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Abstract The simulation of viscous free-surface water flow

is a subject that has reached a certain maturity and is nowa-

days used in industrial applications, like the simulation of

the flow around ships. While almost all methods used are

based on the Navier-Stokes equations, the discretisation

methods for the water surface differ widely. Many of these

highly different methods are being used with success.

We review three of these methods, by describing in de-

tail their implementation in one particular code that is be-

ing used in industrial practice. The descriptions concern the

principle of the method, numerical details, and the method’s

strengths and limitations. For each code, examples are given

of its use. Finally, the methods are compared to determine

the best field of application for each.

The following surface descretisation methods are re-

viewed. First, surface fitting/mesh deformation in PARNAS-

SOS, developed by MARIN; the description focuses on the

efficient steady-state solution method of this code. Then sur-

face capturing with Volume-of-Fluid in ISIS-CFD, devel-

oped by CNRS/Ecole Centrale de Nantes; the main topic of

this review are the compressive flux discretisation schemes

for the volume fraction that are used in this code. And fi-

nally, the Level Set method in SURF, developed by NMRI;
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this description contains a modified formulation of the Level

Set method that is optimised for ship flow computation.

1 Introduction

The use of Reynolds-Averaged Navier Stokes (RANS)

methods for the simulation of the water flow around ships

has reached a first level of maturity. During the last fifteen

years, much progress has been made in the development of

robust and accurate computational strategies able to predict

flows that contain both viscous and turbulent effects and a

free water surface. While this development continues un-

abated, the application of these methods to full-complexity

real-life problems is entering industrial practice. The cur-

rent methods can provide a good evaluation of resistance

and wave forces on ships and marine structures, accurate

predictions of the flow field useful for improving the ship’s

hull form design, and local information on the flow enabling

the analysis and improvement of appendices and propulsive

systems.

The main particularity of flow solvers for marine appli-

cations is the need to consider the water surface. If the wa-

ter and the air above it are considered inmiscible, the water

surface appears as a clearly defined interface between them.

Besides a flow discretization, a numerical method must con-

tain a model for this surface.

It is remarkable that several different discretization meth-

ods for the free water surface, of a highly different nature,

coexist. While most practically used methods are based on

similar principles for the RANS flow discretization (usu-

ally the finite-volume method is used, combined with a one-

or two-equation turbulence model), fundamentally different

principles are used to model the water surface. Moreover,
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these different methods all work well in practice, each hav-

ing its specific advantages.

Three such approaches, the surface fitting, volume-of-

fluid/monofluid, and level set technique, are reviewed in this

paper. For each method, we first provide a short overview of

the existing works. Then, instead of a general discussion on

all these implementations, both established and experimen-

tal, we have chosen to explain in detail the particular features

of a single marine hydrodynamics code that has proven its

value in industrial practice. The presentation for each code

is done by the codes’ developers. Sections 2, 3 and 4 are

devoted to each of the codes, the paper ends with a short

conclusion in Sect. 5 where the suitability of each method

for specific problems is discussed.

1.1 Ship Flow Problems

Before continuing the numerical description of the water

surface models, we will give an overview of the physical

problem that is to be solved with these models—the compu-

tation of ship flow—and of the specific numerical aspects as-

sociated with this problem. The performance of a ship in op-

eration can be decomposed into different aspects. The most

important are:

• ship resistance: the drag force on a ship moving at con-

stant speed through still water;

• ship propulsion: the behavior of the propeller behind the

ship, including cavitation; the engine power to be deliv-

ered to the propeller to produce the required thrust;

• seakeeping: the movement of a ship in incoming waves

(‘seaway’);

• manoeuvring: the ability of the ship to keep its course and

to perform turns at different speeds.

These aspects will be illustrated in some of the examples

later on. Each has its own importance in the process of ship

design.

A ship travelling in a seaway is subject to a hydrody-

namic resistance, and thus requires engine power and con-

sumes fuel. These quantities depend quite strongly on the

ship hull form and its speed. It is, therefore, essential to be

able to predict the resistance of the ship at the required speed

in an early stage of the design; and to minimize it by a proper

hull form design. While the seaway has an effect, the resis-

tance and power in practice are largely determined by the re-

sistance of the ship moving through still water. In addition,

propeller performance is affected by hydrodynamic interac-

tion of hull, propeller and rudder. The inflow to the propeller

which operates in the viscous wake field of the ship is an

important aspect determining the propulsive efficiency and

cavitation. This inflow again depends on details of the hull

form.

The hull form also plays a role in the ship’s motion in re-

sponse to incoming waves. Large movements must be pre-

vented by proper hull design, to ensure ship stability, safety,

and the comfort of crew and passengers. For manoeuvring

performance, there is a pronounced effect of the hull form

and a wish to predict the manoeuvring properties in an early

stage to ensure compliance with the rules.

The main ship performance aspects mentioned are typ-

ically predicted on the basis of model tests. Large models

of ships, varying between 3 and 12 m length, are tested in

model basins (‘towing tanks’) and the flow and behavior are

determined. However, due to the reduced scale there is a sig-

nificant difference in Reynolds number between model and

ship, and differences in all flow properties affected by vis-

cosity. Semi-empirical corrections for these so-called ‘scale

effects’ are being made, necessarily simplified. Instead, de-

tailed computational methods can predict the flow at the full

scale of the ship, and provide much more detail than model

experiments. Therefore, for the principal aspects of ship per-

formance there is a clear role for CFD tools in ship design,

in combination with model testing.

In still water, the forces exerted by the flow on the ship’s

hull and appendages consist of a wave component coming

from the pressure variations associated with the wave pat-

tern that the ship generates, as well as a viscous compo-

nent related with the boundary layer and wake. These two

components are primarily governed by different parameters,

and by different length scales in the flow. The conventional

approximation has been to consider viscous flow and wave

making as separate phenomena, and to disregard their inter-

actions. This decomposition underlies the experimental pre-

diction of ship resistance from a model test, but has also

long been used in computational predictions: wave pattern

computations in practical ship design are routinely made by

free-surface potential flow methods, e.g. [75, 76], while the

viscous flow around the hull is computed using RANS meth-

ods, either with an undisturbed, flat, water surface, or un-

der a wave surface computed by a potential-flow code [77].

Seakeeping and manoeuvring simulations are usually per-

formed by potential codes only.

Still, interactions exist between both physical aspects;

viscous effects on the wave making and wave effects on the

viscous flow do occur. Our objective to predict free-surface

flow by solving the RANS equations means that the inter-

actions of the viscous and turbulent flow with wave making

can be fully taken into account.

For the solution, accuracy is of prime importance. In most

ship flow cases, the viscous and wave making effects are

weakly coupled, so their coupled solution is only of interest:

• If it is accurate enough to really represent the limited in-

teraction effects, thus improving upon the separate pre-

dictions;
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• If it works for ships at full scale, not just for model scale,

as there is no known way to relate the interaction effects

at model scale with those at full scale;

• If it is accurate enough to predict scale effects on the wave

system, i.e. the small differences in wave pattern between

model test and full scale.

These are significant requirements. Some of the earlier re-

sults contained numerical errors in the predicted wave pat-

tern that exceeded the viscous effects on that pattern, or

dominated the computed scale effects. Even now, several

methods exist that are not able to predict these aspects ac-

curately. In particular the demand to work well at full scale,

for Reynolds numbers (based on ship length and speed) up

to 5 × 109, is not easy to meet.

Also, the solution must be robust with respect to breaking

waves. For ship flows in general, breaking waves frequently

occur, either as plunging breakers appearing at sharp bows

or as spilling breakers for stern and blunt bow flow. For most

practical applications it is not necessary to model this wave

breaking exactly but one would aim at predicting correctly

the global effect of the breaking waves on the wave field

and forces. Also, the method should not break down when

breaking occurs. The importance of these aspects increases

for high-speed ships for which stronger breaking occurs.

And finally, a general method needs to account for the

motion of the ship. In seakeeping and manoeuvring simula-

tions, ultimately the full unsteady motion of the ship is to

be resolved together with the flow field. However, several

useful models are known that can be based on simpler sim-

ulations.

Later on, when discussing applications of the numerical

models discussed, we will come back to these requirements.

1.2 A Classification of Water Surface Models

References to computational methods aiming at computing

interfacial flows can be found first in the early sixties. Since

then, many different varieties have been proposed. Classi-

fying these varieties is not straightforward; the literature

is even ambiguous, as some category names have different

meanings in different papers. A classification that is often

used, is the division into two categories:

• Fitting methods, where the computational mesh is de-

formed to make a boundary coincide with the water sur-

face.

• Capturing methods, where the water surface is located in

the interior of the mesh.

Also, following the classification first introduced in [28] and

reused in [93], methods can be classified as:

• Surface methods, for which the interface is explicitly rep-

resented and boundary conditions are applied on the sur-

face.

• Volume methods, for which the two fluids are distin-

guished by particles or a specific indicator function asso-

ciated with each fluid; no explicit interface model is used.

Ambiguity appears in the use of the term ‘tracking meth-

ods’. Some authors (e.g. [1]) use this term to denote methods

that are capturing and surface methods according to the clas-

sifications above, others have used it to denote fitting meth-

ods. Accordingly, the term ‘capturing methods’ has differ-

ent meanings for different authors. Readers of the literature

should beware of this.

We consider that the most logical classification of water

surface models is to combine the two classifications given

above into a division in three categories, similar to the one

in [103]:

• Fitting methods, where the grid is deformed and free-

surface boundary conditions are applied to a boundary of

the grid. These methods are usually solved in an iterative

process, where alternately the flow field is computed and

the grid is deformed to match the current shape of the

wave surface. An example of a fitting method is given in

Sect. 2.

• Capturing methods with reconstruction. For these meth-

ods the grid is not necessarily deformed; the interface is

defined as a surface that cuts through the grid. Initially,

this surface was defined by convecting marker particles

on the surface with the flow field [15, 65]. Later, variants

of the volume-of-fluid (VoF) method used the convected

value of the water volume fraction in cells to determine

the surface location [66, 106]. The latest addition to these

methods is the level set method, where the plane is defined

by a convected continuous function [68, 84]. Section 4 is

devoted to the level set technique.

• Capturing methods without reconstruction. For these

methods, like the original VoF method [40], a volume

fraction equation determines the amount of each fluid in

the cells and local fluid properties are set as a mixture

of the two pure-fluid properties according to this vol-

ume fraction. No attempt is made to reconstruct the in-

terface, instead it appears as a numerical discontinuity in

the volume fraction. Such capturing methods are detailed

in Sect. 3.

This division in three categories corresponds to the three

codes that will be presented in the following sections.

1.3 The Three Codes

PARNASSOS is a structured multiblock RANS solver with

a surface fitting algorithm. The free-surface method has

been developed at MARIN since 1998, its unique surface

fitting technique was created in cooperation with CWI. The

main development of the code having been completed, it is
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currently the principal method of ship viscous flow calcu-

lation at MARIN and has been licenced to other institutes.

The code PARNASSOS is described in Sect. 2.

ISIS-CFD is an unstructured face-based finite-volume

solver that computes free-surface flow with a surface cap-

turing approach without reconstruction, using compressive

discretization schemes. Started in 1999, the code is devel-

oped at Ecole Centrale de Nantes (ECN) by researchers

from ECN and CNRS. Since 2006, the code is distributed

commercially by NUMECA International as a part of the

FINE/Marine computing suite. ISIS-CFD is described in

Sect. 3.

SURF is an unstructured finite-volume solver with a level-

set discretization of the free surface. The code has been de-

veloped since 1994 at Center for CFD Research, National

Maritime Research Institute, Japan. This code is commer-

cialized by NMRI themselves and distributed to many ship-

yards in Japan. SURF is described in Sect. 4.

2 A Free-Surface Fitting Technique in Steady Form

2.1 Introduction

The first category of free-surface viscous flow calculation

methods that we address is that of ‘free-surface fitting’ for-

mulations. The example we consider is the code PARNAS-

SOS, which is used extensively in practical ship design at the

Maritime Research Institute Netherlands since many years.

Its free-surface option is more recent and is being used in

practical applications since a few years.

The focus of the present section is on the free-surface

fitting property of the method, but also on its particular so-

lution strategy which is enabled by the free-surface fitting

formulation. On this point it differs from the two other meth-

ods described in this paper (and from almost all other free-

surface viscous flow methods). This solution method makes

it accurate and very efficient for steady-flow problems; but

it is more specialized in its applicability than the others.

The free-surface code builds on the original PARNAS-

SOS code for computing viscous flow around ship hulls. The

foundation for this method was laid in the 1980’s and it has

been further developed by MARIN and IST in Lisbon, Por-

tugal [42, 43, 98]. It has been used in practical ship design

since about 1990.

In 1998 the development of a free-surface viscous flow

code was started on this basis. At that time some methods to

solve viscous free-surface ship flows had already been pro-

posed by others. All of these used a time-dependent process

for computing the steady state, and typically that steady state

was approached quite slowly, leading to less accurate final

solutions and large computation times. Because of this it was

decided to aim at an alternative formulation that omits all

time-dependence and solves the steady problem by iteration.

A particular form of the free-surface boundary conditions

is then required for a successful algorithm. First numerical

experiments with this form were made in 1998 in joint re-

search of CWI and MARIN, by Van Brummelen. In some

simple 2D test cases the method quickly fulfilled its promise

by showing a very rapid convergence of the free surface

shape [78, 96]. Much analysis work on the 2D method has

been done by Van Brummelen [95, 97], while Lewis, in a

subsequent research project, made other improvements and

extensions to 3D cases [54]. The first applications to actual

ship forms were done in 2002 [77]. The method has been

refined and extended since, and more detailed applications

and validations have been done. Today it is used in practical

applications at MARIN, and already its results have con-

tributed substantially to the insight in the physics of viscous

effects on ship wave patterns [80].

