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ABSTRACT
An Arbitrary Lagrange Euler (ALE) description of fluid flows is used together with the meshless numerical method Smoothed Particle Hydrodynamics
(SPH) to simulate free surface flows. The ALE description leads to an hybrid method that can be closely connected to the finite volume approach. It
is then possible to adapt some common techniques like upwind schemes and preconditioning to remedy some of the well known drawbacks of SPH
like stability and accuracy. An efficient boundary treatment based on a proper upwinding of fluid information at the boundary surface is settled. The
resulting SPH-ALE numerical method is applied to simulate free surface flows encountered in Pelton turbines.

RÉSUMÉ
La méthode numérique sans maillage Smoothed Particle Hydrodynamics (SPH) est modifiée par l’adoption d’une description Arbitrary Lagrange
Euler (ALE) des écoulements fluides, dans le but de simuler des écoulements à surface libre. Le formalisme ALE conduit à une méthode numérique
hybride s’apparentant sur de nombreux points à une approche volumes finis. Il est alors possible d’adapter des techniques numériques courantes
comme les schémas décentrés et le préconditionnement pour résoudre certains défauts majeurs de la méthode SPH, comme la stabilité numérique ou
le manque de précision. Par ailleurs, le traitement des conditions limites est réalisé par un décentrement approprié des informations fluides sur les
surfaces frontières. La méthode numérique SPH-ALE résultante est appliquée à la simulation d’écoulements à surface libre tels que ceux rencontrés
dans les turbines Pelton.

Keywords: Hyperbolic equations, Pelton turbine, preconditioning, Riemann problem, SPH-ALE, upwind scheme, water impacts

1 Introduction

1.1 Description of a Pelton turbine

The Pelton turbine is a hydraulic impulse machine patented in
1889 by LesterAllan Pelton. This turbine is adapted for high head,
from 200 to around 2,000 meters, and low discharge installations,
from 5 to 50 m3 · s−1. For example, the largest unit worldwide of
BIEUDRON in Switzerland can produce a power of 420 MW for
a head of more than 1,800 meters. The Pelton turbine is composed
of several hydraulic components, see Fig. 1.

The penstock consists in a long pipe coming from the upper
dam. It is followed eventually by the “Unit” distributor to
distribute the flow between different units of the power plant.
The turbine distributor is composed of bends and bifurcations.

Its function is to share evenly the flow between the nozzles (from
1 to 6) from which the jets are ejected towards the runner.

The runner is composed of 18 to 26 buckets usually. Buckets
are impacted by the jets. Their role is to transform the kinetic
energy of the jet(s) into mechanical energy and finally electric
power, the runner shaft being combined with a generator. Design
of the buckets is a key issue for the turbine efficiency.

The casing, in which the runner and nozzle(s) are encapsu-
lated, manages the evacuation of the water from the runner and
is designed to prevent any disturbance of the flow in the runner
and of the jet(s).

In contrast with most of hydraulic turbines, the flow in a Pelton
turbine is confined in the penstock, distributor and nozzles and
is a free surface flow as soon as it leaves the nozzle.
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Figure 1 Typical layout of 2 units of 2-jet Pelton turbine (penstock,
“unit” distributor, turbine distributor, runner and casing)

1.2 Value of CFD for Pelton turbine analysis

Computational Fluid Dynamics (CFD) methods are an opportu-
nity to improve the understanding of the phenomena occurring
along the hydraulic parts of the pelton turbine. Indeed, exper-
imental visualisations are difficult in most of the parts of the
Pelton turbine and local data flow are very complex to obtain by
experiments (see Fig. 2). On the contrary, CFD enables to access
to local flow features, and thus to explain flow phenomena and
their potential influence on the turbine performances.

This deeper understanding of flows’behaviour makes possible
to modify the design of the different components of the turbine
and to quantify with CFD analysis the impact of the design mod-
ifications on performances. Moreover, as there is an important
market for hydraulic power plants refurbishment, CFD analysis
eases the diagnosis of the potentials of existing hydraulic Pelton
turbine components and to propose better hydraulic solutions,
taking into account old fixed components (Parkinson et al. 2004),
as distributors and casings are often concrete-embedded in large
units.

