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1 Introduction space. They remarked that the fields of any polygonal loop could

There has been a great deal of interest in the literature W@i constructed by superposition using their results. For an arbi-

regard to treating the interaction of dislocations with nearby free. . dislocation in an isotropic, homogenous half-space, Gosling
9 aling o > : Y 1rehd willis [7] have expressed the stresses as a line integral around
surfaces. As it turns out, this is a classical problem of interest a

importance in dislocation theorv. For examole. it is known that f dislocation. For the special case of a dislocation half-line, the
portar ; . Y. pie, ciFltegraI was evaluated analytically to yield closed form solutions
an infinite screw dislocation situated near a free half-plane,

&% the stresses. These in turn can be used to find the stresses of a

other screw dislocation of opppsite sign and mirror position e-segment in the half-space. The aforementioned solution is
needed to annul the stress traction on the surface. The effect of thg -~ disti oLt to use and implement. Later in the paper, we pro-

free surface in this simple but illustrative case is evident. Here, t se an alternative treatment. Finally, Lothe ef8].developed
closer the subsurface dislocation is to the free surface, the stron flintegral expression for the 'case of’a dislocatioh terminating at
(and fasterit gets pulled to the surface by the image dislocatio

PPN o R he free surface of an anisotropic half-space. In this work they
assisting in its fast removal from within the crystal; bringing .bac olved the problem by a planar fan-shaped distribution of infinite

Cﬁfaight dislocations which replaced the condition of a free sur-

tion near a free half-plane, the image dislocation problem {§:q Thjs idea is similar to solving crack problems by the proper
much more complicated than the simple mirror solution of a sCre)stribution of stress sourcdse., dislocation entities

dislocation even though, configurationally, this is still a simple
problem. 2 Overview of 3-D Dislocation Dynamics(DD)

Since near-surface dislocation is a problem of importance, sev- . ) . )
eral researchers have investigated different aspects of it, and tack? discrete dislocation dynamid®D) model, micro3d has re-
led it in different ways. Initially, Yoffe[1] determined the elastic cently been developed by Zbib et f8] and Rhee et a[.10]. The
fields of a dislocation half-line terminating at a free surface of dnP model is a powerful tool for investigating the mechanical
isotropic elastic body for any angle of incidence and any Burgef&SPonse of materials on a mesoscopic scale. In a DD simulation,
vector. Bacon and Grovég] and Groves and Bacdi] obtained the plas_tlc deformat_lon of a single c_rysta'l is obt_alned b_y exp!lcn
the displacements of an infinitesimal dislocation loop of arbitragccounting of the dislocation evolution history, i.e., their motion
orientation residing in a semi-infinite isotropic elastic medijunfind Structure. The motion and interaction of an ensemble of dis-
The elastic field of a closed finite or semi-infinite dislocation loofcations in a three-dimensional crystal is integrated in time.
can thus be obtained by means of area integration using the resBI_té typical simulation domain is a box of 5-3m side length.

for the infinitesimal loop. Maurissen and CapéHas] derived the islocations are discretized into straight-line segments, and the
stress fields of a dislocation segméand half-ling parallel and Stress field produced by each segment is calculated. There are two
perpendicular to a free surface of a semi-infinite isotropic mgommonly used explicit expressions for the stress field of a dislo-
gation line segment. One is given by Hirth and Loffi&¢] using

dium, respectively. Concurrently with the works of Maurissen anI | or bodv-fixed dinat i d the other | ided
Capella[4,5] Comninou and Dundurfs] found the elastic fields OC% ci;. 0 yi'zxe _tﬁoor Inatet SYs elrrc) Tm de' Ot er |stprov||3_e
associated with an angular dislocation in an elastic isotropic h&ly DeVincre[12] with respect to a global coordinate system. Di-
rect reference to a global coordinate system eliminates the inter-
comtibuted by the Materials Division f biication in theuR . mediate step of stress tensor transformation, something that, intu-
ontripute y the Materials Division Tor publication in NAL OF ENGI- H H
NEERING MATERIALS AND TECHNOLOGY. Manuscript received by the Materials itively, should reduce the compu_tatlonal Eﬁo.rt' .
Division September 4, 2001; revised manuscript received March 15, 2002. Gu_estThe PeaCh'Koehl'er forc& "’_‘Ctmg on a dislocation segme_nt
Editors: Tarig A. Khraishi and Hussein M. Zbib. inside the computational cell is calculated from the stress fields
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due to immediate neighboring segments, all other dislocations, a” 4
other crystal defects, and the applied stress. The force per unit lin
length acting on segmeintis expressed as:

N
Fi=(( > (TjD+‘Ta)’bi)X§i+Fi,i+1+Fi,i1- (1)

j=1j#i, : :

jEI+Lj#I—1 ! !

Here, the superscripa refers to applied stresses, the last two ' '

terms in the equation represent closest neighbors’ contributions AN

0}3 represent the contribution of all other segments evaluated & ;

the midpoint of segmerit, b; is the Burgers vector, ang| is the B1
line sense.