The next subsection discusses free-surface fitting tech-

niques for water wave problems more generally, indicating

global advantages and limitations. Then, based on a con-

sideration of the context and objective of the development,

choices are made on the formulation, which is then de-

scribed. Some of the analyses on the fundamentals of the

method are briefly described in Sect. 2.3. Applications and

validations are discussed in Sect. 2.4. Section 2.5 summa-

rizes the main points.

2.2 Description of the Method

2.2.1 Free-Surface Fitting Methods

In free-surface fitting methods the free surface is considered

as a boundary of the flow domain that moves under the in-

fluence of the flow. On that boundary, free-surface boundary

conditions (FSBC’s) are imposed. The dynamics of the air

flow above the water surface is not computed and its influ-

ence on the water flow is disregarded: the pressure at the

free surface is assumed to be constant (atmospheric) and no

shear stress acts on the surface. In view of the limited flow

speeds in the air and the large difference in density this is

a justified approximation for almost all practical purposes

envisaged.

The free surface shape is to be determined in the solution

process. Typically a stepwise (time-dependent or iterative)

procedure is used, in which alternatingly the flow field and

the free surface are updated. Normally, at each step the grid

is adjusted such that it matches the current free-surface es-

timate, although there are exceptions [55]. Thus, boundary

conditions are imposed on a previous estimate of the wave

surface.

A very early example of a free-surface fitting method

is that of Coleman and Haussling in 1981 [11, 12], for
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a free-surface potential-flow problem solved with a finite-

difference method. When, around 1995, the development of

solution methods for free-surface viscous ship flow prob-

lems was taken up by more groups, free-surface fitting tech-

niques were the preferred choice. Several methods were al-

ready in use for computing viscous flow around ship hulls

without free surface, i.e. in which the deformation of the

water surface was disregarded or computed separately using

potential-flow methods. The free-surface fitting techniques

added the need to impose FSBC’s, and to update the free

surface and the grid; but otherwise they formed a natural ex-

tension of existing tools. Examples of such methods can be

found in [21, 27, 31, 69, 89, 92]. Today some of the better-

known ship flow solvers are free-surface fitting methods,

e.g. ICARE [2, 3], NEPTUNE [38], UNCLE [7], and the

PARNASSOS method described here; but most recent new

developments are for methods in the free-surface capturing

category.

Advantages of surface fitting methods are that the form

and location of the free surface is precisely known; there is

no ‘smearing’ of the interface and it is a sharp and well-

defined boundary. This increases the accuracy of force com-

putations and flow details near the wave surface. With a lim-

ited amount of grid refinement, detailed phenomena such as

free-surface boundary layers or surface tension effects could

be modelled. Moreover, as it appears the inherent numerical

damping of surface waves is less in free-surface fitting meth-

ods than in capturing methods, unless in the latter special

techniques are used to minimize the effect, as e.g. described

in Sect. 3. Numerically it can also be an advantage that there

is no need to discretize across a density jump of a factor of

800.

However, free-surface fitting clearly has limitations as

well. A rather fundamental problem in a surface fitting

method is to deal with topology changes. In general free-

surface flows, these can occur for so-called ‘plunging break-

ers’, i.e. overtopping waves that fall back onto the water

surface and enclose an air region that breaks up in smaller

bubbles; or by formation of spray, or by breaking up of cav-

itation bubbles. Imposing FSBC’s at many rapidly changing

free surfaces in such flows would be impractical or impos-

sible. If one wants to deal with general free-surface ship

flows, including ships in a seaway with breaking waves,

free-surface fitting may not be a practical choice.

A more practical question is whether a good grid can be

made matching the wave surface. While free-surface gravity

waves away from boundaries typically have relatively mild

wave slopes, more extreme wave shapes can occur directly

adjacent to the hull. In certain cases locally large slopes

or thin sheets of water can occur, e.g. in slamming prob-

lems, that would make gridding difficult. One should keep

in mind however that surface fitting is not confined to struc-

tured grids.

In most algorithms it is also required that during the

computation the grid follows the evolution of the wave sur-

face while keeping its topology. Grid deformation then is

a preferred technique, for which a variety of methods has

been proposed, based on transfinite interpolation of bound-

ary movements, or linear and torsional spring analogies in

2D or 3D, or analogies with an elastic solid. Some of these

are quite powerful and applicable to large deformations but,

if applied at each time step, might add substantially to com-

puting cost.

In summary, while free-surface fitting methods have ad-

vantages for accuracy, the occurrence of topology changes

and the need to generate free-surface conforming grids

may be serious limitations for quickly evolving free-surface

flows with large free-surface deformations.

2.2.2 Context and objective

Let us now consider to what extent these advantages and

limitations apply to the class of problems we aim at with

the method described in the present section. It is primar-

ily aimed at solving the ship resistance problem; the predic-

tion of the resistance of the ship moving at constant speed

through still water. As mentioned before, the resistance and

power in practice are to a large extent determined by the

still-water resistance, which often forms the main hydrody-

namic aspect determining the hull form design and the prin-

cipal demand for CFD capabilities. The existing PARNAS-

SOS code already was mainly dedicated to this problem.

As pointed out before, to correctly predict the weak in-

teraction between viscous effects and wave making and to

precisely account for scale effects, the accuracy of the nu-

merical method is of the highest importance. Also from a

practical point of view a very high accuracy of resistance

predictions is often requested (differences as small as 1%

need to be indicated). Moreover, computational results for

several cases usually need to be obtained in a rather limited

time (a few weeks for the entire hull form design process) to

fit in a typical merchant ship design project.

On the other hand, some simplifications can be made to

the problem. The cases we want to deal with are usually

rather streamlined ship hulls, causing smooth flow fields.

Massive flow separation is normally avoided. Flow fields are

generally steady (apart from turbulent fluctuations). Steady

ship wave patterns have fairly mild wave slopes away from

the hull, presenting no difficulty for grid generation. Again

locally at the intersection of the wave surface with the hull

situations can occur that complicate gridding; but the fact

that in steady flow the wave elevation is bounded by the

stagnation height ζmax = 1
2
V 2/g limits the occurrence of

extreme wave shapes.

An often-quoted limitation of free-surface fitting meth-

ods is that they are not able to model wave breaking. As
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mentioned this is actually the case for plunging breakers

as these involve topology changes. In steady ship waves

these usually occur only locally at sharp ship bows at higher

speed; Fig. 28 shows an example. But most wave breaking

in steady ship wave patterns is of the ‘spilling-breaker’ type,

characterized as a volume of (aerated) water riding on top

of the front face of a wave of the underlying flow. Such a

breaker has a rather simple shape with limited wave slope

and can in principle be dealt with by a fitting method. Still

there are modelling and resolution issues that would need to

be solved. However, a precise representation of wave break-

ing is in most cases not considered to be essential for ship

resistance and flow predictions. We hope to accommodate a

simplified modelling of wave breaking effects later.

Summarizing, the degree of generality we aim for is lim-

ited, and the accuracy and efficiency are of paramount im-

portance. Therefore, free-surface fitting methods are a cate-

gory to be considered.

As a further simplification, the free-surface shapes we

need to consider are normally single-valued functions of the

horizontal coordinates, or if they are not that is a very local

effect that is not necessarily predicted precisely.

2.2.3 Solution Methods for Free-Surface Viscous Flow

Problems

In free-surface fitting methods, at the upper boundary of the

computational domain, which is (an approximation of) the

wave surface, free-surface boundary conditions (FSBC’s)

are imposed. If we denote the velocity components (in an

(x, y, z)-coordinate system fixed to the ship, with x positive

aft and z upward) by u,v,w, the wave height by ζ(x, y),

and non-dimensionalise all quantities using ship speed U ,

a reference length L (normally, ship length), and gravity ac-

celeration g, the free-surface boundary conditions are:

• a kinematic condition that the free surface moves with the

flow:

ζt + uζx + vζy − w = 0 at z = ζ ; (1)

• a normal component of the dynamic condition, requir-

ing that at the surface the pressure p∗ is atmospheric

(p∗ = 0); in which surface tension effects have been dis-

regarded, being insignificant for ships;

• two tangential components of the dynamic condition, re-

quiring that no shear stress is exerted on the water surface.

As ζ is unknown, the free-surface boundary conditions

are non-linear and must be imposed on a surface not known

beforehand. A solution algorithm presents itself from the

form of the kinematic FSBC (1), which can well be in-

tegrated in time to find a new wave elevation. A time-

dependent solution procedure, for free-surface fitting meth-

ods but also for free-surface capturing methods with recon-

struction, can thus be followed, in which in each time step:

1. The RANS equations are solved subject to the dynamic

conditions imposed at the current wave surface;

2. The wave surface is updated by integrating in time the

kinematic free-surface boundary condition; and if ap-

plicable, the grid is updated to match the wave surface.

Capturing methods without reconstruction actually fol-

low a closely comparable evolution algorithm. Instead of

step 1, the RANS equations are solved in the entire domain

(water and air), for a given distribution of density and vis-

cosity reflecting the current estimate of the wave surface

location. In view of the small density of the air this corre-

sponds closely with imposing dynamic boundary conditions

at the free surface. Next, the volume fraction function, level

set function or whatever indicator of the free surface location

is updated by solving a convection equation, corresponding

with the kinematic FSBC.

This time-dependent formulation involves the physics of

transient ship waves. If the objective is to compute the steady

flow and wave pattern, the transients are of no interest but

can cause a substantial delay of the process:

• A variety of transient waves is generated by the initial

acceleration of the ship, or whatever other start of the

computation. Before a steady result can be obtained, these

have to leave the domain.

• As is analyzed in [97], in an unbounded domain the as-

ymptotic decay of the transient waves is determined by

waves that have group velocity equal to the ship speed.

Their effect is frequently observed as persistent, slowly

decaying oscillations of the wave resistance, with nondi-

mensional period �T.V/L = 8πV 2/(gL).

• Physically it takes substantial time before a steady wave

system has established in an area around the ship, as a

result of the fact that in deep water, wave energy travels

with half the speed of the wave itself.

Therefore, the physical simulation time needed before a

steady result is obtained, is substantial; in practical appli-

cations often around 10 to 15L/V.

One might hope to make large time steps in the initial

stages to limit the drawback. However, algorithms that es-

sentially uncouple the dynamic conditions (imposed to the

RANS solution) and the kinematic free-surface conditions

(used to update the wave surface) in each time step, often

impose time step restrictions.

Of course there are ways to alleviate some of the difficul-

ties mentioned, and not all methods suffer equally. Neverthe-

less, tens of thousands of required time steps are frequently

reported for 3D ship cases.

2.2.4 Formulation of the Steady Iterative Approach

To avoid that transient waves lead to slow convergence to

steady state, it is desirable to omit all time-dependent terms
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in the method and to solve a strictly steady form of the prob-

lem directly by iteration. The problem then excludes any

transients at startup, only admits wave solutions that sat-

isfy the steady dispersion relation, guarantees that waves

are confined to the ‘Kelvin wedge’ thus reducing reflection

problems at artificial boundaries, and eliminates contact line

problems.

The free-surface boundary conditions to be satisfied, in

steady form, are:

• a kinematic condition

uζx + vζy − w = 0 at z = ζ, (2)

• a normal dynamic condition, p = 0 at z = ζ. In terms of

the non-dimensional hydrodynamic pressure

p = (p∗ + ρgz)/(ρU2),

this boundary condition, neglecting surface tension and

viscous contributions, becomes:

Fn2p − ζ = 0 at z = ζ, (3)

• a tangential dynamic condition

�t .τ.�n = 0. (4)

Having dropped ζt from the kinematic FSBC we cannot

use it any more to advance ζ in time, so a substantially dif-

ferent iteration process is needed.

The dynamics of ship waves are essentially governed by

the normal component of the dynamic condition, (3), and

the kinematic condition (2). None of these two conditions

introduces any wave character by itself: wave solutions, a

dispersion relation, group velocity and all other properties of

free-surface waves only arise from the combination of both

conditions. Therefore it is important not to impose these two

conditions alternatingly in a two-step iterative process. The

key to a successful iterative solution of this steady RANS/FS

problem is to impose a combined form of the kinematic and

normal dynamic FSBC. This is obtained by substituting the

wave elevation from the dynamic condition into the kine-

matic condition, which yields:

Fn2(upx + vpy + wpz) − w = 0 at z = ζ. (5)

This combined condition needs to be supplemented by the

three dynamic conditions (3) and (4), to give a set of condi-

tions that corresponds exactly with the original set.

An iterative solution procedure is then defined as, per it-

eration step:

• I. The RANS equations are solved subject to the com-

bined condition (5) and the tangential dynamic conditions

(4), imposed at the current wave surface;

Fig. 1 Wave profile caused by a bottom bump, evolution in the course

of the iteration process

• II. Next, the wave surface and grid are updated using the

normal dynamic condition (3), which for given p is an

explicit expression for ζ.

Upon convergence the pressure deviation, normal velocity

and shear stress vanish at the actual wave surface and the

solution of the steady RANS/FS problem has been obtained.

As shown in [77] the combined FSBC has a form com-

parable with usual FSBC’s for steady free-surface potential

flow methods. In itself it already embodies the proper wave-

like behavior: even without any free-surface update we al-

ready find physically plausible solutions for the wave pat-

tern in a single step. The free-surface updates are needed for

some of the non-linear terms and add accuracy.

As a first illustration of how this unfamiliar formulation

works, we show here some results obtained by Van Brum-

melen in an early stage of his research [78]. It is for 2D flow

of a river over a bottom bump that disturbs the water sur-

face and causes a trailing wave pattern. The evolution of the

wave surface in the course of the iterative solution is shown

in Fig. 1. The computation is started with a flat water surface

(a) and a grid conforming to it, and the combined FSBC is

imposed. The first RANS solution immediately produces a

trailing wave system (b) with nearly the correct length and

amplitude. In the next iteration, the free surface is adjusted,

the grid deformed, and again the combined FSBC imposed.

As the figure shows, the second estimate (c) is very close

to the final result and full convergence is obtained in 3 to 9

iterations, depending on the height of the bottom bump and

resulting wave steepness. This very fast convergence and fa-

vorable properties made us pursue the steady iterative ap-

proach and extend it to more general, 3D applications.

