x!21~b1y!21z2!3/2

2
~2a1x!z~2~2b1y!41~2b1y!2~~2a1x!21z2!2z2~~2a1x!21z2!!

~~2b1y!21z2!2~~2a1x!21~2b1y!21z2!3/2

1
~a1x!z~2~2b1y!41~2b1y!2~~a1x!21z2!2z2~~a1x!21z2!!

~~2b1y!21z2!2~~a1x!21~2b1y!21z2!3/2

1
~2a1x!z~2~b1y!41~b1y!2~~2a1x!21z2!2z2~~2a1x!21z2!!

~~b1y!21z2!2~~2a1x!21~b1y!21z2!3/2

2
~a1x!z~2~b1y!41~b1y!2~~a1x!21z2!2z2~~a1x!21z2!!

~~b1y!21z2!2~~a1x!21~b1y!21z2!3/2

©
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Here, syy and sxz can both be obtained fromsxx and syz , re-
spectively, by interchanging bothx andy, anda andb. Note that
the ‘‘prime’’ ~see the inset of Fig. 3! has been removed from thex,
y, andz symbols above for convenience.
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