The result is used to advance the dislocation segment based ¢
a linear mobility model:

Ugi:Mging 2

whereu g; is the glide velocity of théth dislocation segmeni g; Y
is the dislocation mobility, ané g; is the glide component of the
Peach-Koehler force. In this equatidfy; represents thaetforce
causing glide after subtracting out the Peierls friction. Notice here
that the glide forcef;, represents the projection of the foree
in the direction of the in-plane normal to the segment. Generally, ' _ o _
M, is, among other things, a function of the dislocation character,Fig. 1 A dislocation segment inside a computational box
especially at low temperatures.
Based on the history of dislocation motion, one obtains a mac-
roscopic measure for the plastic strain rate teri¥oas settingbszz: blel, b’:zBZ: _ bﬁlBl, andb?282= _p™B1_ This
N can be proven after some careful analysistails skippegof the
Dp=2 2'\/9' (n;i®b;+b;®n;), (3) stress fields associated with the two mirror segments. Formulas
i=1 for such fields are available in Hirth and LotfEL], and Devincre
wheren;=v ;X & is the unit normal to the slip plane of segment12]. This image solution, however, does not annul the com-
i, I, is the segment lengthy is the volume of the simulated ponent of stress. In fact, this component turns out to be additive
crystal, andN is the total number of dislocation segments. In théor both segments at any surface point. The unannufigccom-
DD code, only volume-conserving plastic deformation resultingjonent of these two segments together represent a continuous
from dislocation slip is incorporated so far. On the other handéinction ofx andy, f(x,y), on the surface’s plane. To annul this
nonvolume-conserving motion of dislocatiolie.g., dislocation component of stress, there does not seem tdabdeast intu-
climb) is not implemented. The stress rate is determined froffively) a simple image construction that would do so without
Hooke’s law: causing shear stresses. Hence to amnylcomponent, a different
) treatment is needed.
o=|C*(D-DP) (4) To annul theo,, component, consider surfa&in Fig. 3 on
where[C®] is the elasticity tensor, anB is the total strain rate whiqh such annulment is desired. This surface represents a certain
tensor. portion of the total surface area, which can be small or(bfyto
In the simulation, segments that are on the verge of expeﬂf'-e tptal original surface area to which it belopgsets further
encing short-range interactions are identified. Based on a setSypdivide S into N number of smaller squaréor rectangular
physical rules, such reactions may result in the formation of jungurface elements. The purpose of such division is to annurthe
tions, jogs, dipoles, etc. The dislocations multiply by a variety gomponent in a discrete fashion by requiring it to be_ identically
mechanisms that may involve jog collisions, standard Frank-Re&@r© at the centers of these elements. The satisfaction of such a
source multiplication, and double cross slip. More details regarfgduirement over all elements does not necessarily ensure its sat-

ing the DD model can be found in the previous articgbib and isfaction at other surface points besides the centers of the ele-
co-workers[9,10)). ments. Therefore this technique is numerical and approximate in

character. More accuracy can be attained by further subdivigling
into an increasingly larger number of elemefits., using smaller
and smaller elementsThis further subdivision ofS works in

3 Theoretical Development

Consider Fig. 1 showing a subsurface dislocation segiiseg:
mentA;B,) in a computational cell representing a specimen of a
single-crystal material. Her&XYZrepresent a globally fixed coor-

dinate system. Without loss of generality, one can ascribe a local 7k .
coordinate systenxyz to the free surface, as Fig. 2 illustrates. B% »J
Here,i, j, andk are an orthonormal basis for the Cartesian space, % b

n is a unit vector normal to the surface,is the Burgers vector AL )>pt_ P
associated with the segmerty, is the line sense vector of the

segment. The condition of zero traction requires that the stress I":(O’O’l)

vector, T, associated with any surface poirR, is identically . }1/ xe
equal to zero. In other words, we must haVe-on=0. This

translates to the conditiow:,,= o,,= 0,,=0, at surface points. In
order to ensure no shear stresses at these points, it can be shown B,
that a simple image construction across the surfaeg segment
A,B, in Fig. 2, which is a mirror reflection of segmeAtB,),
with the proper selection of the Burgers vector components, sifig. 2 Segment A,B, beneath a surface with ascribed local
fices to accomplish this task. In particular, this can be achieved byordinate system