2.2.5 Implementation—The RANS Solver

The code used is PARNASSOS, which solves the RANS

equations for steady, 3D incompressible flow around a ship
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Fig. 2 Example of grid topology (only every 5th grid line shown); and

close-up of grid around bow

hull. Various 1- and 2-equation turbulence models are avail-

able. Body-fitted HO-type grids are used, which are strongly

contracted towards the hull; Fig. 2 shows an example of the

grid layout.

No-slip conditions are imposed at solid walls, symme-

try conditions at the ship’s centerplane; given velocity com-

ponents at the inlet. At the external boundary we impose

Dirichlet conditions for the pressure and for the velocity

components tangential to the boundary, derived from a free-

surface potential flow calculation. At the outlet, Neumann

conditions for pressure and velocities are imposed, the for-

mer again derived from the potential-flow computation.

The discretization is of finite-difference type. For the

convective terms and in the continuity equation we use sec-

ond or third-order upwind schemes in streamwise direc-

tion, and third-order schemes for the normal and girthwise

direction. For the pressure derivatives in the momentum

equations we use third-order schemes, which for stability

and consistency must have a bias opposite to that of the

velocity derivatives in the continuity equation; therefore a

downstream-biased pressure derivative scheme is applied in

mainstream direction.

A particular feature that plays a role in the free-surface

approach is the treatment of the pressure. In incompressible

flows, the pressure does not occur in the continuity equa-

tion, and most RANS methods therefore reformulate that

equation, e.g. as a pressure-correction equation or a time-

dependent artificial-compressibility formulation. Instead, in

PARNASSOS the full coupling of the momentum and con-

tinuity equations is maintained, and after discretization this

gives rise to a matrix equation containing 4×4 blocks.

This matrix equation is solved using GMRES with ILU-

preconditioning. This fully coupled solution has been found

to be robust and quite insensitive to the mesh aspect ratio,

and most suitable for external flows at high Rn.

The entire system of equations would still be very large.

Its size is reduced by subdividing the domain into subdo-

mains, each consisting of a group of (typically 4 to 8) trans-

verse grid planes. In a ‘global iteration’ process, a block

Gauss-Seidel type of solution procedure is used in which

the subdomains are addressed in a downstream sequence.

The preconditioned GMRES solver acts on the equations for

each subdomain. This global iteration exploits the charac-

ter of the problem, which has a predominant flow direction,

and still takes into account all influences in upstream direc-

tion. The convergence of the global iteration is enhanced

by grid-sequencing, i.e. we start the computation on a mesh

coarsened in the mainstream and girthwise direction and re-

fine repeatedly by a factor of 2. In addition, between the

downstream sweeps simple algebraic upwind sweeps are

performed in which only the pressure is updated.

More about the solution algorithms can be found in [98].

2.2.6 Implementation—The Free-Surface Boundary

Conditions

The combined FSBC is transformed to the curvilinear sys-

tem which is conforming to the boundaries of the domain.

In (5) the pressure gradient ∇p and vertical velocity com-

ponent w are taken implicitly in the iteration process; while

the other velocities are taken from the previous step of the

global iteration. Unlike in the momentum equations, in this

FSBC px must be modelled by an upstream-biased dis-

cretization. Normally a third-order 4-point scheme is used.

Since the combined FSBC is trivial at the wall and also

an update of the free surface using the dynamic FSBC can be

applied arbitrarily close to the ship hull, there is no ‘contact-

line problem’ and there should be no need for special ap-

proximations along the waterline. However, in the vicin-

ity of the hull the grid is strongly contracted towards the
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hull surface, while the vertical grid spacing is several or-

ders of magnitude larger. In this region, transverse oscilla-

tions of the pressure occurred at the free surface, which took

the form of sharply diverging waves which could propagate

away from the waterline and affect the wave pattern. Such

short waves should have a very quick decay in vertical di-

rection, but this decay cannot be resolved since the vertical

mesh spacing is much larger. Therefore the short waves will

be severely distorted, which may explain their occurrence in

the computation. This problem could be largely resolved by

a local adjustment of the discretization and a vertical con-

traction of the grid. In practice, a local approximation of the

pressure variation normal to the hull surface is used in a nar-

row region along the waterline, to avoid the oscillations and

resulting robustness problems.

2.2.7 Free-Surface Updates

In each free-surface iteration the local wave elevations are

updated from the dynamic FSBC, and the grid is updated to

the new free-surface shape. This is done by deforming the

grid to match the new shape of its upper boundary. Some dif-

ferent grid deformation tools are available, based on Trans

Finite Interpolation (e.g. [24]) of the boundary movements,

or on a torsional-spring analogy [5, 19, 26]; either applied

in 2D form to the grids in transverse planes, or in a 3D

form. Alternatively, in case of larger deformations the grid

can be regenerated using the same parameter settings as for

the original grid. Next, the computation goes on simply us-

ing the previous solution, without any spatial interpolation

towards the new locations.

2.2.8 Solution Strategy

Summarizing, we have four iteration processes:

• The grid-sequencing. In this process the grid spacing is

halved several times in longitudinal and girthwise direc-

tion;

• The free-surface iteration in which the wave elevations

and grid are updated;

• The global iteration, in which subdomains are addressed

in a downstream order;

• The iterative solution of the systems of linear equations

for the subdomains, using preconditioned GMRES.

It is to be noted that there is no need to combine the free-

surface iteration and the global iteration. It is possible to

continue the global iteration until convergence within each

free-surface iteration, thus solving the RANS problem com-

pletely subject to the combined FSBC. After convergence

one adjusts free surface and grid, and restarts. Full conver-

gence of the wave pattern then is usually achieved in as little

as 10 free-surface iterations. However, in practice it has been

found to be more robust to make more frequent free-surface

updates (e.g. every 20th global iteration), with some under-

relaxation.

The grid sequencing as the outer loop provides an initial

estimate of the wave pattern on very coarse grids in little

computation time. This is a useful option in case one starts

with an undisturbed free surface as initial estimate. How-

ever, since free-surface potential-flow computations provide

good results for much of the wave pattern in just minutes

of CPU time, we often use this wave pattern, generate a

grid under it, and start the RANS computation with that. In

that case no free-surface updates are made on the coarsened

grids, only once the finest grid has been reached.

2.2.9 Dynamic Trim and Sinkage

The hydrodynamic pressure distribution around the ship

hull at forward speed exerts forces and moments causing a

change of attitude of the ship. Typically, larger ships at nor-

mal speeds move slightly downwards (‘sinkage’) and may

get some forward or aft angle (‘trim’). These in turn affect

the flow and the resistance, so it is important to take them

into account in the computation. For a steady flow condition

we include this in the iteration process. Simultaneous with

the free-surface and grid updates we update the attitude of

the ship hull. The imbalance is determined between the ver-

tical force and pitching moment exerted by the pressure dis-

tribution over the hull, and the weight of the ship and its

distribution. Trim and sinkage changes are then determined

such that the resulting change of the hydrostatic force and

moment cancel that imbalance. The hydrodynamic forces

will then change as well; this is taken care of in the iter-

ation process. This procedure is straightforward, converges

very well and causes no delay of the computation.

2.3 Theoretical Analyses

Important theoretical analysis work on the present formu-

lation has been done primarily by Van Brummelen [95,

97]. Among other analyses, he has considered conditions

for convergence of the iterative formulation; and has derived

how the number of time steps in a time-dependent method,

needed to obtain a steady result, compares with the number

of iterations in the steady iterative formulation; concluding

that the dependence on mesh density is much smaller in the

latter. We limit ourselves to giving the reference here, and

just consider a study on the numerical accuracy.

Numerical Dispersion and Damping RANS/FS computa-

tions for steady ship wave patterns are not easy to make

grid-independent, and frequently display a too quick de-

cay of wave elevations with distance to the ship, as a re-

sult of numerical damping. Therefore it is important to
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study the wave propagation properties of the method analy-

tically, and such an analysis seems easier to do for surface-

fitting methods. A theoretical analysis of the numerical er-

rors was proposed by Van Brummelen [94], who essentially

derived the numerical dispersion and damping of a variant

of the present method. The analysis was again applied to

the present method by Lewis [54]. Subsequently, in [79]

the analysis has been extended, the asymptotic behavior has

been studied, and the role of various difference schemes has

been demonstrated analytically and numerically.

In simple terms, the analysis considers small perturba-

tions of a uniform flow in 2D, represented by Fourier com-

ponents eikx+sz. This perturbation must satisfy linearized

RANS equations. A set of eigensolutions of these equations

is derived. Substitution into the free-surface boundary con-

dition provides a single wave component. For the continuous

problem, this represents the steady 2D (or transverse) wave,

which has a nondimensional wave number k = k0 = 1/Fn2

and s = k0. For the discretized RANS equations, the differ-

ence schemes acting on the Fourier components introduce

Discrete Fourier Transforms, which are different for the var-

ious schemes used; e.g. D̂−
x is the DFT of the backward 3-

point scheme for the convective terms, D̂x,f s the DFT of

the backward scheme for px in the combined FSBC, etc.

Derivation of the eigenmodes and substitution in the FSBC

then leads to the expression:

−D̂x,f s .D̂
−
x − k0D̂

+
z = 0,

in which D̂+
z is a function of s which in turn depends on k

by a relation dependent on mesh density.

Corresponding to the steady transverse wave of the con-

tinuous problem, this expression determines the solution of

a single wave component as found from the discrete formu-

lation. From this expression we can evaluate the ratio k/k0

for that wave, which depends on the relative mesh densities

ε ≡ k�x and β = s�z. The real part of k/k0 − 1 repre-

sents a numerical dispersion, i.e. an error in the dispersion

relation that links wave length and wave speed. The imag-

inary part is a numerical damping, visible as a too quick

decay of waves on a coarser grid. The numerical disper-

sion and damping thus appear to depend on all difference

schemes used, in momentum and continuity equations and

in the FSBC. The expression obtained has been evaluated

asymptotically for vanishing mesh spacings. For a 4-point

upwind-biased third-order scheme for px in the FSBC this

yields for instance:

k/k0 = 1 −
1

6
ε2 −

1

12
β3 +

1

4
iε3 + O(ε4).

With the results of this analysis it has been possible to design

a ‘balanced’ difference scheme for the FSBC such that, in

Fig. 3 Wavenumber ratios for various difference schemes in the com-

bined FSBC

the combination with all other discretizations used in PAR-

NASSOS, the second-order numerical dispersion and third-

order damping just cancel, yielding:

k/k0 = 1 −
1

12
β3 + O(ε4).

Dispersion is then reduced to a small third-order term in �z,

and numerical damping is reduced to fifth order.

With a simplification, the expressions for k/k0 have also

been evaluated numerically for finite mesh sizes. Figure 3

shows the result of the latter, indicating the numerical dis-

persion and damping for given grid densities. The differ-

ent lines represent various difference schemes used in the

combined FSBC, in combination with all other difference

schemes used in the code. Clearly, the third-order scheme

normally used already gives a good accuracy, but the bal-

anced scheme designed with this analysis is still signifi-

cantly more accurate for denser meshes.

All properties thus derived analytically have essentially

been confirmed in numerical experiments. Figure 4 shows

the computed wave trains generated by a travelling free-

surface pressure distribution, for different grid densities. The

two-point first-order scheme (top figure) is very poor, giving

still a much too low wave amplitude for a grid density of 50

cells per wavelength—as a matter of fact, first-order errors

in free-surface viscous flow codes often lead to unaccept-

able inaccuracies. The second-order three-point scheme is

much better but has appreciable numerical dispersion. The

third-order scheme gives an almost grid-independent result

on the finest grids. However, the balanced scheme already
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Fig. 4 Grid dependence study for various difference schemes in the

combined FSBC. Pressure patch, longitudinal cut at y/L = 1, for grids

with 6, 12, 25 and 50 cells per wavelength

produces a (visually) grid-independent solution with just 25

cells per wavelength.

This convincingly illustrates the importance of details of

the discretization on the accuracy of computed wave pat-

terns. It also shows the value of a theoretical accuracy analy-

sis to improve RANS/FS methods without simply ‘adding

more cells’. If equal accuracy can be achieved on a coarser

grid, this means a vast improvement in efficiency and ap-

plicability.

2.4 Applications

Various applications have been shown in [77, 79, 80, 88, 99].

We include some examples here to illustrate the capabilities

and limitations of the method.

2.4.1 Series 60 Ship

A first ship case addressed was the so-called Series 60

Cb = 0.6, a standard hull form for which many valida-

tion data are available, for a model scale Reynolds number

Rn = 3.4 × 106 and Froude number Fn = 0.316. The com-

putational mesh consisted of 321 × 121 × 45 = 1.8 M grid

nodes in the streamwise, wall-normal and girthwise direc-

tion, respectively.

Figure 5 shows the convergence of the hull wave pro-

file, the intersection of the wave surface with the hull. In

this computation the global iteration was continued until full

convergence within each free-surface iteration. The compu-

tation was started with an undisturbed free surface, the first

RANS solution immediately yields a most reasonable wave

Fig. 5 Convergence of the wave profile along the hull in successive

free-surface updates

Fig. 6 Effect of longitudinal grid spacing on wave cut at

y/L = 0.2395; and comparison with experimental data; for Series 60

model

profile, and after just a few free-surface iterations the wave

pattern has converged.

Figure 6 compares the results for a longitudinal wave cut

at y/Lpp = 0.2395, (where Lpp is the standard ship ref-

erence length) obtained on four meshes that were succes-

sively refined by a factor two, in streamwise direction only

in this case. The number of grid nodes in streamwise direc-

tion is equal to about 13, 26, 52 and 103 per transverse wave

length, respectively. On the coarsest grid the wave amplitude

is strongly under-estimated, even though the wave length is
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Fig. 7 Comparison of computed (top) and measured (bottom) wave

pattern for Series 60 model

captured reasonably well. Upon grid refinement the solution

rapidly improves and differences between the finest and the

second finest mesh are small. The fine-grid results are in

good agreement with the experimental data from [91]. Fig-

ure 7 compares the computed and measured wave pattern

and shows overall good agreement, with only locally small

differences in the shorter wave components.