Figure 2 Experimental visualisation of the flow in the casing of a
2-jet Pelton model turbine, Hydraulic laboratory of Andritz Hydro,
Switzerland

1.3 Specificities of Pelton hydraulics

Flows in Pelton turbines involve various phenomena. In the dis-
tributor, one deals with internal flows mainly driven by viscous
effects. A careful description of boundary layers and of turbu-
lence are required in order to properly catch flow patterns. Time
fluctuations are at the scale of turbulent fluctuations, and so
flow can be considered as stationnary and modeled through a
time-averaged formalism (so-called Reynolds Averaged Navier

Stokes equations). From the nozzle(s), flows become free sur-
face flows, involving high speed jets, water sheets, and droplets
of various sizes. These flows are mainly governed by inertial
and gravitational forces. Because of the presence of a rotor and
of a stator, flows can no more be considered as stationnary and
time dependence has to be explicitely taken into account. The
length/velocity/time scales and physics involved in these differ-
ent regions are not of the same order in all parts of the turbine, as
shown in Table 1. This has a direct consequence on the numer-
ical simulation of these flows, and different approaches adapted
to each region must be considered.

Internal flows in the distributor are typicaly simulated using
Finite Volume (FV) methods. For free surface flows, the Volume

Of Fluids (VOF) formalism has proved its applicability for Pelton
turbines (Kvicinsky et al. 2002, Perrig et al. 2006). Using this
method, care must be brought to the design of the computational
mesh in order to improve the description of the free surface,
particularly at the rotor/stator interface. Even though, it is hard
to remove the numerical diffusion of the free surface, not only at
the rotor/stator interface but also when water sheets travel a long
distance freely in the air domain.

Simulations of jet(s) impinging a rotating runner are now
achieved in the design process (see Fig. 3), but the full simu-
lation of the turbine, including distributor and casing, remains a
true challenge involving at least 40 millions of cells (see Fig. 4
and Favre et al. 2005). Besides, stability of such a simulation is
delicate because of the small spacing between static and rotating
parts, which is a difficult point for the rotor/stator mesh interface.

1.4 Introducing SPH into CFD for Pelton turbines

Limitations presented above explain why it is difficult to envis-
age the study of water sheets and their impact on the casing with
eulerian (also called mesh-based) numerical methods. At first
sight, lagrangian techniques conceptually represent an alternative

Table 1 Typical length and velocity scales in a Pelton turbine at model
scale (Perrig 2007)

Length scale Velocity scale Reynolds Froude Weber
D [mm] C [mm] Re [-] Fr [-] We [-]

Confined 200 4.5 0.5 × 106 3 -
flow

Water jet 30 40 0.6 × 106 80 15
Bucket flow 300 20 3 × 106 12 40
Water 1 5 0.003 × 106 100 0.03

droplet
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Figure 3 Jets and water sheets around a Pelton runner simulated with
ANSYS-CFX®

Figure 4 Numerical simulation of a complete Pelton turbine (distribu-
tor, runner and casing) with ANSYS-CFX®

approach. By nature, a lagrangian description has better capac-
ities to track interfaces properly. But to take full benefit of the
lagrangian feature, a numerical method should rely on a true
mesh-less numerical scheme, as it allows any distorsion of the
calculation points distribution. The Smoothed Particle Hydrody-

namics (SPH) method corresponds to this requirement and was
first tested in its standard form, as depicted by Monaghan, for
example in Monaghan et al. (1994). Some limitations were identi-
fied, mainly linked to the accuracy and the treatment of boundary
conditions (Marongiu et al. 2007). This explains why some adap-
tations were achieved, leading to the development of an hybrid
method called the SPH-ALE method.

2 The SPH-ALE method

2.1 Introduction

The SPH-ALE method was mainly developed by Vila (1999). It
is based on the standard SPH method but differs in the way flow
is described. The SPH method is often presented as a whole, but
it may be of high value to consider the core of the method (its
mesh-less numerical scheme) separately from the other aspects
(lagrangian flow description, particle interactions modelling).