3
¥
=
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7k Note that the above devised numerical scheme is self-consistent
BVy,j geometrically, numerically, and within the context of dislocation

g/ theory. Note also that the extent of ai®aipon which the bound-
L ] ary condition is enforced is a problem parameter and can be ex-
} s et ',/""WP 2 tended almost indefinitely. Finally, note that the choice of dislo-
n=1041)" = 1 & . cation loops to annul any undesirable surface tractions is
= e e < X, 1 advantageous. This is because the stress field of such loops rapidly
e - . : : f"’ : decays(i.e., as %, wherer is the distance from the dislocation
1\t1\ core). Therefore, the loop distribution on an external surface, say

representing one of the boundaries of a finite computational cell,

B
X ' will have little effect on the tractions on other nearby surfaces
(which will be perpendicularly oriented in the case of a cubic
cell). In other words, an assumption of uncoupling in the image
Fig. 3 A mesh of rectangular elements, representing prismatic treatment of the different surfaces would not be far fetched here.
dislocation loops, covering area S upon which surface traction The accuracy of the above scheme for a given areaSzmn be
annulment is sought. The inset shows one of these prismatic improved, as discussed earlier, using finer mesfiieg largerN,
dislocation loops. or smaller and smaller loop sizes
Consider Eq.(5) again. Notice that it can be rewritten as
follows:
effect to ensure the satisfaction of the boundary condition at more . i ABy  AB, )
and more points on the surfa¢eovering the whole surface in the le 0277 70z 704z 5 I1=1-N, (6)

limit).

So far, nothing has been said on how to achieve the nullificatigéhere it is understood that evaluation of quantitiegghis done
of the o,, component at the midpoints, or centers, of the surfaces the center of the loop in questidire., Loop i). Now let the area
square(or rectangularN elements. To accomplish this purposeof each of the discretizing loops tend to an infinitesimal value,
we propose to treat these elements as dislocation entities; in hg Obviously, for a given surfac8, infinitely many such small
mony with the idea of “generalized image stress analysis” digoops will be needed to cover it. Each of these infinitesimal loops
cussed earlier. In particular, we propose to treat them as prisma{igs associated with it an infinitesimal Burgers vector directed
dislocation loops. Figure 3 shows one of these rectangular dlsg]bng thez-axis (i.e., db,). The distribution of these Burgers vec-

cation loops, termetloop i, illustrating its line sense and perpen-, s “natyrally introduces a density function defined on the

dicular Burgers vector with respect to a local or body-fixed coor: 't : : ,
dinate systemx'y’z’. The center of this loop in globakyz §<y plane, B(x'y’), such that(at a given surface pointdb,

. NV A ) . . =B(x',y’")dA’. This is equivalent to stating thaB(x',y’)
coordinates is X, Yo 1Zo,). The stress field of such prismatic _ 1/ i'a’ Hence the summation i) can be replaced with an
loops can be derived by integration of the Peach-Koehler eq z '

Rtegral, and one can instead write:
tion, which expresses the stress field of an arbitrary curved dislo- gral,

cation in terms of a line integrdsee the following Alternatively, AB A
one can find the stress field of the loop as the additive sum, from B(X".y)K(x=x",y=y")dA'=—0o ;" =0a, 72 (7)
the principal of superposition, of the four dislocation segments S

composing it. The stress field of a dislocation segment is given | ol oy .
Hirth and Lothe[11] and in Devincrg12] as discussed earlier. \}vrhereK(x x',y—y') is the kemel of the stress term associated

From studying the characteristics of these prismatic loops, 4 h the |nf|n|te5|mal_loop I,oc?ted atx(,)_/ ) an_d discussed pre-
viously. Now, assumindd(x’,y’) to be piecewise area constant,

using thex'y’z" coordinate system, it tums out that at the cente constant in value ové\ finite area elements, one can further
of these loops the only nonvanishing component of loop strelss: '

(from amongoy,, oy, 0, is the o,, component. In the current write:
context, the center of the loops can be considered as Gaussian
points at which determination of numerical quantitigsthis case f B(x',y")K(x—=x",y—y")dA’
stres$ is desired. Based on the above, the annulment ofothe S

component of stress at the center of any ldg@in the presence
of the segment and its imagean be stated as follows:

Il
M _

f B,y )K(x=x",y—y")dA’
1 Al

J

7z zz ! N
j#il =J_Zl B! fAjK(xfx’,yfy’)dA’, (8)

whereg’,, is the stress associated withop j (evaluated of course . )
at the center of.oop i) 021P1 is the stress associated with SegyvhereAJ is the area of elemer)t )

B 22 ) ) Furthermore, the integral in E48) can be evaluated to first
mentA;B,, 0,27 is the stress associated with segm@aB,. order as follows:
Note that the unknown in each of the terms in Ef) is the
magnitude of the perpendicular @arcomponent of the Burgers
vector (b,) of the dislocation loops. For each of these stress terms,
this component ob premultiplies some other terms or kernels
(i.e., it's a separable coefficient of the stress terms correspondifigEd. (9), the evaluation of the kernel is done at the center of
to the loops in(5)). Hence, for each loop, Eq.(5) corresponds to element orLoop j. Finally, observing thaB'A!=b!,, one can see
a linear relationship betweeN unknowns; representing the un-that combining this observation with Eq9), (8), and(7), Eg. (6)
known b, magnitudes of the loops. Applying E¢) N times at results. Hence, the original statement of E%).represents a spe-
the centers of all loops produces a set\bfinear algebraic equa- cial case of 7). Notice that althouglt7) is the more general state-
tions that can be conventionally solved using whatever systament of the problem, the equivalent statement, &), was ar-
solver of choice. rived at intuitively. The form of Eq(7) is analogous to crack