2.4.2 Hamburg Test Case

A next case we show is the so-called Hamburg Test Case,

a containership for which extensive measurement data are

available. This ship was the subject of a computation work-

shop in the EU-funded project VIRTUE. Computations have

been made for the model scale (1:24) and for the actual ship.

Dynamic trim and sinkage were included in the computa-

tion. The challenge here was to have results accurate enough

to distinguish the scale effects on the wave pattern and wave

resistance coefficient; which, as mentioned, classically are

supposed to be absent.

The Froude number was Fn = 0.238, the Reynolds num-

ber 11.77×106 for model scale, 1.2×109 for full scale. The

grids used had 2.3 M cells for model scale (440×100×52),

3.2 M cells for full scale (440×140×52). No wall functions

were used.

The workshop provided interesting comparisons between

surface-fitting and surface-capturing approaches. Surface-

fitting here was found to have advantages for the type of

problem to be solved: a steady flow, and a high required ac-

curacy. Free-surface capturing methods used by other work-

shop participants had a similar number of grid cells, but had

to spend part of that for the air region, and for the dense

grid needed in the free-surface region in order to limit the

amount of interface smearing. Except for the resulting some-

what lower numerical accuracy the results of the method of

Sect. 3 were actually very similar to those shown here [99].

The required CPU-times for model and full scale, respec-

tively, were 48 and 72 hours on a one-processor PC for the

present method. The time-dependent capturing methods ap-

plied to the same case needed up to 56 times more compu-

tation time.

Fig. 8 Comparison of computed and measured longitudinal wave cut

at y/L = 0.184, for Hamburg Test Case model

Figure 8 shows a comparison with experimental data for

one wave cut, confirming that the model wave pattern com-

puted is realistic. Figure 9 compares the wave pattern for the

ship at full scale (left side of the figure) and at model scale

(right side). The two are almost identical, with the exception

of the stern wave system generated at the aft part of the ship,

where viscous effects (e.g. boundary layer displacement) on

the wave system are significant. Figure 10 shows these scale

effects on the stern wave system by a longitudinal wave cut

at the centerline, and compares with inviscid results. The

magnitude of the viscous reduction of the stern wave is sub-

stantial locally.

Clearly, the possibility to solve free-surface viscous flow

problems provides new, detailed information hard to obtain

otherwise. In [80] these results have been further analyzed,

and practical implications shown. Specifically, in the usual

prediction of the resistance and engine power of a ship based

on the measured resistance at model scale, the effect of the

wave-viscous interaction on the resistance is disregarded,

or rather, implicitly compensated by empirical corrections.

However, from computations this interaction effect appears

to differ significantly between ships, and cannot be well cor-

rected empirically. Thus it should be possible to improve the

accuracy of the prediction of ship resistance by a sensible

use of CFD results in the process.

2.4.3 2D Transom Stern Flows

A detailed study with the present method has been done on

transom stern flows [88]. A transom stern is the cut-off aft

end of a ship, as is common for most large ships today. At

the lower edge of the transom the free surface often detaches

cleanly from the ship hull surface; this is the so-called dry-

transom regime. However, if that lower edge is at a too low

position, a flow separation with a recirculation area aft of
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Fig. 9 Computed wave pattern for Hamburg Test Case at full scale (left) and model scale (right). Wave heights 5 times magnified

Fig. 10 Hamburg Test Case. Wave cut at centerline aft of the stern.

Full scale, model scale and inviscid

the transom may occur; a ‘wetted-transom flow’. In an in-

termediate regime, the free surface detaches cleanly from

the transom edge, but aft of it a forward-directed spilling

breaker occurs.

The transom flow regime is relevant for the resistance;

but it is not easy to foresee which regime will be realized, as

it depends strongly on viscous effects and the history of the

boundary layer: low momentum in a thick boundary layer

favors transition to a wetted transom flow. Thus the flow

Fig. 11 2D wetted-transom stern flow. Contour plot of longitudinal

velocity component, showing recirculating flow aft of transom

regime depends on the interplay of viscous and wave effects

and can only be predicted using free-surface viscous flow

computations. However, it is not evident that the present

method will be adequate in all cases: A single-valued de-

scription of the wave surface is used; the combined free-

surface condition is rather weak in a recirculation area; and

the method is in completely steady form and disregards the

unsteadiness which is pronounced in the transition regimes.

In our 2D study we consider the aft end of an infinitely

wide, flat-bottomed ship with a straight transom. From the

inflow boundary the flow passes under the bottom of the
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Fig. 12 2D wetted-transom stern flow. Comparison of computed and

measured wave profile aft of the transom. Experimental data from Maki

[59]

ship, then detaches from the transom edge, either with a re-

circulation or as a dry-transom flow. For a given speed, the

flow regime obtained depends on the depth of the ship.

For the dry-transom flow regime, accurate solutions were

obtained for full scale, for model scale and for inviscid flow

[88]. By systematically increasing the depth of the transom

for a given speed it proved possible to determine the transom

depth at which inception of wave breaking would take place,

as indicated by the vanishing of the longitudinal velocity at

the crest of the first wave aft of the transom. Scale effects

on this breaking inception, which initiates the intermediate

regime, could thus be established.

Figures 11 and 12 shows one of the results for a case with

wetted transom, with a clear recirculation region aft of the

transom face. The wave pattern is in reasonable agreement

with the experimental data.

In the intermediate regime the free surface detaches from

the transom edge but a spilling breaker occurs some distance

aft of it. Figure 13 illustrates the computed flow for one case.

While the transom is dry, just aft there is a sort of jump in the

wave elevation, followed by an area with recirculation and

a relatively flat wave surface aft of it. This is in good quali-

tative agreement with reality for a spilling breaker. Even so,

resolution in these computations was still insufficient; but

the results suggest that the occurrence of wave breaking of

this type in itself need not be a fundamental problem for

surface-fitting methods.

2.4.4 Container Ship

The final application we show is a container ship model with

a transom stern. The transom flow regime being unknown,

Fig. 13 2D dry-transom stern flow with spilling breaker on stern

wave. Contour plot of longitudinal velocity component and stream-

lines, showing flow reversal in breaking area

Fig. 14 Containership. Wave pattern aft of transom stern, and illustra-

tion of the block structure used. (Hull surface only shown as surface

grid on its wetted part)

for this computation we use a multiblock grid in which there

is a transverse block junction at the transom. Aft of it is a

block that covers the flow aft of the transom, with or with-

out recirculation. The top boundary is along the wave sur-

face, and dependent on the transom flow regime that bound-

ary starts at the transom edge or the transom face. Thereby

the transom flow regime is automatically found in the com-

putations. In the course of the free-surface iteration process

a flow is found with a narrow wetted transom part near the

centerline, and a smooth dry-transom flow off the transom

further aside; separated by a rather steep wave slope as we

also see in experiments. Figure 14 illustrates the grid after

the automatic deformation in the course of the iterative so-
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lution, and the computed stern wave pattern. Clearly we find

the main transom flow regimes on the same ship next to each

other. A comparison with measured wave cuts aft of the tran-

som confirmed the accuracy of the solution for this case.

2.5 Summary and Perspectives

The present section has discussed a free-surface viscous

flow computation method based on a free-surface fitting

technique. The method is dedicated to steady flow around

ship hulls, and steady wave patterns. It uses multiblock

structured grids that are repeatedly deformed in the course of

the computation to match the free surface. Various grid de-

formation tools are available, based on Transfinite Interpola-

tion of free-surface changes, or on torsional-spring analogies

in 2D or 3D.

In the method discussed in this section, a particular iter-

ative solution method for the steady problem is used, which

distinguishes it from virtually all other methods. Owing to

the special formulation of the boundary conditions a very

fast convergence of the free-surface shape is obtained. In ad-

dition, the steady formulation eliminates various problems

related to reflection of transient waves, persistent unsteadi-

ness and contact line problems.

The present method is being applied in practical ship de-

sign projects and has already proven its value. Some appli-

cations have been discussed, indicating the possibilities, the

numerical properties, the accuracy achieved, and the use of

the results. The availability of highly-accurate viscous free-

surface flow solutions for model and full scale has appeared

to provide new insights that may have an impact on ship

power prediction and hull form design in a near future.

3 Surface Capturing Based on Compressive

Discretizations

3.1 Introduction

For volume methods (surface capturing), the fluids on ei-

ther side of the interface are marked by particles or a spe-

cific indicator function; this means that the interface be-

tween fluids is never explicitly known throughout the com-

putations. Therefore, special reconstruction techniques have

to be developed to capture and locate accurately the in-

terface, which is the main deficiency of this technique. In

1965, the Marker and Cell (MAC) method was introduced

by Harlow and Welch [30]. In this first implementation, a

cell without marker was considered as empty and the inter-

face was defined as the set of cells containing a marker adja-

cent to empty cells. During each time step, the marker parti-

cles are moved according to the neighboring fluid velocities.

Daly [14] first and then Hirt and Shannon [41], refined the

MAC method to take into account two-fluid computations

by defining different markers for different fluids. In that for-

mulation, a cell containing both marker particles was con-

sidered to be located across the interface. All these methods

belong to the so-called particle-in-fluids category. A second

category, called volume fraction methods, emerged naturally

in the 80s. Instead of using markers, a scalar indicator func-

tion taking values between zero and one (the volume frac-

tion) is used to distinguish between two different fluids, a

value of zero indicating the first fluid and a value of one the

occurrence of the second one, respectively. A volume frac-

tion between these two limits points out the presence of the

interface with a direct indication of the relative proportion

of fluid occupying the computational cell. The great advan-

tage brought by this formulation is that only one transport

equation has to be solved to determine the proportion of

fluid in each cell. However, the accuracy of this approach

will depend on discretization schemes which should not be

too diffusive in the vicinity of the interface. Therefore, it

is clear that volume methods are more robust on one hand

but there is still a need for specific techniques to improve

the determination of the location of the interface. Noh and

Woodward [66] proposed in 1976 the SLIC algorithm (Sim-

ple Line Interface Calculation) in which the interface in each

computational cell was approximated as a line parallel to the

Cartesian axis according to any particular kind of fluid dis-

tribution in the cell. This idea was generalized by Youngs

[106] with PLIC (Piecewise Linear Interface Construction)

and Lötstedt [58] who proposed to replace parallel lines by

oblique segments. The SLIC method was furthermore im-

proved by Ashgriz and Poo [4] who introduced in 1991

the Flux Line-segment model of Advection and Interface

Reconstruction (FLAIR). More recently, Pillod and Tuck-

ett [71] introduced a least-squares procedure while Lopez et

al. [57] proposed reconstructions based on splines. The main

drawback of all these methods is that they are clearly limited

to structured grids composed of rectangular or parallelepi-

pedic control volumes. Consequently, the generalization to

control volumes bounded by an arbitrary number of faces

appears problematic.

The donor-acceptor formulation was first introduced by

Ramshaw and Trapp in 1976 [74]. In this formulation, the

volume fraction value of the downwind cell (acceptor cell)

of a cell face is used to evaluate the level of volume frac-

tion value transported through it during a time step. Using

downwind information to build a numerical scheme leads to

instability problems associated in that case to unbounded-

ness which occurs when the volume fraction values become

larger than unity or lower than zero. Such situations may oc-

cur when a volume fraction of one fluid requested by the ac-

ceptor cell is larger than the one available in upwind (donor)

cell. It is therefore mandatory to ensure boundedness. which

is achieved by taking into account the availability of fluid in
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the donor cell to modify the value predicted by the acceptor

cell. This first clever formulation was later improved by Hirt

and Nichols [40] with their famous 1981 Volume-of-Fluid

(VOF) formulation by including a dependency with respect

to the slope of the interface. Later, Lafaurie et al. [50] built

the so-called SURFER scheme which was further refined

to simulate merging and fragmenting of interfaces. The use

of VOF for multidimensional problems was done with the

operator splitting strategy, which intrinsically limited it to

structured grid discretizations. Moreover, Ashgriz and Poo

and Lafaurie et al. established that the shape of an interface

was not kept unchanged when convected in a square domain

with an oblique velocity field. There was therefore a need for

higher-order discretization schemes which could be used on

fully-unstructured grids.

A more convincing approach was initialized by Davis

[18] in the early 90s. Instead of trying to represent geo-

metrically the interface between fluids, this strategy aimed

at discretizing more accurately a contact discontinuity con-

vected by a transport equation with the help of higher order

or blended discretization schemes. The difference between

a less diffusive scheme (reducing the smearing of a profile)

and a compressive scheme (removing any diffusion in the

vicinity of the interface) was stated for the first time and

opened the way to a variety of new compressive discretiza-

tion schemes. Most of these schemes are based on the Nor-

malized Variable Diagram (NVD) introduced by Leonard

[52] in 1991. Ubbink [93] in 1997 proposed the CICSAM

scheme (Compressive Interface Capturing Scheme on Ar-

bitrary Meshes), a blending of Hyper-C and ULTIMATE-

QUICKEST determined by the orientation of the interface

and flow directions. Another interesting scheme was pro-

posed by Jasak et al. [47] with IGDS (Interface Gamma

Discretization Scheme), a compressive version of their GDS

scheme [45]. Muzaferija and Peric [64] proposed another

variation called HRIC (High Resolution Interface Captur-

ing). More recently, Queutey and Visonneau [73] built a new

blended scheme called BICS for Blended Interface Cap-

turing Scheme, which is further refined in this section un-

der the acronym BRICS which stands for Blended Recon-

structed Interface Capturing Scheme. All these schemes try

(i) to keep constant the width of the interface on the small-

est number of control volumes by reducing the numerical

diffusion and dispersion, (ii) to ensure a monotonic change

of the volume fraction (boundedness criterion). Moreover,

they never introduce a geometrical representation of the in-

terface but try to satisfy the aforementioned criteria with the

help of properly designed discretization schemes. All these

recent discretization schemes share the following properties

and differ in the details of their mechanisms:

• they are based on the NVD diagram and use blending of

pure downwind and upwind second-order discretization,

• the blending is controlled by a local Courant number,

which means that the reduction of smearing is paid

through an increase of the computational effort, especially

for steady free-surface flows,

• to be used in the fully unstructured framework, these

schemes provide only a flux reconstruction based on three

points, the two natural neighbors of the face and an addi-

tional one located in the upwind direction,

• the slope of the interface is taken into account to avoid

spurious oscillations which appear when it is aligned with

the flow direction.