2.2 Principles

The SPH-ALE adopts a dual description called Aritrary Lagrange

Euler. It consists in writing the conservation laws, here for an

inviscid flow, in a moving frame of reference, whose velocity v0

can be chosen arbitrarily. We thus consider the following system
of conservation laws written for a control volume � moving with
speed v0:

d

dt

∣

∣

∣

∣

v0

∫

�

� d� +
∫

S

�(v − v0) · n dS

=
∫

S

QS · n dS +
∫

�

QV d� (1)

� is the vector of conservative variables. S is the boundary of
�, n the unit outward normal vector, QS and QV the surface
and volume source terms, respectively. d

dt

∣

∣

v0
stands for a time

derivative along the trajectory of the control volume. Considering
that the surface source term can be reduced to the pressure term,
(1) becomes:

L�v0(�) + div(FE(�) − vo�) = QV (2)

where L�vo(�) is the transport operator associated with the trans-
port field v0 and FE is the flux vector of the Euler equations. In
two space dimensions, this can be expressed as:

� =







ρ

ρv(1)

ρv(2)






, F

(1)
E (�) =







ρv(1)

p + ρ(v(1))2

ρv(1)v(2)






,

F
(2)
E (�) =







ρv(2)

ρv(1)v(2)

p + ρ(v(2))2







(3)

The discretization of the weak form (2) by use of SPH
spatial derivative operators then leads to the appearance of one-
dimensional moving Riemann problems at the interfaces between
neighbouring calculation points. Vila (1999) showed that the
solution to a moving Riemann problem could be easily linked
to the solution of the equivalent steady Riemann problem. It is
thus possible to treat interaction between calculation points like
numerical fluxes of Godunov type. This feature directly links the
SPH-ALE method to the Finite Volume (FV) method, and allows
a more or less direct adaptation of techniques developed in the
field of Eulerian mesh-based methods to SPH-ALE. However it
is worth noticing that the use of Godunov numerical fluxes intro-
duces mass fluxes between interacting calculation points, even in
the case where the transport field is chosen to be equal to the fluid
velocity. Thereby calculation points should no more be consid-
ered as particles (as they usually are by SPH practitioners) but as
moving control volumes.

The discrete counterpart to the system of conservation laws in
(2) is finally expressed by:

d

dt
(ωi�i) + ωi

∑

j∈Di

ωj2GE(φi, φj)∇iWij = ωiQV (4)

Di is the kernel support for particle i and GE stands for a Godunov
flux adapted to the moving Riemann problem.
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2.3 Riemann solvers

The system (4) requires the solution of the non linear moving Rie-
mann problems which appear between each pair of neighbouring
points. However the exact solution can only be obtained through
an iterative and costly procedure. Approximate solutions of vari-
ous types are usually considered in practical numerical methods,
for example by linearizing the original Riemann problem. In the
following, the VFRoe scheme and its preconditioned version, the
VFRoe-Turkel scheme, are exposed.

2.3.1 VFRoe scheme

The VFRoe scheme, introduced by Gallouet and Masella (1996),
solves a linearized Riemann problem between left and right states.
It differs from the traditional Roe scheme because the linearized
jacobian matrix Ã(�L, �R) = ∂F

∂�
does not have to fulfill the

consistency relation known as the Roe condition.
The procedure that leads to the solution is based on a projection

of the jump between left and right states onto right eigenvec-
tors of the jacobian matrix. In the end, the solution appears as a
combination of a centered contribution and an upwind one, and
considering that the equation of state used is the Tait equation, it
is given by:















ρ∗ = 1

2
(ρL + ρR) − 1

2c̃
− (ρvR − ρvL)

ρv∗ = 1

2
(ρvL + ρvR) − c̃

2
− (ρR − ρL)

(5)

The upwind contribution helps to stabilize the scheme but it is
also responsible for the numerical diffusion. It can be seen that
this numerical diffusion is proportional to the jump between left
and right states.