N
a'iZZ: — JZ O'jZZ_ oh1BL_ A2B2 i=1---N, (5)

J’ _K(x—x/,y—y’)dA’:K(x—on,,y—yjo,)Aj. 9)
Al
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problems(see, e.g., Hills et a[13]) which utilize a distribution or ~ Knowing that theo,, stress component of a prismatic loop is

pileup of dislocations to annul undesirable tractions on a craclegjual to ab, multiplying a kernelK(x,y), whenz=0 (see Ap-

face. pendix, and thara’;lel evaluated in the plane under consideration
(i.e., S or the collocation points’ planas also a function ok and

4 The Stress Field of a Rectangular Prismatic Disloca- y only, one can express the last equation as:

tion Loop N

o o . .
As the section before explained, one needs to know the stress_z bIK(Xg: = X5 Yo = Yo ) = =20, center of Loop i

field of a rectangular prismatic dislocation loop. For one thing, the =*

04, Stress component of such a loop is needed in the annulment of =— f(xio, ,yio,)i =1---N. (12)

traction forces as prescribed by E@). Furthermore, once the o ) o

b,’s for all surface loops are determined, one would need to c40F Simplicity and without loss of generality, if one chooses the

culate all the stress components by these loops, along with #iP-Plane segment and its mirror image to lie mxlgeplane, one

stresses induced by the image segmayB,, at the center of can then write the functiofi(x,y), using DeVincre's expression

segment\,B, in order to evaluate the Peach-Koehler force actingevincre[12)), as:

on it. f(x,y)=2(03)r =071 ), 13)
To derive the stress field of a rectangular prismatic dislocation ZZ|rBl leAl
loop, one needs to integrate the Peach-Koefi&) contour inte- 2b.Y
. . . . y ztx
gral for the loop geometry described in the inset of Fig. 3. The PK 2(b,Yy—by Yt + -

equation is a line or contour integral that sums the stresses o *),=
differential dislocation line elements as one traverses a closed?®”  7Y? ternt ’

loop (of any curvature or shapeén the direction of the disloca- — 7=, [(byYz=b.Yy)ti+(byYy—=byY,t,]
tion’s line sense. The dislocation can have three components of
the Burgers vector and the integration can be carried out with r'=x",y'=0,-2"),

respect to any coordinate system, in principle.
The PK equation is given by the followirigee Hirth and Lothe

[11]):
G R=(x—x)2+y2+2'?,

Y= (x=X)+RY,Yy=y,Y, =2 +Rt, Y=Y+ Y + Y7,
(14)

Tap="g— P bm 2Y L
87 Je ternf‘:1+t§+y—22 2(2’—Ltz)+§Yz},
J 12 G ’ ’
Eimaﬁ—x{v RdX;;— 8n Cbm . LZ-(X—X. i+ 2z't,.
For a square prismatic loofp.e., a=b), the o, stress compo-
9 , ax. G % b nent evaluated in the plane of the log.,z=0) simplifies to the
€img— V' ‘RdX — ——F— following form:
mB gx; 4m(1-v) Jo M 9
3 O-ZZ: bZK(XIy)
IR 5 i V2R |dx, 10 Gb
€ imk ﬂxi,ﬁX;ﬁX/B af &Xi, Xy ( ) _ z
. . ) da(l-v)

whereb; is the (ith component of theBurgers vector,e is the
permutation symbolG is the shear modulus, andis Poisson’s J(@a—x)2+(a-y)? (a+x)?>+(a—y)?
ratio. The prime, usc_ad as a superscript, indicates quantities be- (a—x)(a—y) (a+x)(a—y)
longing to a traced differential line segmaetit of the dislocation 5 5 5 5
loop. The vectorR, with magnitudeR=|R|, is the difference Va—x)?+(a+y)® (@+x)’+(aty)
vector between the position vector df’ (i.e., /' =(x",y’,z")) (a—x)(aty) (at+x)(aty)
and position vector of a field point R.e., F=(x,y,z),) i.e.,, R (15)
=r"—T.

To perform the integration, the indices (@0) should first be Here,K(x,y) is the sought after kernel in E¢12)

expanded. This gives six independent equations, one for eaclfFonsidering Eq(12), one can see th&t equations correspond-
SIress CompOoNertr iy , Tyryr, Tprgry Ty, Tyrgr, @aNdayy), NG to N collocation points will be generated. The collocation

corresponding to a permutation of theand g indices from 1 to 3. Points correspond t& rectangular prismatic surface loops with
We also note that the dislocation loop is chosen to lie inxjge Unknownb,'s. Hence we have at hand &hx N system of linear

plane(i.e.,z’=0), and thatV’?R=2/R. In what follows, we omit algebraic equations:
the lengthy integration steps for brevity and simply provide the

final result in the Appendixfor details on the integration process, [A] {»}={C},
the reader is referred to other previous work by the authors, e.g., —_— = e (16)
Khraishi et al.,[14,15)). Note in the Appendix tha& stands for NXN NX1 NXx1

half of the loop’s side length in the-direction(see Fig. 3, andb

is half the side length in thg-direction. In (16), the[ A] matrix contains the interacting kernels and the