This section describes the surface capturing technique,

the way it has been implemented in the solver ISIS-CFD, de-

veloped at Ecole Centrale de Nantes (ECN) by researchers

from ECN and CNRS. Sections 3.2 and 3.3 introduce the

governing flow equations and the way they are discretized

in this solver. Section 3.4 describes the cell face recon-

struction of the pressure near the water surface. The key

Sect. 3.5 introduces the numerical implementation of com-

pressive interface capturing schemes and the details of the

BRICS scheme used in ISIS-CFD. Section 3.6 shows, how

the surface capturing approach fits in the overall algorithm

of the flow solver. Finally, Sect. 3.7 gives results for test

cases that cover a wide range of ship hydrodynamic flow

applications, illustrating the generality and robustness that

can be obtained with the surface capturing approach.

3.2 Governing Equations

3.2.1 Flow Equations

The ISIS-CFD flow solver resolves the incompressible Un-

steady Reynolds-Averaged Navier Stokes equations. In the

case of turbulent flows, additional transport equations for

modelled variables are solved in a form similar to the mo-

mentum equations and they can be discretized and solved

using the same principles.

In the multi-phase continuum, for an incompressible flow

of viscous fluid under isothermal conditions, mass, momen-

tum and volume fraction conservation equations can be writ-

ten in Cartesian coordinates, on a possibly moving domain,

as (using the generalized form of Gauss’ theorem):

∂

∂t

∫

V

ρdV +

∫

S

ρ(
−→
U −

−→
U d) · −→n dS = 0, (6)

∂

∂t

∫

V

ρUidV +

∫

S

ρUi(
−→
U −

−→
U d) · −→n dS

=

∫

S

(τij Ij − pIi) · −→n dS +

∫

V

ρgidV, (7)

∂

∂t

∫

V

cidV +

∫

S

ci(
−→
U −

−→
U d) · −→n dS = 0, (8)
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where V is the domain of interest, or control volume,

bounded by the closed surface S moving at the velocity
−→
U d

with a unit normal vector
−→
n directed outward.

−→
U and p

represent, respectively, the velocity and pressure fields. τij

and gi are the components of the viscous stress tensor and

the gravity vector, whereas Ij is a vector whose components

vanish, except for the component j which is equal to unity.

ci is the ith volume fraction for fluid i and is used to distin-

guish the presence (ci = 1) or the absence (ci = 0) of fluid i.

Since volume fractions between 0 and 1 indicate the pres-

ence of a mixture, the value of 1/2 is selected as a definition

of the interface.1

The effective flow physical properties (viscosity μ and

density ρ) are obtained from the physical properties of the

constituent fluids (μi and ρi ) with the following constitutive

relations:

ρ =
∑

i

ciρi, μ =
∑

i

ciμi, 1 =
∑

i

ci . (9)

When the grid is moving, the so-called space conserva-

tion law must also be satisfied:

∂

∂t

∫

V

dV −

∫

S

−→
U d · −→n dS = 0. (10)

Then, a simplified form, more practical in the context

of incompressible flows, of the general mass conservation

equation (6) can be obtained when considering incompress-

ible phases with constant densities ρi . With a few manipula-

tions the mass conservation simplifies to

∫

S

−→
U · −→n dS = 0, (11)

or, in a non-integral form using the divergence operator ∇·,

∇(
−→
U ) = 0. (12)

3.2.2 Turbulence Modelling

Several turbulence models ranging from one-equation mod-

els to Reynolds stress transport models are implemented in

ISIS-CFD. Most of the classical linear eddy-viscosity based

closures like the Spalart-Allmaras one-equation model [86]

and the two-equation k − ω SST model by Menter [61],

for instance are implemented. Two more sophisticated tur-

bulence closures are also implemented in the ISIS-CFD

solver, an explicit algebraic stress model (EASM) [20] and

a Reynolds stress transport model [25].

1Note that there is a difference in notation between this section and the

preceding and following one. First, the variables here have dimensions,

while the same variables in the other sections are made dimensionless.

And second, p represents the original pressure, not the hydrodynamic

pressure; there is no term ρgz added. In this section and in the others,

the notations correspond to the conventions used in the actual code.

3.3 Finite-Volume Discretization

The software is based on the finite volume method to build

the spatial discretization of the transport equations. The

discretization is face-based, which means that the fluxes

are constructed face by face; therefore, cells with an arbi-

trary number of arbitrarily-shaped faces are accepted by the

code. The discretization and the segregated solution method

are based on the cell centered co-located Rhie and Chow

SIMPLE [82] algorithm (i.e. Strongly Implicit Method for

Pressure-Linked Equation): the velocity field is obtained

from the momentum conservation equations (7) and the

pressure field is extracted from (6), the mass conserva-

tion constraint or continuity equation, transformed into a

pressure-equation.

Key features of the ISIS-CFD discretization, as compared

to standard SIMPLE algorithms, are the reconstruction of

the states on the cell faces in the neighborhood of the water

surface, notably the computation of the pressure and pres-

sure gradient, and the compressive discretization for the vol-

ume fraction. These procedures are detailed in the following

two subsections. All numerical details of gradient approxi-

mation and reconstruction on faces can be found in [73].

3.4 Pressure Reconstruction

The major difficulty when solving both air and water in the

same continuum is to obtain a perfect equilibrium between

the pressure gradient and the gravity term to prevent the

growth of parasitic currents due to gravity, even when ne-

glecting surface tension and viscosity effects in jump con-

ditions. This subsection explains the reconstruction of pres-

sure and pressure gradients at the cell faces, in order to deal

correctly with gravity and large density variations.

3.4.1 Pressure Equation

In the spirit of the Rhie and Chow method, the velocity

fluxes F (
−→
U ) on the faces, in the discretization of (6), are

taken from the partial discretization of the momentum equa-

tions (7) in the face centers and can be symbolically written

as:

F (
−→
U ) = F (

−→
Û ) − Cp

(

F

(−→
∇ p

ρ

)

− F (
−→
g )

)

, (13)

having defined the operator F (·) that provides the flux of a

vector through the face by

F (
−→
Q) =

−→
Qf .

−→
Sf = Sf

−→
Qf .

−→
nf , (14)

where
−→
Sf is the oriented surface vector

−→
Sf = Sf

−→
nf . The

vector
−→
Û and the coefficient Cp contain all contributions to
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Fig. 15 Cell face notations

the momentum equations except the pressure gradient and

the gravity contribution. All terms in
−→
Û and Cp are re-

built from their cell values. The pressure itself is then solved

(see Sect. 3.6) from the matrix assembled from all control

volumes using the specific discretization of the normalized

pressure gradient through the face, as explained below. The

gravity term must be kept along with the pressure gradient

so that a pure hydrostatic equilibrium will be exactly satis-

fied if the continuous hydrostatic equilibrium
−→
∇ p/ρ = −→

g

is satisfied.

3.4.2 Basis of Pressure Reconstruction

In continuous flow, the water surface appears as a density

discontinuity. Over such a discontinuity, the following jump

conditions hold:

[p] = 0, (15a)

[−→
∇ p

ρ

]

=
−→
0 . (15b)

−→
∇ p itself, however, is discontinuous. In the discretized sit-

uation, with large density jumps appearing across the cell

faces near the water surface, it is therefore logical to base

face reconstructions on the quantities in (15). Moreover, re-

constructing
−→
∇ p
ρ

, instead of
−→
∇ p, is the only sure way to

exactly satisfy hydrostatic equilibrium, and thus to avoid the

generation of parasitic currents in undisturbed flow.

3.4.3 Face Reconstruction of p

From Taylor series expansion on both sides of the face, com-

bined with the jump conditions (15), a reconstruction of the

pressure on the face can be established [73] in the following

compact form involving left and right side cell-centered data

only (see Fig. 15 for notations). This pressure reconstruction

will be used in the momentum equations.

pf =
h+ρ+pL + h−ρ−pR

h+ρ+ + h−ρ−

+
ρ+ρ−

ρ̂

(

h−−→
E + − h+−→

E −

h

)

×

{

h+

h

(−→
∇ p

ρ

)

L

+
h−

h

(−→
∇ p

ρ

)

R

}

. (16a)

The framed term is kept explicit in each solution step, while

the non-framed term is implicited in the solver. Geometri-

cal vectors
−→
E ± are introduced so that the framed term con-

tribution goes to zero when the grid becomes orthogonal

(
−→
Lf .

−→
n =

−→
f R.

−→
n = 0):

−→
E − � (

−→
Lf .

−→
n )

−→
n −

−→
Lf ,

−→
E + � (

−→
f R.

−→
n )

−→
n −

−→
f R.

(16b)

Distances used are the projected distances to the face h± and

the projected distance h between the L and R cell centers:

h− =
−→
Lf .

−→
n , h+ =

−→
f R.

−→
n ,

h = h− + h+ =
−→
LR.

−→
n .

(16c)

The quantity ρ̂ homogeneous with ρ is defined by:

ρ̂ =
h−ρ− + h+ρ−

h
. (16d)

3.4.4 Normal Gradient to the Face

The discretization of the pressure gradient in (13) is ob-

tained with a reconstruction following the same rules as for

the quantity on the face. The continuous term through the

face is the gradient normal to the face normalized by ρ:

(
−→
∇ p.

−→
n /ρ)f :

(−→
∇ p.

−→
n

ρ

)

f

=
1

ρ̂

pR − pL

h

+

{−→
∇ pL.

−→
E − +

−→
∇ pR.

−→
E +

ρ̂h

}

. (17)

Here again, the framed (explicit) term contribution goes to

zero when the grid becomes orthogonal. The non-framed

term is the implicit part that goes into the matrix for the pres-

sure equation.

3.5 Compressive Discretization

This section concerns the face reconstruction of the volume

fraction ci in the conservation equation (8), as this recon-

struction is central to the water surface modelization in ISIS-

CFD. We focus on an improved scheme, BICS, based on

the robust Gamma Differencing Scheme (GDS) [45] as used
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in ISIS-CFD for both momentum and turbulence equations,

and the Inter-Gamma scheme [46] for its compressive char-

acteristics properties. To guarantee accuracy, stability and

boundedness of the solutions, the scheme is developed in

the Normalized Variable Diagram (NVD), which is first in-

troduced. The description of the recently developed scheme

BRICS, which is based on BICS but has an improved treat-

ment of upwind information, concludes the section.

3.5.1 NVD Diagram and Boundedness Considerations

When constructing a face reconstruction scheme, in order to

avoid unrealistic oscillations, especially in the volume frac-

tion ci which is discontinuous in nature, the search for an

acceptable compromise between accuracy and boundedness

is a key point [17, 47, 72]. A practical way to introduce a

new numerical implementation is to consider the Normal-

ized Variable Diagram (NVD) analysis [16, 51] and to fol-

low the rules that enforce local monotonicity and the Con-

vection Boundedness Criterion (CBC) [29]. The NVD is in-

troduced in general terms here. In the following, the generic

quantity Q can be thought of as the volume fraction ci .

The NVD diagram was originally introduced on struc-

tured, one-dimensional grids. On such a grid, in the neigh-

borhood of a face f , a normalized variable Q̃ in the NVD

diagram is defined as

Q̃ =
Q − QU

QD − QU

, (18)

where points U , C and D are selected according to the flow

direction on the face and represent the downwind, central,

and upwind cell centers, respectively (see Fig. 16). The idea

of the NVD is to represent a reconstruction scheme for the

face value by Q̃f , the normalized value on the face, as a

function of Q̃C .

The CBC criterion [29] corresponds to an area in the

NVD in which a scheme must lie in order to be stable

and monotone; this area is shaded in Fig. 17a. The shape

of this area implies that the first-order upwind differenc-

ing scheme (UDS) is the only scheme which uncondition-

ally satisfies the boundedness criterion. The second-order

centered differencing scheme (CDS) is only useful in the

range 0 � Q̃C � 1, as is the first-order downwind differenc-

ing scheme (DDS). Practical schemes are often designed as

blendings of these elementary schemes, to obtain certain de-

sired properties while remaining inside the CBC area.

3.5.2 NVD on Unstructured Grids

On arbitrary unstructured grids, the far upstream node U is

not known explicitly (C and D are still chosen as the centers

of the two cells next to the face, see Fig. 17b). It is not even

certain that a node exists in the position where U should

Fig. 16 1D variation of Q in physical space

lie. Therefore, an alternative is chosen: an imaginary nodal

quantity QU is defined by the use of the gradient projection

method [73] in such a way that

QU = QC −
−→
CU ·

−→
∇ Q|C, with

−→
CU � −

−→
CD. (19)

The location of the imaginary point U is found as the point

that is the mirror image of D relative to point C.

For continuous quantities, this procedure is entirely sat-

isfactory. However, since the volume fraction is discontinu-

ous, the reconstructed QU may be far away from the actual

solution. We will see later how to improve such a reconstruc-

tion of the upstream value without the need for the volume

fraction gradient.

3.5.3 The BICS Scheme

In order to keep a sharp water surface, the scheme for the

volume fraction should ideally be compressive: it should

sharpen any gradient into a discontinuity. However, because

the solutions are discontinuous, boundedness is of the high-

est importance as well. And, ideally, there should be no lim-

itation on the cell Courant numbers Co, in order to per-

mit the simulation with reasonable time steps. Our BICS

scheme fulfils these requirements by blending together dif-

ferent schemes.