2.3.2 VFRoe-Turkel scheme

The VFRoe scheme presented above suffers from excessive
numerical diffusion and produces noisy pressure fields. The use
of Godunov type schemes in the limit of low Mach numbers as
encountered in hydraulic flows is known to lead to this type of
results (Guillard and Murrone 2004). Preconditioning of the Rie-
mann solver can be an efficient way to improve this behaviour.
Preconditioning techniques were initially developed to speed-up
convergence to a steady state (Turkel 1987). This results in a for-
mulation which is not consistent in time. But it was also found that
the preconditioning of the numerical diffusion term can greatly
reduce numerical oscillations (Viozat 1997). The VFRoe-Turkel
scheme is consequently based on the VFRoe scheme, in which
the dissipation term is modified by the preconditioner of Turkel.
The procedure described above for theVFRoe scheme can thus be
applied to a modified (preconditioned) Riemann problem whose
jacobian matrix is P̃Ã where

P̃ =
[

β̃2 0

0 1

]

(6)

is the preconditioner of Turkel and β̃ ≈ M̃a. This precondi-
tioner is initially written for entropic variables but its expression
remains unchanged when transformed into conservative variables

when the Tait equation of state is used. Finally the solution to the
preconditioned Riemann problem is given by:
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− 1

2

[

ṽ(β̃2 − 1)

(

ρR − ρL√
�

+ ṽ(1 − β̃2)

2c̃2
√

�
(ρvR − ρvL)

)

+
√

�

2c̃2
(ρvR − ρvL)

]

ρv∗ = 1

2
(ρvR + ρvL)

− c̃2

(

ρvR − ρL√
�

+ ṽ(1 − β̃2)

2c̃2
√

�
(ρvR − ρvL)

)

(7)

with � = ṽ2(1+ β̃2)2 −4β̃2(ṽ2 − c̃2). It can be verified that when
β̃ = 1, VFRoe-Turkel and VFRoe schemes are equivalent. On
the other hand when β̃ → 0 then all eigenvalues of the modified
jacobian matrix are of the order of ṽ thus greatly reducing the
condition number. Near stagnation points, stability of the pre-
conditioned scheme tends to degrade and the value of β̃ has to
be limited to prevent its fall to zero. Following recommendations
by Turkel (1999) we use:

β̃ij = min(1, max(k1M̃a, max(βi
min, β

j

min))),

βi
min = maxj∈Di

(

pj−pi

ρijc
2
ij

+ ‖vj−vi‖
cij

) (8)

2.3.3 Second order scheme

The two schemes presented above are only first order accurate
in space because they are based on a piecewise constant approx-
imation of the solution. Because the SPH numerical stencil is
much wider than those encountered in mesh-based methods, the
amount of numerical dissipation is higher and can become pro-
hibitive. Following an approach similar to the MUSCL scheme
developed by Van Leer (1979), a second order scheme is intro-
duced by replacing the piecewise constant by a piecewise linear
approximation of the solution. Gradients of field variables are so
first computed using the SPH method and then used to extrapolate
field values from particle centers to interfaces between interacting
points by applying the following formulas:















�L = �i + ξ(�i, �j, ∇i�) · (xj − xi)

2

�R = �j − ξ(�j, �i, ∇j�) · (xj − xi)

2

(9)

where ξ is a non-linear function acting as a limiter of gradients
slopes. The introduction of these limiters is compulsory to remove
the spurious oscillations appearing in sharp gradients zones.

2.4 Boundary conditions

In the ALE framework, the handling of boundary conditions can
be much more adequately set than in the standard SPH method.
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This is mainly due to the choice of an ALE description, which
enables the treatment of a boundary surface travelling with its
own velocity, independently of the fluid velocity. It will be shown
that upwinding is also of great interest to translate effects of the
fluid onto the boundary, and inversely. The proposed boundary
treatment can be split into two steps. In the first, a mathematically
consistent approximation of the boundary term is deduced from
the kernel approximation itself. Its discrete counterpart, similar
to a particle approximation, leads to the setup of boundary fluxes.
These boundary fluxes are, in the second step, computed in an
upwind fashion, after an interpretation of the mutual influence
of the fluid and the boundary condition as a partial Riemann
problem.

2.4.1 Surface integral boundary term

Most of the existing boundary treatments are facing the diffi-
cult task to add extra calculation points outside the computation
domain. This is mandatory so as to cope with truncated kernel
supports in the vicinity of a boundary. In practice the spatial dis-
tribution of these points is not easy to set because of geometric
issues and field values attributed to these points can be obtained
only through a long-range (the size of the kernel support) extrap-
olation of the field from inside the fluid domain. Besides, in order
to be accurate, this extrapolation should be non-linear (as Euler
equations).