{C} vector is like a forcing vector that contains the negatives of
. . the functionf(x,y). This system of equations can be written in
5 Numerical Implementation of the Problem expanded form if desired but is skipped here for brevity. By ex-
An alternative form for Eq(6) is: amining the expanded form, it turns out that fh&] matrix is
N fully-populated, symmetri¢for equally-sized square loopsand
. AB ) diagonally dominant. The fully-populated feature is self explana-
>, o= 200", i=1--N, (11)  tory. The symmetry feature is due to the fact that for a square
=1 prismatic loopi, its kernel evaluated at the center of lopps
where the 2 in the right-hand side of the equation comes from tegactly equal to the kernel gf evaluated at the center of Fi-
fact that the contributions of segmem#s$B, andA,B, are equal. nally, the matrix is diagonally dominant because its kernel evalu-
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ated at its own center is much larger in magnitude than when it -
evaluated at other loops’ centers. As a matter of fact, the kern \
s

decays as t7.

6 Results and Discussion

In the previous chapter, we have developed the theoretical ai -
numerical treatments for the problem of a subsurface dislocatic
segmentsegment\;B;). The problem was solved using an image
dislocation segmemA,B, (of fixed Burgers vectgrand a distri- / /
bution of N rectangular prismatic dislocation loops padding the
surface area in question. Here, the treatment leads to a line
system of algebraic equations the solution of which is the Burge!
vectors of the surface loops. Once the Burgers vectors of the st
face loops are known, one can compute the Peach-Koehler for
at the center of the segmeAiB; as follows:

N
FA1B1— ( ( E o+ g+ gP2B2
=1

. bAlE‘l) xgMBL o (17)

In Eq. (17), the superscripta and A,B, refer to the applied /

stresses and the image segment stresses, respectively. The surplrgaé A dislocation segment in a DD computational box re-
tion in the above equation accumulates the effects dfl @lrface ﬂec.ted off of the six external box surfaces

loops (as mentioned earlier, the stress field of a loop is given In

the Appendix. Note that the quantities in Eq1l7) can be first

evaluated with respect to a local or surface-attached coordinate

system and then transformed back to a global reference framige surfaces individually and independently, and later sum up their
Note that based on physical intuition, the Peach-Koehler foregntributions. This amounts to solvirsix linear systems of equa-
acting on a subsurface segmeBy. (17)) tends to pull the seg- tions for localb,’s corresponding to each of the surfaces. All of
ment toward the surface in order to minimize the crystal energyhis has been implemented in theicro3d DD code. A variety of

~ Now in a finite simulation box as the ones typically consideregbsults using this implementation have been obtained and are pre-
in 3-D DD studies, a segment in the box theoretically feels, tosented below.

greater or lesser extent, the effect of the different surfaces boundit is appropriate here to mention that, given the limits of elas-
ing the box. There are six surfaces in a cubical computationgity theory, the force on a subsurface segment can only be cal-
domain. To quantify the effect of each of these surfaces on golated to within a core distance or depffie., z-depth
enclosed segment, using the above-described method, the boX su:5h-4b) from the surface. This is in harmony with other DD
faces are padded or meshed with square surface loops. Thigdfculations which take this limitation into account and deal with
depicted in Fig. 4. Each of the surfaces is numbered for identifi-similarly. This has to be taken into account, otherwise the dis-
cation and a local coordinate system is attached to it. Notice th@éation segment m|ght over|ap the core of surface dislocation
our global coordinate system is located at the center of the boxeop; an invitation for numerical problems! This is not a serious

Now every segment in the box is reflected across the differeffitation by any means, as we will see later, because the force
external surfaces as shown in Fig. 5. This provides for imaggting to pull the segment toward the surface at these small depths
segments using the above-described method. Each one of thesgemendously high and causes the rapid vanishing of such seg-
surfaces, of course, is padded with square dislocation loops ragnts.
alluded to earlier. Once all of the above is in place, the surfaceA note now on the solution of the linear system of algebraic
effect on a segment is the summation of the effectalbfsix equations(Eq. (16)) is in order. To solve this system one can
external surfaces, calculated separately one at a time. To reitergigyose a solver of personal preference. For example, one can
we calculate the Peach-Koehler force on a segment from eachcibose the Gauss-elimination method with partial pivoting and
scaling(see Chapra and Candl5]). Now due to the fact that the
[A] matrix in (16) is diagonally dominant, one can be assured
convergence, if an iterative method like the Gauss-Seidel method
with relaxation(see also the last referencis chosen. Iterative
methods are known to be much faster than traditional Gauss-
elimination, especially for solving a large system of equations,
and can thus result in substantial timesavings. In addition, the
precision of the final solutiofi.e., the number of significant dig-
its) is controllable when using iterative methods. More details on
these issues, if needed, can be found in Khrdis#j. Finally, it is
worth mentioning that both methods have been tried and produce
identical results as expected.