One such scheme, the GDS scheme illustrated in the

NVD diagram by Fig. 18a provides a continuous switch be-

tween UDS and CDS; it establishes a smooth blending be-

tween UDS and CDS over the interval 0 < Q̃C < βm. The

GDS scheme is not appropriate for maintaining the sharp-

ness of an interface convected by the transport equation (8),

since the use of upwind-differencing produces numerical

diffusion which can result in a very strong smearing of the

interface. On the other hand, the GDS scheme does not suf-

fer from any cell Courant number limitation and could be

used without any time step limitation. The coefficient βm is
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Fig. 17 Basic schemes in NVD

diagram and upstream node

Fig. 18 Basic BICS scheme

from GDS and IGDS schemes

usually around 1/6 [29], and to achieve an accurate resolu-

tion of sharp profiles, the default value is set to 0.1 in the

flow solver.

Since compressive characteristics are absolutely required

to build an accurate sharp interface capturing scheme, we

also retain the Inter-Gamma IGDS scheme [46], Fig. 18b,

which is a straightforward extension of the GDS scheme

to downwind differencing (DDS). The switch to DDS starts

with βm = 0.5. The main disadvantage of the IGDS scheme,

with respect to the GDS scheme, is in a cell Courant number

limitation, Co < 0.3 in multidimensional cases.

The construction of the new Blended Interface Capturing

Scheme (BICS) starts with a blending of the GDS and IGDS

scheme depending on the local Courant number Co as illus-

trated in the NVD diagram of Fig. 18c. In that figure, the

white point at Q̃C = β defines the matching point between

the two parts: for Q̃C � β a quadratic behavior is retained

according to the GDS scheme, for Q̃C � β a linear varia-

tion is retained. The location of this matching point depends

on the Courant number: for low Co, this point moves to the

right black (IGDS) point, and for high Co it goes toward the

left black (GDS) point.

We use the Courant number Co dependency to define an

exponential variation for the slope p of the linear (right) part

in the NVD diagram

p(Co) = αp(Co) · pIGDS + (1 − αp(Co)) · pGDS, (20a)

Table 1 Basis of the BICS scheme implementation in NVD variables

Q̃C Q̃f Note

]−∞,0] Q̃C UDS

]0, β[ 1−p

β2 Q̃2
C + (p + 2(1−p)

β
)Q̃C Quadratic Blending

(GDS-like)

[β,1[ pQ̃C + (1 − p) Linear (toward DDS)

[1,+∞[ Q̃C UDS

with αp(Co) = 1 for Co � 0.3,

αp(Co) =
Co − 0.3

e(Co−0.3) − 1
for Co > 0.3,

(20b)

and pGDS = 1/2; pIGDS = 0, (20c)

and for the β abscissa position of the matching point we use

a linear dependency on the slope p

β(p) = a0 + a1 · p(Co), (21a)

with a1 = (βGDS − βIGDS)/(pGDS − pIGDS);

a0 = βIGDS − a1 · pIGDS,
(21b)

with βGDS = 0.1; βIGDS = 0.5. (21c)

The basis of the BICS scheme is summarized in Table 1.

An illustration of its behavior for different Co can be found

in Fig. 19.
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Fig. 19 Basic BICS scheme behavior for various Co

A special case appears when the interface is aligned with

the flow direction. Then, too much compression of the in-

terface should be avoided since it causes oscillations in the

interface shape. Therefore, a correction Cθf
is added, (22),

so that discretization depends on the interface velocity direc-

tion and the angle θf it makes with the cell face (see Fig. 20).

We adopted the classical angle correction [64].

Q̃f = Cθf
Q̃f + (1 − Cθf

)Q̃f (GDS), (22a)

with Cθf
=

√

|Cos(θf )|, (22b)

and |Cos(θf )| =
|
−→
∇ ci .

−→
CD|

‖
−−→−→
∇ ci‖‖

−→
CD‖

. (22c)

The result is, that the BICS scheme reduces to the GDS

scheme when the interface is parallel to the flow.

3.5.4 From BICS to BRICS

As noted before, for discontinuous solutions, the problem

with standard NVD schemes on unstructured grids lies in

the treatment of the upwind point U , where the solution

is reconstructed using the gradient in the point C (19). As

this gradient is by definition a poor approximation to a

(nearly) discontinuous solution, the reconstructed value QU

for BICS will frequently lie outside the physical interval

[0,1] for ci . Even though we limit the output values Qf

to lie in this interval, the simulated water surface with BICS

is often jagged and sometimes unstable.

Therefore, the Blended Reconstructed Interface Captur-

ing Scheme (BRICS) was developed to be the same as BICS,

but with a better reconstruction of QU . Since we prefer to

avoid the use of the volume fraction gradient, the value QU

is found based on the position of the point U in (19), by

first searching the cell closest to this point, and then using a

Fig. 20 Face-Interface correction angle

Fig. 21 Improved reconstruction of quantity at the far imaginary up-

stream point U

weighted interpolation of the state in this cell and its neigh-

bors to define QU , see Fig. 21.

The first step in the BRICS scheme consists of running a

fast search path algorithm to identify the cell UU contain-

ing the imaginary known point U . This search, starting from

cell C, consists of a loop over the faces of a cell to identify

the face center that lies closest to the point U . The search

then goes to the neighbor cell adjacent to this face, where a

new loop over the faces is started. The algorithm ends when

all scalar products of the vectors center face—U with the

outward normals of the faces are < 0, indicating that U lies
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in the cell. The cells UU are pre-computed for all the cell

faces.

Once the UU container cell is identified, the value at U is

computed from a weighted interpolation based on UU and

its neighboring cells UUnb:

QU =
∑

N=UU,UUnb

QN

‖
−−→
NU‖

/

∑

N=UU,UUnb

1

‖
−−→
NU‖

. (23)

Finally, Qf is computed with the scheme introduced for

BICS. The result is a much smoother interface description

and more stable and robust computations.

3.6 Algorithm

The discretization of the volume fraction conservation equa-

tion, together with the mass and momentum equations,

yields a set of algebraic equations: one for each control

volume and for each transport/conservation equation. These

non-linear and coupled equations are solved by a segregated

algorithm. This subsection gives a short overview of the so-

lution algorithm, to indicate how the resolution of the vol-

ume fraction equation fits in the overall algorithm.

1. Initialize the flow field quantities Q0 at t = t0,

2. New time step t = t + �t ,

3. Start the iterative procedure with Q = Q0,

4. Compute the volume fraction for each fluid phase and

update the fluid properties ρ and μ,

5. Compute the turbulent quantities from the field of

step 3,

6. Solve the momentum equations to obtain a new predic-

tion for the velocities,

7. Solve the pressure equation to obtain a new pressure

field,

8. Update the velocity face fluxes and correct the velocity

components with the new pressure field,

9. If the nonlinear residuals are not low enough, go to step

3 and update the iteration counter within the time step,

10. Go to step 2 and update the time, t .

Due to the complexity of the B(R)ICS discretization

scheme involved in step 4, a classical defect correction

method is used to solve the current volume fraction field,

with the implicit part built from the (UDS) differencing

scheme.

Concerning the linear solver used in steps 4, 5 and 6

for phase concentration, turbulent quantities, and velocity

components, respectively, about 20 Gauss-Seidel iterations

are enough to converge when diagonal dominance is in-

creased by 50% with the help of the local time stepping

artifact. While this point-wise solver works perfectly on lin-

ear systems arising from transport equation discretizations,

its efficiency is dramatically reduced on the pressure op-

erator. This operator is singular in nature, having an infi-

nite number of solutions (to a constant pressure). Moreover,

the corresponding linear system is ill-conditioned for highly

stretched grids. This is why the flow solver uses an efficient

CGSTAB algorithm and an Incomplete LU(k) precondition-

ing with two levels of filling (k = 2). In all cases, the Com-

pressed Sparse Row (CSR) format is the basic format of lin-

ear systems adopted in ISIS-CFD.

When running the code on parallel machines, the com-

putational domain is split into multiply-connected domains

having approximately the same number of unknowns. This

is done with the help of the METIS [48, 62] partitioning al-

gorithm. Communication of faces data between domains is

performed according to the Message Passing Interface stan-

dard [63].

3.7 Test Cases

The main advantage of the surface capturing formulation

for the water surface discretization is its absolute generality.

Without modification, the method can handle such problems

as ship resistance computation in calm water and diffraction

problems for fixed and freely moving ships, in head waves

or oblique waves. For all these problems, strong breaking

waves and wave interaction with highly complex structures

can be modelled. The following section presents three test

cases that illustrate the different capabilities of the method.

3.7.1 DTMB 5512 in Head Waves

The first test case illustrates the capacity of the RANS sur-

face capturing method to model the wave diffraction prob-

lem. The test case is the US Navy combatant DTMB 5512 at

model scale in two conditions: moderate speed in long and

smooth waves and high speed in short and steep waves, for

which a complex non-linear breaking wave phenomenon is

observed. The computations are conducted with the hull in

fixed position. Experiments for these cases have been pub-

lished by IIHR [8, 9].

Grid Generation The computational domain extends from

−2.0L < x < 3.5L, 0.0 < y < 2.0L and −1.50L < z <

0.5L, where the symmetry condition is taken into account

at y = 0. The ship axis is located along the x-axis with the

bow located at x = 0 and the stern at x = L. The free-surface

at rest lies at z = 0. The incident wave is generated at the in-

let according to the first order Stokes theory, wall function

is used at the ship wall and various far-field and symmetry

boundary conditions are used at the other boundaries of the

computational domain. The unstructured hexahedral grid is

generated with HEXPRESS. A local zone of refinement is

created near the free surface in the entire domain, to ensure

a small enough z-grid spacing. A second refinement zone

in the vicinity of the body ensures small x- and y-spacing

there to properly capture details of the free surface. Correct
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Fig. 22 DTMB5512—Fn =
0.28—Local grid distribution in

the vertical plane of symmetry

Fig. 23 DTMB5512—Fn = 0.28—Time evolution of the resistance, heave and pitch moment compared with experiments

propagation of the incoming waves is assured by the use of

a refinement box starting from the inlet and ending after the

ship.

Figures 22 illustrates the local grid distributions close to

the bow and stern. This grid is composed of 2.0 million cells

with about 40,000 cells located on the hull. The first point

close to the hull is located at y+ = 30, approximately. About

20 to 25 points are located vertically in the layer where the

free-surface is supposed to move and a wave length is de-

scribed with 40 to 50 cells.

For the high-speed case, three additional refinement

boxes are included in order to improve the simulation of

bow and stern breaking waves. Two boxes are placed close

to bow to improve the simulation of the first and second bow

breaking waves. Another box of refinement is added at the

stern to improve the capturing of stern breaking waves. This

grid is composed of 4.0 million cells with about 75,000 cells

located on the hull.

Long Waves at Moderate Speed The first test case has

Fn = 0.28, λ = 1.5L and Ak = 2π A
λ

= 0.025.

Figure 23 provides a comparison between the temporal

evolution of experimental and computed forces and moment

coefficients. The experiments are rebuilt with their mean and

first harmonic. Agreement with experimental signals is good

even if the maximum of the heave force is slightly over-

estimated. For this case of moderate Froude number and

wave amplitude but long wave length, the periodic behavior

is rapidly captured after four wave interactions. No phase

analysis has been performed and the rebuilt experimental

signals are simply time adjusted to match the maximum of

the computed force coefficients. It should be noticed that the

ship starts at rest with an acceleration to reach its nominal
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Fig. 24 DTMB5512—Fn = 0.28—Phase-averaged free-surface elevations

speed at time t = 2s following a quarter-sine law to pre-

vent a too high response of the free-surface to high acceler-

ation.

Figure 24 compares the unsteady wave pattern obtained

by numerical simulation with results from experiments. Four

selected times are retained during one encounter period:

time t/T = 0 corresponds to the time when the wave crest

reaches x/L = 0. Quantitative agreement is achieved at any

of the four specific times for both the locations and the am-

plitudes of the waves. The compressive property of the sur-

face capturing scheme is evident when looking at the shape

of the very crisp bow and stern waves.

Short Waves at High Speed The high-speed case has

Fn = 0.41, λ = 0.5L and Ak = 0.075. A first interesting

result is the time needed to get a periodic signal for the

resistance. It was found that 12 wave periods are needed

to get a signal of good periodicity. The FFT analysis of

the resistance is shown in Fig. 25. We notice a very good

agreement between the computed and experimental signals,

and on the other hand, the very rich content of the com-

puted signals in terms of frequency. The first harmonic is

of course equal to the encounter frequency but the second

harmonic, in excellent agreement with the measurements,

is quite strong (about 23% in terms of amplitude). There is

evidence that this harmonic is associated with the breaking

wave phenomena [101]. The agreement on the amplitudes

is very satisfactory on the heave and pitch and one notices a

slight overestimation of the amplitude of the first harmonic

of the resistance force.

Figures 26 and 27 provide perspective views of the com-

puted wave profile at three specific times, Tb is the time

at which breaking of the main bow wave occurs, Tmin and

Tmax are the instants corresponding to the minimum and
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Fig. 25 FFT analysis of the resistance, heave and pitch moment for the fixed ship—Fn = 0.41, Ak = 0.075 case

Fig. 26 Phase-averaged

free-surface elevations close to

the bow at times Tmin, Tmax and

Tb for the fixed

ship—Fn = 0.41, Ak = 0.075

case

Fig. 27 Phase-averaged

free-surface elevations close to

the stern at times Tmin, Tmax

and Tb for the fixed

ship—Fn = 0.41, Ak = 0.075

case

maximum resistance force, respectively. The main breaking

phenomena is clearly illustrated and one can see the sec-

ondary shoulder breaking wave occurring at Tmin. Near the

stern, the rooster-tail breaking wave is also well defined be-

hind an almost entirely dry transom since only a very small

portion of the bottom of the transom appears to be periodi-

cally wetted.

3.7.2 Planing Hull at High Fn

Modern fast sailing and motor boats operate at high Froude

numbers (>0.5) where massive wave breaking and foam

creation form an essential part of the flow field. Surface

capturing is at this moment the only RANS technique that

can reasonably approximate these flows. Here, a study for

French yacht designers Finot-Conq is presented, that con-

cerns the drag and heave force prediction on an IMOCA

Open 60 sailing yacht.