The standard way to obtain the SPH approximation of gradi-
ents starts from an integration by parts given by:

〈∇f(x)〉 =
∫

∂D(x)

f(x′)W(x − x′)ndS

−
∫

D(x)

f(x′)∇x′W(x − x′) dV (10)

where ∂D(x) is the intersection of the kernel support with the
boundary. The surface integral term is usually neglected because
of the use of compactly supported kernel functions. Most of the
available boundary treatments try to compensate for this term
with a volume term.

It is proposed here to compute this term directly, as a surface
term. Doing so, the previous difficulties can be avoided. In prat-
ice, the particle approximation of this surface term is obtained
using the same quadrature formula as the one used for the vol-
ume term, provided a satisfactory discretization of the boundary
surface is available. In term of fluxes budget, boundary fluxes are

(a) (b) (c)

Figure 5 Different configurations corresponding to usual boundary conditions. (a) Case of a solid wall or a subsonic inlet: velocity imposed; (b) Case
of a subsonic outlet: pressure imposed; (c) Case of a subsonic inlet: discharge imposed

finally expressed as:
∫

∂Di

(FE(�) − v0�)W(xi − x′)ndS

=
∑

j∈∂Di

ωjGE(�i, �j)Wijnj (11)

ωj is the weight of the boundary element j (area of the surface
element in 3D) which samples the boundary and nj is the unit
normal vector to the boundary at location xj . GE(�i, �j) is a
boundary Godunov flux which is explicited in the next step.

2.4.2 Partial Riemann problem

The Riemann problem described previously is used to determine
the mutual influence of two fluid states, namely the left state and
the right state. Considering now the interaction of a fluid state,
let’s say a left state, and a boundary condition, it is clear that no
right state can be defined. However, the influence of the boundary
on the numerical solution is computed through boundary fluxes
arising at the boundary surface. The boundary surface thus plays
a similar role as the one played by an interface between two fluid
states. Following Dubois (2001), the boundary surface can hence
be taken for an interface of a partial Riemann problem, for which
one state is missing. Nevertheless, the solution to this partial
Riemann problem is partially defined by the physical boundary
conditions imposed on the boundary surface. The whole solution
consequently results from the selection, among all the states com-
patible with the imposed boundary condition, of the one which
can be reached from the left state through a shock or a rarefaction
wave. Figure 5 helps understanding this concept.

We consider a one dimensional partial Riemann problem along
the normal direction to the boundary, between a given left (fluid)
state �L and a boundary surface. Primitive variables are noted ρ

and v where v stands for the normal component of the velocity
field. The imposed boundary condition turns out to be a given
relation (implicit or explicit) between ρ and v and is stated in
a general form B(ρ, v) = 0. If two conditions are imposed,
the solution is fully determined by the boundary condition and
the fluid state plays no role. This configuration corresponds to
a supersonic inlet for instance. On the contrary, if no bound-
ary condition is imposed, the solution is fully determined by the
fluid state, it’s the case of a supersonic outlet. The general case
where only one condition is imposed is now considered. In the
ρ − v diagram, the relation B(ρ, v) = 0 can be represented by a

5



continuous curve noted CB. This curve describes the set of states
that are compatible with the boundary condition. We can also
define the curve, noted C−, which describes the set of states that
can be reached from the left state through either a shock or a
rarefaction wave. The solution � to the partial Riemann problem
is finally the intersection point between these two curves. Some
usual configurations are given in Fig. 5.

It is worth noticing that this boundary modelling can be used
for any kind of boundary condition, and that it naturally treats
boundaries in the same way as the interior scheme treats fluid
interactions.

3 Application to Pelton turbines

3.1 Introduction

The SPH-ALE method presented is used to simulate free surface
flows in Pelton buckets, in a static and a rotating configura-
tion. Numerical simulations are done at model scale, which is
a usual setup for mesh-based simulations. In order to save some
computational cost, a symmetry condition is used.