In order to test the above treatment of traction-free surfaces, the
most trivial study case is that of a subsurface screw dislocation
3 segment that is parallel to the plane. Here the subsurface segment
[ had a length equal to the finite surface area dimension in the
y-direction. The solution to this scenario has been compared with
the solution provided by Maurissen and Capé&#fafor a horizon-
tal segment beneath a half-plane. It turns out that both solutions
are identical(not shown here for brevijy The reason for this is
Fig. 4 Faces of a DD computational box uniformly meshed trivial and it is because the screw horizontal segment does not
with square elements representing prismatic dislocation loops create any undesirable,, stresses on the surface in need of an-
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nulment. This leads to_a zefb,} vector in the sqlution 0f16). In _ s = o TK

other words, the solution for a subsurface horizontal screw dislo- A G -TK
; e ; . ' .| 5.0E+05 W

cation segment is simply the image segment solution and is valid

X o, TK
over the whole half-plane and not just the finite surface area. This| , ;- -t 6 -MC
is identical to the treatment of infinitely long screw dislocation X GXX.MC
lines parallel to the surface. 3.0E+05 o -MC

2z

More comparisons between our solution for horizontal and ver- | 4
tical segments beneath a finite surface area have been made wit® 2 oe+05
the solution provided by Maurissen and Capella for a half-plane. |~ E
At the outset, one needs to recognize that the two solutions will | 51.0E+05F
not match due to area size differences. However, if one chooses {© r
large enough area, and a small enough segment away from thq 0-0E+00
area corners and close to the finite plane, one should expect g E
good resemblance between the two solutions. This is understand| ~1-95+05F
able because such a situated segment would “see” the large finiteg P S T T .
area as if it were infinite! In all of the results below, the segment 21000 -750 -500 -250 0
length L, the shear modulu&, and Poisson ratio, were set Y
equal to 100, 42.25 Gpa, and 0.383, respectively.

Consider first a vertical subsurface segmépB,. Segment Fig. 7 Same as Fig. 6 but with a surface mesh density of
A,B, lies along the negative-axis. The line sense vector, how-30%30 loops.
ever, points in the positive-direction, i.e.,£é=(0,0,2). The coor-
dinates ofA; andB; are(0,0,—110M) and(0,0,— 100(), respec- ) ) ) o ] )
tive|y_ The Burgers vector has two nonzero Componehts Curre.nt solution. F|gUre 7 |||l.JStr_ates this Ide_a using the hlgher
=(1/y3,0,1/43). This choice of nonzero Burgers vector compodensity of 3030 loops. In this figure we notice that the agree-
nents corresponds to the choice made by Maurissen and CapellB'@nt between the two methods is better than before but is still not
their work. The finite surface are@ represents a square with aS0 great. If one increases the meshing density further as was done
side of 20,008. If one compares the,, oy, ando,, compo- N Fig. 8 using a 5850 division, one sees that the two methods
nents using the above method with the method of Maurissen a#iye almost identical results. Increasing the meshing density fur-
Capella for an area division of 2010 intervals, i.e., 10 intervals ther will only enhance the agreement between the stress compo-
along a side totaling 100 surface loops, one gets Fig. 6. In tHignts obtained using the two methodse plots from the two
plot, the field or evaluation points are chosen to lie along an axiethods will perfectly collapse on one another
parallel to they-axis withx=0, and at a depth of 4@0from the Two comments are in order regarding Figs. 6-8. First, it is noted
surface. that the agreement between the current solution and that by Mau-

In Fig. 6, the stresses obtained by the two methods follow sinfissen and Capella reached a climax, roughly, in Fig. 8 for which
lar trends but noticeably differ in value. Perhaps this is due to th@ere were 5850 loops padding the surfa¢eote that 550 is
relatively low loop densityi.e., coarse mestused in conjunction the largest mesh density of surface loops used)h&hes meshing
with the current solution. Therefore, one remedy might be to ilensity translates roughly to an average separation distance of
crease the meshing density, i.e., decrease the loop size and th@heut 400 in between the collocation points. Incidentally, this is
fore decrease the spacing between the collocation points on e same subsurface depth chosen for the evaluation points in the
surface. Intuitively speaking, increasing the number of collocatidigures. This should come to no surprise if one reviews the

points on a given surface should improve the performance of tREemise of the current method. Here we are seeking the annulment
of o,, stresses at the traction-free surface. We are achieving this in

a discrete manner by enforcing compliance with the boundary
condition at selected collocation pointshich happen to be the