Computations are performed at different Fn for a hull at

fixed attitude in calm water. A relatively coarse mesh is used

with 800,000 cells for the half ship. As the computations are

compared with experiments in a small towing tank, the bot-

tom of the tank is taken into account for the computations.

Fig. 28 Dynamic wetted surface and free-surface elevation for the

Open 60 hull at Fn = 0.96 (25 kts)

Figure 28 shows the water surface at Fn = 0.96. At this

speed, a strong, well-developed breaking bow wave is ob-

served, that even produces a secondary breaking wave be-
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Fig. 29 Drag and heave force for the Open 60 hull at different Froude numbers

hind it. A part of the hull is sustained by foam and bubbly

water, that is represented in the capturing model by water

concentrations between 0 and 1.

Forces on the hull are given in Fig. 29. The agreement

with measurements is excellent, especially when consider-

ing that the grid is not extremely fine. The only large differ-

ence that is observed, is in Fz at Fn = 0.96. As this corre-

sponds to a depth Froude number in the tank of nearly 1, the

difference is likely due to choking effects in the tank. In all

the other cases, the errors are 1–2% in Fz and less than 4%

in Fx .

3.7.3 Free Container Ship in Head and Oblique Waves

Seakeeping investigates wave load and wave induced ship

motion in seaways. Under extreme wave conditions, strong

nonlinear interaction between waves and the moving ship

occurs. The surface capturing method is well able to simu-

late these cases. An example, taken from the CRS Forward

Speed Benchmark workshop [60], is presented in this sec-

tion.

Case Setup A model scale container ship is simulated

in the present study. Measurement data were provided by

MARIN during the CRS workshop. Ship length is Lpp =

4.9 m and the ship speed is U = 1.7 m/s (24.5 knots for

full scale ship), leading to a Froude number Fn = 0.245

and a Reynolds number Rn = 8.54e6. One wave height

H = 0.08 m and two wave directions are simulated, namely

180° (head waves), and 225° (oblique waves on port bow).

Wave length ranges from 0.23Lpp to 2.5Lpp , the highest

wave steepness being Ak = 0.224.

To capture correctly the incoming wave in a RANS sim-

ulation, the free-surface needs to be refined sufficiently in

the wave propagation direction. Previous experiences show

that 60 grid nodes per wave length is an appropriate choice.

Fig. 30 Boundary conditions for container ship in oblique waves

In the region covered by the wave, at least 10 nodes in the

vertical direction are required. To satisfy this criterion, 4 dif-

ferent meshes containing 1.5 M, 2.0 M, 2.8 M and 3.8 M

nodes, respectively, have been generated for different wave

frequencies.

For the ship motion, the horizontal displacements are ob-

tained by a block movement of the mesh, while vertical

displacement and all rotations are treated with analytical

weighted mesh deformation [53].

For the head wave case, pressure is prescribed at the up-

per boundary, while a slip boundary condition is applied to

the bottom boundary. Mirror and exit boundary conditions

are applied to the side and outflow boundary. No special

treatment at the exit is applied for wave absorption. The

setup for oblique waves computation requires special atten-

tion. In the present study, we use a computational domain

that is parallel to the wave propagation direction, as shown

in Fig. 30. To capture the incoming waves, these meshes

need to be refined in the x-direction only. A wave boundary

condition is applied at the two upstream boundaries, while

exit conditions are applied at the other two boundaries.

Seakeeping Simulation with Head Waves Figure 31 com-

pares the predicted heave and pitch motion amplitude in the
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Fig. 31 Heave and pitch motion

at the center of gravity for the

container ship in head waves

Fig. 32 Added resistance and

resistance time evolution for the

container ship in head waves

center of gravity with the measurement data obtained by

MARIN. At low wave numbers, when the wave length is

more than two times larger than the ship length, the mo-

tions are strong; the heave motion amplitude is very close

to the wave amplitude. At high wave numbers, when the

wave length is about one third of the ship length, the motions

are nearly zero. Very good agreement is observed compared

with measurement data except at low frequency.

Added resistance in waves is shown in Fig. 32. At low

wave frequencies, the numerical prediction is in good agree-

ment with the measurement. At high wave frequency, pre-

dicted added resistance in wave is about 50% smaller than

the measurement data, which corresponds to about 14% of

the total resistance.

Figure 32 shows the time evolution of ship resistance in

waves for 4 selected wave frequencies. At low wave fre-

quency, there is a nearly linear response to waves. As wave

frequency increases, wave steepness increases. Interaction

of steeper waves with ship motion results in bow wave

breaking, which increases the added resistance in waves

considerably. At even higher wave frequencies, the effect of

incoming waves becomes smaller due to the shorter wave

length. However, this wave response is non-linear, multiple

frequencies can be observed both in ship motion and in wave

load. Higher added resistance in waves is observed for the

case with highest frequency (5.24) simulated in the present

study is due to the existence of a low frequency motion.

Seakeeping Simulation with Oblique Waves For the case

with oblique waves, sway and yaw motion are frozen, while

heave, roll and pitch motions are free. Beside the special

boundary condition setup, the other aspects of the numerical

simulation are similar to the case with head waves. Pitch and

roll motion amplitudes are presented in Fig. 33. The pitch

motion amplitude agrees reasonably well with measurement

data, although there is a systematic over-estimation. Roll re-

sults show very good agreement. It was noted that bow wave

breaking occurs at two of the simulated wave frequencies,

2.64 and 3.0.

3.8 Summary and Perspectives

This section has presented a surface capturing method, in

which the volume fraction conservation law is discretized
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Fig. 33 Pitch and roll motion at

the center of gravity for the

container ship in oblique waves

with a specific compressive scheme. No reconstruction of

the water surface or application of free-surface boundary

conditions are needed.

The main advantage of this method is its high generality:

it gives satisfactory results for cases that cover most of the

application domain for naval hydrodynamics, i.e. still-water

resistance, wave diffraction and free-motion problems, dis-

placement and planing hulls, as well as a large range of

Froude numbers. The method is robust, as it continues to

work well even in the presence of very strong wave break-

ing. The test cases presented confirm this robustness and

generality.

A point of attention for the method is the simulation

of wave propagation. Preserving a wave that travels over a

long distance requires fine grids at the water surface, as be-

came clear in the seakeeping test presented. Techniques un-

der consideration for improving the wave propagation are

higher-order accurate discretizations and the use of auto-

matic grid refinement.

4 The Level Set Method

4.1 Introduction

One of the interface capturing methods for free surface flow

simulations, a level set method [67, 68, 84, 85] is described

here. In this method, the level set function which is the

signed distance from the interface is used as an indicator

of the interface location.

As indicated in the Introduction, the main characteris-

tic of interface capturing methods is that a computational

grid does not fit to the interface shape and that the interface

is “captured” somewhere between the grid points. An ad-

vantage of the interface capturing approaches in general is

that they can be used when interface deformation is large

or topology of interface changes, such as overturning or

breaking of waves occurs, while the interface fitting methods

would encounter difficulties of gridding in these situations.

Another advantage of capturing is that a grid needs not be re-

generated in order to follow the interface deformation. This

would be a big benefit in case that grid generation requires

large efforts such as grids around a complex geometries. On

the other hand, numerical accuracy of the capturing method

degrades to some extent, because there are no grid points at

the exact location of the interface where the boundary con-

ditions should be satisfied.

There are many methods which can be categorized as

interface capturing methods. Among them, the volume-of-

fluid (VOF) method [40] which has been introduced in the

previous section and the level set method which is described

here are two major implementations. The VOF method em-

ploys a volume fraction of each fluid in a cell as the indicator

of the interface, while the level set method utilizes the level

set function, the signed distance from the interface, to locate

the interface. In the VOF method, it is essential to use a spe-

cially designed convection scheme which has good conser-

vation property and prevents smearing of the interface due

to numerical dissipation as described in the previous sec-

tion, since a volume fraction is a discontinuous function. On

the other hand, the level set function is a linearly varying

function and its convection can be handled in a simpler way,

although the conservation property of the level set method is

not as good as the VOF method since the level set function

does not guarantee that fluid volumes are preserved in the

interface.

Nowadays, computations by use of a level set method

are found in many publications. The level set approaches

can be categorized into two groups. One is a two-phase

fluid approach in which both water and air regions together

with an interface movement between them are solved by the

multi phase Navier-Stokes equations coupled with a level

set equation. This is the same way as the original level set

approach [90].

Cura Hochbaum et al. [13] used a two-phase fluid level

set method for the simulations of free surface flows. This
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code NEPTUN is a multi block solver based on the SIMPLE

algorithm. Its applications range from resistance to maneu-

vering or seakeeping performance of ships.

Vogt et al. [102] presented the results for two-dimensional

free surface flows around a submerged hydrofoil using a

two-phase level set method.

Yang et al. [105] applied a Cartesian grid method coupled

with two-phase level set to Large Eddy Simulation (LES) for

ship flows by their code CFDSHIP-IOWA Ver.6.

Another method which adopts the Cartesian grid with

level set method is developed by Dommermuth et al. [23].

They used the unique interface capturing method (CLSVOF)

which couples both the level set method and VOF method

and simulated free surface flows around a ship and ship-like

bodies.

The other approach is a single-phase approach in which

a flow field is analyzed only in a water region and flow vari-

ables in an air region are extrapolated using free surface

boundary condition. This approach seems to become a ma-

jority in level set methods for marine hydrodynamics.

The National Maritime Research Institute (NMRI) group

[34, 35] adopts a single-phase method in their unstructured

grid based Navier-Stokes solver, SURF. The algorithm of

this particular method is shown in the following section.

The research group at the University of Iowa also uses a

single-phase level set method in the recent versions of their

code CFDSHIP-IOWA [10, 104]. The flow solver is based

on PISO for velocity-pressure coupling and a block struc-

tured grid system including overset grids is adopted. Many

applications in ship hydrodynamics are reported using this

method.

The group at INSEAN (Italian Ship Model Basin) also

develops a program based on a single-phase level set ap-

proach. Their flow solver χship [22] adopts an artificial

compressibility approach for pressure velocity coupling.

Overset multiblock structured grids are used for complex

geometry cases.

Another unstructured grid based solver with single-phase

level set method is developed by Burg [6]. It is an extended

version of U2NCLE code developed at Mississippi State

University [44].

4.2 Numerical Procedure of SURF

In this section, the Navier-Stokes solver SURF (“Solution al-

gorithm for Unstructured RaNS with FVM”) [32–34], which

is under development toward a practical ship design tool at

National Maritime Research Institute, is introduced.

4.2.1 Flow Solver

The governing equations are the three-dimensional Reyn-

olds-Averaged Navier-Stokes equations for incompressible

flows. In order to couple pressure with a velocity field, arti-

ficial compressibility is introduced into the continuity equa-

tion at the expense of time accuracy. (Unsteady flow compu-

tation is also possible by use of dual time stepping [81].) The

final form using non-dimensional variables can be written as

follows:

∂
−→
q

∂t
+

∂(
−→
e − −→

e v)

∂x
+

∂(
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f −
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where p is the modified pressure from which hydrostatic

component is extracted, i.e.,

p = p∗ +
z

Fn2
,

where p∗ is the original pressure and Fn is the Froude num-

ber with z being the vertical coordinate. By this modification

of pressure, the gravitational acceleration term can be omit-

ted from the z-momentum equations. The velocity compo-

nents in the (x, y, z) direction are expressed as (u, v,w).
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where β is a parameter for artificial compressibility.
−→
e v ,

−→
f v and

−→
g v are the viscous fluxes defined as follows:

−→
e v =

⎡

⎢

⎢

⎣

0

τxx

τxy

τzx

⎤

⎥

⎥

⎦

,
−→
f v =

⎡

⎢

⎢

⎣

0

τxy

τyy

τyz

⎤

⎥

⎥

⎦

,
−→
g v =

⎡

⎢

⎢

⎣

0

τzx

τyz

τzz

⎤

⎥

⎥

⎦

,

where

τij =

(

1

Rn
+ νt

)(

∂ui

∂xj

+
∂uj
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)

,

and (xx, xy, xz) = (x, y, z) and (ux, uy, uz) = (u, v,w). In

the above expressions all the variables are made dimension-

less using the reference density ρ, velocity U and length L.
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Fig. 34 Cell shapes

Rn is the Reynolds number defined as UL/ν where ν is

the kinematic viscosity. νt is the non-dimensional kinematic

eddy viscosity determined by a turbulence model.

Since the numerical procedure for the Navier-Stokes

equations is described in the references [32, 33], only

the brief outline is given here. A finite-volume method is

adopted for spatial discretization. First, a computational

domain is divided into unstructured polyhedral cells. Cell

shapes which can be used in the present solver are tetra-

hedron, prism, pyramid or hexahedron and face shapes of

these cells are either triangular or quadrilateral as shown in

Fig. 34. Flow variables (pressure, velocity and eddy viscos-

ity) are stored in the center of each cell.

For the inviscid fluxes (convection terms and pressure

gradient terms), the second order upwind scheme based on

the flux-differencing splitting of Roe [83] with the MUSCL

method are employed. The viscous fluxes are evaluated by

the second order central scheme. Thus, the overall accuracy

in space is second order.

The backward Euler scheme is used for the time integra-

tion. The linear equations derived from the time lineariza-

tion of the fluxes are solved by the Symmetric Gauss-Seidel

(SGS) iteration.

The turbulence models implemented are the one-equation

model by Spalart and Allmaras [87] and its modified version

[39].

4.2.2 Free Surface Treatment

The free surface is an interface between air and water in the

present context. Free surface conditions consist of dynamic

and kinematic conditions and they are implemented in the

interface capturing framework.

The kinematic condition is the condition that fluid parti-

cles on a free surface remain on an interface. This is written

in a mathematical form as follows:

DH

Dt
≡

∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
+ w

∂H

∂z
= 0, (25)

where a free surface shape is defined as

H(x,y, z; t) = 0.