3.2 Symmetry condition

The main components of a Pelton turbine are usually symmetric
against the middle plane of the runner. It is obviously the case
for the runner, and at first sight for the distributor and the injec-
tors. The upstream parts, like the penstock and the intermediate
bifurcations, present however some bends which are responsible
for secondary flows in the jets. Nevertheless the way jets are dis-
cretized at the moment does not allow to take account of these
secondary flows, and jets involved in the following simulations
have a flat velocity profile at the inlet condition. The casing is
a component which is not symmetric in general, but the present
study is restricted to flows in the immediate neighbourhood of the
buckets and so the casing is not incorporated in simulations. It is
thus possible to consider the flows we are interested in as sym-
metric, and to divide the computational domain size by a factor
two. But for the correctness of simulations, the removed part
must be replaced by a symmetry condition. This is obtained by
adding fictitious fluxes in the flux balance of particles whose ker-
nel support intersects the symmetry plane. These fictitious fluxes
are computed in a way similar to the well-known technique of
ghost particles (Colagrossi and Landrini 2003).

3.3 Free surface flow in a steady Pelton bucket

The first application considered is a steady Pelton bucket
impinged by a water jet. The jet velocity is C = 19.61 m/s and
its diameter is d0 = 3 cm. The discretization size is �x = 1 mm.
The simulation represents a physical time of approximately
22 ms, so as to obtain a converged state in time. The number
of particles involved is 93000 at the end of the simulation. Only
the inner surface of the bucket is considered, its discretization
uses a surface triangulation achieved with the commercial mesh
tool ICEM®. This triangulation is refined near sharp geometrical

details like the leading edge. The bucket is thus represented by a
set of 48738 surface elements.

The artificial speed of sound used in the Tait equation of state
is set to c0 = 200 m/s, and the reference density of water is
ρ0 = 1000 kg/m3. Figure 6 shows a view of the case. It can
be seen that the escaping water sheet can be properly repre-
sented far from the trailing edge of the bucket, showing that the
lagrangian description allows a proper tracking of interfaces on
long distances.

Pressure distribution on the bucket surface is closely examined
(see Fig. 7). Results are compared with measurements and CFX®

results at some given locations corresponding to pressure sensors
locations (see Fig. 8). Figure 9 shows the pressure profiles along
two lines of sensors. The hybrid method tends to underestimate
the value of the pressure coefficient. Results are here presented
using one sensor as the reference, which enables to compare the
evolution only.

The influence of the use of the preconditioned scheme is stud-
ied through two aspects: the noise of the pressure field and the
thickness of the water sheet in the bucket. Figure 10 shows on the

Figure 6 General view of the case. Fluid particles coloured by their
velocity

Figure 7 Pressure coefficient map on the bucket surface
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Figure 8 Position of the pressure sensors and mark of the plotted lines

Figure 9 Pressure profiles along the X1 and Y5 lines. Pink stars:
experiments. Red diamonds: CFX®. Blue dots: SPH-ALE method

Figure 10 Comparison of numerical results obtained with the VFRoe and the VFRoe-Turkel schemes, and CFX. Top left: water sheets thicknesses.
Light red spheres: VFRoe scheme. Blue spheres: VFRoe-Turkel scheme. Top right and bottom: pressure coefficient field and isolines of pressure
coefficient with both schemes (particle data interpolated on a regular grid). Red line: isoline 0.5 of volume fraction obtained with CFX (position of
the free surface)

top left that the VFRoe-Turkel scheme produces a slightly thiner
water sheet than the VFRoe scheme. The benefit of the precon-
ditioned scheme is also visible in the same figure on the top right
and bottom, where particle data have been interpolated on a regu-
lar cartesian grid for visualization. Both schemes produce a high
pressure zone at the leading edge (region noted 2). This comes
from the geometrical representation of the leading edge, with a
small flat surface instead of a purely sharp edge. It can be seen
that the CFX simulation produces the same stagnation point, but
the fact that the mesh is finer in this region (to catch the boundary
layer) tends to reduce its influence. On the contrary, because a
constant discretization size is used in SPH-ALE simulations, this
phenomenon is strong enough to generate a small detachment
bubble downstream (low pressure zone). In other regions of the
flow (noted 1, 3 and 4), the shapes of the isolines obtained with the
VFRoe-Turkel scheme are smoother than those obtained with the
VFRoe scheme, and are also closer to those obtained with CFX. It
has to be noticed that the SPH-ALE results presented are instanta-
neous results. A time averaging procedure would have smoothed
the results but also hidden differences between both schemes.