< surface loops’ centers in this cas&his problem is basically an
8 Ox” elasticity problem and its solution has been formulated in that
5.0E+05 B — GW'TK context. St. Venant’s Principle of elasticity theory, however, states
o 0,,-TK| that agreement between an exact solution and an approximate, but
4.0E+05 F c,,~-MC
r GW-MC
N3.0E+05 - 0,,-MC = 0 TK
N F —a— o,~TK
o a3 5.0E+05 vy
l;;2.0E+05 : [ on-TK
% 1.0E+05 |- 4.0E+05 0, -MG
o r s O'W-MC
C 3.0E+05 | -
0.0E+00, " i c,,-MC
© 20E+05F
-1.0E+05 o -
E %1.0E+05
DOE405 b 1 TV ) o E
-1000 -750 -5}90 -250 0 0.0E+00.k
) ) -1.0E+05
Fig. 6 Comparisons of the stresses from the current work F
(TK) versus the work by Maurissen and Capella  (MC) for a sub- DOE40S et N
surface vertical segment. Stresses are in Pa. The segment -1000 -750 -5)90 -2 0
points in the positive  z-direction, has a zero y-component of b,

and a length of 100 b. The stresses are plotted along an axis
parallel to the y-axis at a depth of 400 b. The surface is 20,000 b  Fig. 8 Same as Fig. 6 but with a surface mesh density of
on each side and has a mesh density of 10 X10 loops. 50X50 loops
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functionally equivalent, one at a boundary will be achieved if one
considers field points that lie more than a “characteristic” dis- .
tance away from the boundary. The characteristic distance in this 160000 -
case can be thought of as the average separation distance betwee i
collocation points where the boundary condition is enforced. As
the meshing density is increased and the characteristic distance is
decreased one expects that our approximate numerical solution
will coincide with the exact solution in the limit.

Now if one plots instead the variatian,,, o,, ando, along
the same axis as before, one would basically get similar results to
the oy, oyy, ando,, cases described earlier, i.e., good agree-
ment between the current solution and that of Maurissen and
Capella. Figures are not shown here for brevity. Hence, it seems
that the current solution, so far, checks very well against other
existing solutions in the literature. A R N SR S

Now if one evaluates the stresses at depths from the surface less 0 100 200 ‘Lengsi(l)'no[b] 400 500
than the average separation distance between the collocation
points, one would see oscillations in the plotted curves. ThegR 15 The Peach-Koehler force pulling a subsurface horizon-
oscillations are an inherent feature of the current solution and cgfisegment towards the surface versus the segment length for
be annihilated by simply increasing the mesh density to the exte¥fixed segment depth
that the average separation distance between collocation point is
equal or less than the field points depth. Also, if one determines a

least squares high-degree polynomial fit for the oscillatory curveIs m the image stress analvsis. should also increase because the
one finds out that the oscillations occur about the correct behav BC? g u ysIS, i X :
gment has a “stronger presence” now. Figure 10 is a plot of the

(i.e., they closely resemble the solution by Maurissen and Capel ling th tt d th f th t
and are not oscillating vigorously. It is noticed here that the perigd cc, PU1INg the segment toward the surface versus the segmen
gth. One can see that the plot is meaningful, since it extrapo-

of the oscillations is equal to the average separation distance &s back to zero as the segment length completely diminishes.

tween the collocation points and that the oscillation amplitu 8F' I Its f : ting the ab thod of
diminishes with increasing mesh density. More on this and plots inafly, some resufts from incorporating the above method o

: . : : eating traction-free surfaces into theicro3d DD code are ex-
:Eﬁf;gﬂlngt g}f[slgh:nné)r;ﬁgghi[cf% be found with reference {ubited._ Figure 11 s_how st_ress-strain diag_rams obtair)ed from DD

Finally, it must be mentioned that if one instead compares tﬁému!atlons for cubic specimens 10,80 size containing a dis- .
Maurissen and Capella’s solution foharizontalsegment instead Iocation source close to one O.f the e.xt.ernal surfaces. The speci-
of a vertical segment with the current method introduced in th[g€N Was subjected to a tensile straining rate of T03n the
paper, one would also find satisfactory agreement. This was d re, a case of no surface looi., no treatment of.the bound-
in Khraishi et al[18] and Khraishi[17]. ary condition) is compared to cases of surface padding @k_lo,

More results can be obtained that tend to support the curréf20, and 30<30 loops. In this flgure, one can clea_rl_y notice the
method. For example, consider a subsurface horizontal dislocatfdf]@ce effect. Here the curves with boundary condition treatment
segmentA;B, . As the depth of the segment decreases, i.e., tgaturated at a higher stress than the curve obtained with no surface
segment approaches the surface, the Peach-Koehler force pul| s. This is understandable since the dislocation source is close

it toward the surface should accordingly increase. In other word§, 2n exterior surface, thus it is difficult to propagate dislocations

there is an inverse relationship between the Peach-Koehler foréd/@y from this nearby surfacepart of a typical Frank-Read

pull toward the surface and the segment depth. Figure 9 supports
this physical intuition. In addition, as the dislocation segment

140000 |

T

120000 F

100000 |

80000 |

60000

40000 |

Peach-Koehler Force {Pa], z-component

20000 |

length increases, the Peach-Koehler force acting on it and comi
1E+08
9E+07 | SRRYEPA AR O/ 19 Vo
- 8E+07 |
£ 500000 |- —ra
s
é i 6E+07 |
8 400000 N bn 5E+07 F
A [
3 s 4E+07 |
&, 300000 |- E NO loops
8 i SE+07F ~~o -~ 10x10
b C 2E+07 F —mrem - 20x20
& 200000 g ——=a—— 30x30
= + 1E+07
[T o -
Q [ 0 . ) i . . . . 1 .
£ 100000 | 0 0.001 . 0.002
-] zz
[ ]
o
0(; e ‘20'00‘ ——7000 60'00 . éo'od — 1‘0600 Fig. 11 Stress-strain diagrams from DD simulations for one
z-depth [b] operational Frank-Read source in a cubic cell that is 10,000 b in
side length. The source is close to the cell’'s external surfaces.
The continuous line correspond to no treatment of the traction-
Fig. 9 The Peach-Koehler force pulling a subsurface horizon- free boundary condition, and the dashed lines corresponds to
tal segment towards the surface versus the segment depth for an external surface mesh density of 10 X210 loops, 20 X20 loops,
a fixed segment length and 30X30 loops.
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source actionthus reducing the extent of plastic flow for a given Second, there are other methods to treat traction-free boundary
applied stress. In other words, as the source tries to operate ramnditions within the context of dislocation dynamics. The finite-
mally as it would by emitting dislocation loops, it is held back bylement method=EM) is popular in this regard. The advantage of
the attraction of the nearby free surface. The effect of this is this method over the FEM is that here there is no need to specify
cause a higher saturation level for the cases with surface loopsdé&placement boundary conditiofwhich might not be appropri-
opposed to the case with no loops. If the dislocation source weate in some instance$o compute a numerical solution. Another
located to the interior of the simulation cell however, far awagdvantage is that in the FEM, one has to solve for displacements
from surface effects predictably, one would notice the reverse et the FE nodes in a 3D spatial nodal array although the desired
fect to what is above. In particular, the saturation level of thesult from the solution is a derived ofiee., stress valugsln this
stress-strain curve for the surface-treated case would be at a losentext then, this would represent an extra step that is not fully
level than that with no surface treatment. This is to be expectatllized in the final analysis.
since the surfaces would here assist in the operation of the sourc&hird, very close to the corners of the computational box, the
and the glide of dislocation segments as opposed to hinderingmerical solution calculated here is not completely accurate.
them. Such a result was presented earlier by Khraishi ¢18).  This is due to the use of the image dislocation segments since they
help annul shear stresses on their symmetry surfaces but not on
7 Conclusions orthogonal ones at the corners. This also is not a major drawback

This work presents a numerical treatment of the dislocatictince instances of dislocation segments in corner regions are
image stress problem applicable to three-dimensional dislocatipfpPabilistically small. Therefore, their effect on the total stress
dynamics(DD). The method meshes the external surfaces of t§@!ution is inherently minimized. )

DD computational box with prismatic dislocation loopshich Fourth and last, it is worth noting that the solution methodology
are fictitious dislocations used as mathematical conveniencePigsented in this work is applicable to anisotropic as well as iso-
provide auxiliary self-equilibrated stress terms in the problem fof{OPIC elasticity problems. However, calculating the stresses of
mulation. By utilizing “image” dislocation segments and finding !n-the-box dislocation segments using anisotropic elgsncny theory
the Burgers vectors of the surface prismatic loops, one can sati§hn endeavor far from being trivial and the dynamic analysis of
the traction-free boundary condition at select collocation point8€ Problem would pose an even more formidable task.

(taken here as the loops’ centers although they don’t have)to be

on the computational box’s external surfaces.

There are few things to notice about the current method. First, jt .
is computationally intensive adding to tkiN?) that dislocation Appendix
dynamics naturally poses. This is not a major drawback since theThe stress components of a rectangular prismatic dislocation
method can be accelerated using parallel processing techniquesp of side lengths @ and 2 along thex and y-directions,
and because of nowadays Gegahertz computer processor speegspectively, are:
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Here, o,y and oy, can both be obtained fromx,, and o, re- 10 gznam:;s Osz3_bD E'isﬁcaﬂqflﬁv”J'nth-lz\"eCh- 5;40(2;32 Pf- }q13b—_12;- 1668
spectively, by interchanging bothandy, anda andb. Note that ~[10 Rhee, M., Zbib, H. M., Hirth, J. P, Huang, H., and de la Rubia, T., 1998,
the “prime” (see the inset of Fi )31&8 been removed from tb(e Models for Long/Short-Range Interactions and Cross Slip in 3D Dislocation
p g. . Simulation of BCC Single Crystals,” Modelling Simul. Mater. Sci. Ergy.pp.
y, andz symbols above for convenience. 467—492.
[11] Hirth, J. P., and Lothe, J., 198Zheory of DislocationsKrieger Publishing
Company, Malabar, FL.
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