3.4 Free surface flow in a rotating bucket

The flow in a single rotating Pelton bucket is then studied.
The discretization size is once again 1 mm, jet velocity is
C = 33.6145 m/s, which corresponds to a water head of
60 m, jet diameter is 22 mm and rotation speed of the bucket is
95.4908 rad/s. This time, it is necessary to use not only the inner
surface of the bucket, but the whole bucket, which represents
91596 surface elements. The simulation represents a physical
time of 8.4 ms during which the bucket makes a rotation of 46◦.
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(a) T = 3.2 ms. (b) T = 3.2 ms.

(c) T = 6 ms. (d) T = 6 ms.

(e) T = 8.4 ms. (f) T = 8.4 ms.

Figure 11 Views of the rotating bucket case at different times, along X axis (left) and Z axis (right). Fluid particles are coloured by their velocity

Figure 11 present some views of this simulation at different
times. The behaviour of the flow is satisfactory. For instance it can
be seen that the escaping water sheet has a residual velocity which
is very small in the absolute frame of reference, which is the result
of the exchange of energy between the jet and the bucket during
the rotation. This is also shown on Fig. 12, where the evolution
of the hydraulic torque during the rotation is plotted for both

the SPH-ALE method and CFX®. For the SPH-ALE method, the
torque is obtained by integrating the torque contributions coming
from the pressure field on the bucket surface. For CFX, viscous
contributions are also taken into account. In Fig. 12, torque values
have been divided by the maximum values, so that it is possible
to compare the evolution during the rotation. It can be seen that
some differences between the two curves exist at the beginning
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Figure 12 Hydraulic torque predicted by the SPH-ALE method and CFX

of the jet-bucket interaction and also after the peak (these latter
are due to a slightly different geometry of the bucket root). But
the agreement between the two curves is globally good.

4 Conclusion

It has been shown that a shift of the flow description commonly
used in the SPH method can help overcoming some of the major
weaknesses that restrict the use of this numerical technique. The
ALE description, together with the use of a conservative form of
the Euler equations, enables to link the SPH method to more tradi-
tional numerical methods like the finite volumes method, taking
the best of each. It is then possible to adapt the large amount
of models developed for these methods to set a kind of hybrid
method. In particular, it is shown in this paper that the use of
Godunov schemes greatly increases the stability and produces
pressure fields with much less numerical noise. Accuracy can be
improved through the introduction of higher order schemes and
preconditioning techniques. A general technique to treat bound-
ary conditions is also presented. It takes full benefit from the
upwinding used in the interior scheme to extrapolate the field to
the boundary while respecting the imposed physical boundary
condition. The boundary influence is added as a boundary flux in
the conservation laws. As only the discretization of the boundary
surface is required, this technique is able to treat boundary con-
ditions of any shape. Even if some flow details are not accurately
captured yet, the SPH-ALE method can be already used to sim-
ulate realistic complex free surface flows. This opens the door to
simulate flows in Pelton turbines. It is expected that the connexion
between this SPH-ALE method and the finite volume framework
will ease the widening of the modeling skills of the SPH-ALE. For
example viscous effects should be included to take into account
their contribution to the hydraulic torque.Nevertheless, the accu-
racy of the method is still dependent from the relatively simple

SPH integration scheme. A great challenge resides in finding a
more accurate mesh-less numerical scheme that could compete
with high-order mesh-based schemes.

Acknowledgments

This work has been supported by the french Ministry of Research
through an allocation of research and by the CIRT (Consor-
tium Industrie Recherche enTurbomachines). Recent results have
been obtained under the ESPHI (An European Smooth Particle
Hydrodynamics Initiative) project supported by the Commission
of the European Communities (Marie Curie Actions, contract
number MTKI-CT-2006-042350).

Notation

c = Local speed of sound
c0 = Reference speed of sound
Cp = Pressure coefficient (= p/ρgH or equivalently

= p/(0.5ρC2
jet))

D = Interpolation domain
h = Smoothing length
i = Particle index
n = Normal vector to the boundary
� = Vector of conservative variables
v = Fluid velocity field

v0 = Transport velocity field
W = Kernel function
x = Position
p = Density
w = Particle volume (weight)
� = Fluid domain
β = Preconditioning parameter
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Subscripts and symbols

˜ = Averaged variable at a linearized intermediate state
∗ = Solution to a Riemann problem
L = Value on the left side of a Riemann problem
R = value on the right side of a Riemann problem
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