In the present scheme, this kinematic condition is formu-

lated based on the localized level set method [70] which im-

proves the efficiency of the original level set approach [90].

The level set function φ is defined as the signed distance

from the interface, i.e.,

φ

⎧

⎪

⎨

⎪

⎩

> 0 in water,

= 0 on the interface,

< 0 in air.

(26)

Since φ(x, y, z; t) = 0 defines the free surface shape, the

kinematic condition can be satisfied if the following equa-

tion is used to update φ:
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+ w

∂φ

∂z
= 0. (27)

In the localized version of the level set method, the two

parameters γ1 and γ2 where 0 < γ1 < γ2 are introduced. The

signed distance function is rewritten as d(x, y, z; t) and the

definition of the level set function is modified as

φ =

⎧

⎪

⎨

⎪

⎩

γ2 if d > γ2,

d if |d| ≤ γ2,

−γ2 if d < −γ2.

(28)

Thus, the level set function is localized within the bandwidth

2γ1 from the interface. The transport equation (27) is also

modified as
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where C(φ) is the cut-off function defined as

C(φ) =
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1 if |φ| ≤ γ1,

(|φ|−γ2)
2(2|φ|+γ2−3γ1)

(γ2−γ1)
3 if γ1 < |φ| ≤ γ2,

0 if γ2 < |φ|,

(30)

in such a way that the update of φ is performed only in the

region where |φ| ≤ γ2.

The numerical solution method for (29) is identical to

the one for the flow equations (24). The cell centered finite-

volume discretization applied for the cell i yields

Vi

∂φi

∂t
+

∑

j

C(φi)(φ(i+j)/2U(i+j)/2) = 0, (31)

where

U(i+j)/2 ≡ uiSx,(i+j)/2 + viSy,(i+j)/2 + wiSz,(i+j)/2,

Vi is the cell volume and j is the neighbor cells of the cell i.

The subscript (i +j)/2 means the cell face between the cells

i and j and (Sx, Sy, Sz) are the area vectors of cell faces.

φ(i+j)/2, the value of φ on the cell face, is extrapolated from

the cell centered values in the second order upwind manner.
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The gradient of φ at the cell center used in the extrapola-

tion above is obtained by the least squares method. The time

integration is carried out by the Euler backward scheme.

Special care should be taken in the construction of the

numerical flux φ(i+j)/2U(i+j)/2. Suppose that the interface

is undisturbed on z = 0 and the flow field is uniform and

(u, v,w) = (1,0,0). The initial value of φ is φ = −z. This

is apparently a steady state solution of the analytical equa-

tion (27). The discrete equation (31), however, does not nec-

essarily gives ∂φ/∂t = 0, unless

∑

j

(φ(i+j)/2Sx,(i+j)/2) = 0, (32)

is satisfied. Since the current function φ = −z is a lin-

early varying function, the extrapolation of the face value

φ(i+j)/2 from the cell centered values can be performed

to give the exact value. However, the one point quadrature

φ(i+j)/2Sx,(i+j)/2 has a certain error when applied to quadri-

lateral faces. The higher order quadrature which gives ex-

act results will increase the computational cost considerably.

The approach taken here to remedy this problem is to intro-

duce a new variable φ̃ which is defined as

φ̃ = φ + z, (33)

and to solve φ̃ instead of φ. Thus, (27) is modified as

∂φ̃

∂t
+ C(φ)

(

u
∂φ̃

∂x
+ v

∂φ̃

∂y
+ w

∂φ̃

∂z
− w

)

= 0, (34)

and in the discrete form

Vi

∂φ̃i

∂t
+

∑

j

C(φi)(φ̃(i+j)/2U(i+j)/2)

− C(φi)Viwi = 0. (35)

For the initial field of φ = −z and (u, v,w) = (1,0,0),

∂φ̃/∂t = 0 because φ̃ = 0 everywhere and the fluxes are

evaluated as zero, regardless of the quadrature.

In order to avoid reflection of free surface waves in

the outer boundaries of a computational domain, the wave

damping method which has been proved to be effective in

the interface fitting approach [37] is also applied to the level

set method. The damping term which makes φ̃ approach to

zero is added to the level set equation (35) as follows:

Vi

∂φ̃i

∂t
+

∑

j

C(φi)(φ̃(i+j)/2U(i+j)/2)

− C(φi)Viwi + ViWφ̃i = 0. (36)

W(x,y, z) is weight function defined as

W(x,y, z) = A × max(Wx(x),Wy(y)),

Wx(x) =

{

(
x−xd

xo−xd
)2 if xd ≤ x ≤ xo,

0 otherwise,

Wy(y) =

{

(
y−yd

yo−yd
)2 if yd ≤ y ≤ yo,

0 otherwise,

where xd , yd are the coordinates from which the damping

region starts and xo, yo are the location of outflow and side

boundaries. The parameter A controls the amount of damp-

ing. The added term ViWφ̃i is proved to effectively make

φ̃ approach to zero in the damping region and thus dissipate

outgoing waves.

There is a singular behavior of the interface in the region

close to a solid wall. The no-slip condition imposed on a

wall prevents the interface movement there, while the inter-

face in the outer region moves following the fluid motion.

It causes the large deformation of φ near a solid wall. The

extrapolation approach is employed here to remove this sin-

gularity, in which the value of φ for the cells close to the

wall is extrapolated from the outer cell.

It is easy to find the outer cell for a particular cell in the

structured grid case due to the alignment of cells along a grid

line. In the unstructured grid case, however, it is not a trivial

task. In order to carry out the extrapolation, the distance to

the closest wall di (where i is the cell index) is computed and

stored for each cell first. In the region where extrapolation

is needed, φ is extrapolated from outside in such a way that

it is constant in the direction normal to the wall. Thus, the

pseudo convection equation

∂φ

∂τ
−

∇d

|∇d|
· ∇φ = 0, (37)

is solved in the pseudo time τ in the extrapolation region.

Note that the convection velocity −∇d/|∇d| is the unit vec-

tor normal to the wall from outside to a wall. It ensures the

extrapolation from outside when an upwind scheme is used

for the discretization. Upon convergence, φ becomes con-

stant in the direction normal to the wall as desired.

4.2.3 Re-initialization

The re-initialization of the level set function is an important

step in the level set method, since the level set function is

no longer a distance function after the convection. The re-

initialization process can be done using the partial differen-

tial equation as in [90] or [70].

The equation to be solved is

∂φ

∂τ
+ S(φ0)(|∇φ| − 1) = 0. (38)
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Where φ0 is the initial value and S is the sign function

S(φ) =

⎧

⎪

⎨

⎪

⎩

−1 if φ < 0,

0 if φ = 0,

1 if φ > 0.

Upon convergence, φ becomes the distance function again,

since |∇φ| = 1.

In a numerical process, S(φ) is approximated as

Sε(φ) =
φ

√

φ2 + ε2
, (39)

where ε is a typical grid spacing.

Equation (38) is rewritten as

∂φ

∂τ
+ Sε(φ0)

∇φ

|∇φ|
· ∇φ = Sε(φ0), (40)

which can be viewed as the convection equation for φ with

the convection velocity being Sε(φ0)∇φ/|∇φ|.

The numerical procedure for (40) is similar to the con-

vection equation (36). First, ∇φ is computed using the least

squares method for each cell center. The convection velocity

Sε(φ0)∇φ/|∇φ| is then evaluated. The second ∇φ in (40) is

discretized by the first order upwind scheme in a finite vol-

ume framework. The pseudo time integration is made by the

Euler implicit scheme.

4.2.4 Flow Variable Extrapolation

Since most ship hydrodynamics applications require a flow

field of water region only, a one-phase flow approach is used,

i.e., the flow equations are solved only in a water region.

Flow variables in an air region are extrapolated from a water

region in such a way that the dynamic condition on the free

surface boundary is satisfied. This method also has an ad-

vantage that it is not necessary to cope with the large density

difference between air and water. At this point, the present

method differs from the original level set method [90] where

a two-phase flow approach is employed.

The dynamic free surface condition can be approximated

by the following two conditions. First, the velocity gradients

normal to the free surface are zero. Second, the pressure on

the free surface is equal to atmospheric pressure. In order to

satisfy the first condition, the velocity components are ex-

trapolated in the direction normal to the interface. Follow-

ing the localized level set method [70], this is achieved by

solving the following equation in an air region where φ < 0

for the pseudo time τ .

∂
−→
q

∂τ
−

∇φ

|∇φ|
· ∇−→

q = 0. (41)

Note that the quantity −∇φ/|∇φ| is the unit vector nor-

mal to the interface whose direction is from water to air.

Fig. 35 Pressure condition on free surface

In the region away from the interface where φ is constant,

−∇φ/|∇φ| is replaced by the vector (0,0,1)T .

The pressure boundary condition is written as

p =
ζ

Fn2
on the free surface, (42)

where atmospheric pressure is assumed to be zero and ζ is

the z-coordinate of the interface. For an air cell which is next

to a water cell, pressure is extrapolated in the following way.

Suppose that the cell i is the air cell for which the pressure

must be extrapolated and the cell j is the neighboring water

cell as shown in Fig. 35. From the definition, |φ| is the dis-

tance to the interface with φi < 0 and φj > 0. The interface

is supposed to be located between the cell centers i and j .

As shown in Fig. 35, the interface is locally approximated

by a flat surface (a straight line in 2D) and the closest point

on the interface from the cell center i (point I in Fig. 35)

is denoted as A and the closest point from the cell center

j (J in Fig. 35) is denoted as B . Also the intersection of

the interface and the line connecting the cell centers i and

j is denoted as C. Since the triangle IAC is similar to the

triangle JBC and the length IA = |φi | and JB = |φj |. The

ZC , z-coordinate of the point C, is given by

ZC =
|φi |ZJ + |φj |ZI

|φi | + |φj |
.

Thus pressure is extrapolated as

pi =
(ZC/Fn2)(|φi | + |φj |) − pj |φi |

|φj |
,

in such a way that

pC =
ZC

Fn2
.

Note that this procedure uses only the value of φ and the

actual free surface shape does not need to be constructed.

In case that an air cell has several adjacent water cells,

the pressure value is obtained by taking the average of the

extrapolated values from each water cell. In the remaining

air region, pressure is extrapolated using (41).
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Fig. 36 Computational grid

around KRISO Container Ship

4.3 Test Cases

4.3.1 Flows Around a Ship in Straight Ahead Condition

Ship Model and Computational Grid The approach de-

scribed above is applied to the free surface flow simulations

of a practical ship hull form [35]. A ship model used in this

exercise is KRISO Container Ship (KCS) which was con-

ceived at then KRISO (Korea Research Institute for Ships

and Ocean Engineering) to provide data for both explication

of flow physics and CFD validation for a modern container

ship with bulbous bow and transom stern [100].

The computational grid generated is based on the struc-

tured grid of an O–O type. Number of grid points are

257 × 49 × 81 covering the half domain in the port side.

The solution domain is set

−1.5 ≤ x ≤ 3.5, −2 ≤ y ≤ 0, −1.98 ≤ z ≤ 0.018,

and the averaged minimum spacing near the solid wall is

1.2 × 10−6. The partial views of the grid are shown in

Fig. 36.

Free Surface Flow Computations A free surface flow

around a ship hull is computed. The Froude number is set

Fn = 0.26 and the Reynolds number is 1.4×107. The turbu-

lence model used is the modified Spalart-Allmaras model.

The computation in the even-keel condition is carried out

first. Figure 37 shows the comparison of the computed wave

contour with the data measured at KRISO [100]. Although

the computed waves away from the ship hull are dissipated

where the grid resolution is not fine enough, the wave sys-

tems near the hull are reasonably well captured. Figure 38

is the comparison of wave profiles between measurement

at SRI (then Ship Research Institute, Japan) [49] and the

present computation. Except for the slight discrepancy in

the bow shoulder wave, agreement is fairly well. Figure 39

Fig. 37 Comparison of measured (at KRISO, top) and computed

(bottom) wave contours in even-keel condition. Contour interval

�ζ = 0.0005

Fig. 38 Comparison of measured (at SRI, marks) and computed (line)

wave profiles on a ship hull surface

shows the comparison of measured (also at SRI) and com-

puted hull surface pressure distributions. Pressure patterns

in general are similar between two results.

Next, trim and sinkage of a ship are estimated from the

computed flow field of even-keel condition. The dipping at

FP and AP are compared with measured (at KRISO) values

in Table 2. They are well predicted although the dipping at

AP is slightly underestimated. Note that the amount of dip-

ping at AP is quite small (3.2 mm for a model of 7.2786 m).



34 J. Wackers et al.

Fig. 39 Comparison of measured (at SRI, top) and computed (bottom)

surface pressure distributions. Contour interval �CP = 0.025

Table 2 Comparison of measured (at KRISO) and computed dipping

at FP and AP for KCS at Fn = 0.26

Dipping at FP Dipping at AP

Measured 0.339 × 10−2 0.0443 × 10−2

CFD 0.337 × 10−2 0.0262 × 10−2

Table 3 Measured (at KRISO) and computed resistance coefficients

of KCS at Fn = 0.26 (coefficients are ×103 and normalized by 0.5ρU2

S)

Cd 1 + K Cw

Measured (Fixed) 3.56 1.10 0.447

Measured (Free) 3.66 1.10 0.547

Computed (Fixed) 3.49 1.09 0.405

Computed (Free) 3.62 1.09 0.535

Further iterations between the attitude estimation and flow

field computation will improve the accuracy.

With the estimated trim and sinkage, the computational

grid is modified and the flow field is computed using a new

grid with trim and sinkage.

The computed and measured [100] resistance coefficients

are listed in Table 3. Also listed are the wave resistance coef-

ficient Cw estimated using the corresponding form factors,

the computed form factors are estimated by the additional

double model flow computation. The trend of the increased

resistance in the trim-free condition is captured by the nu-

merical computation.

The wave contours with the even-keel and free conditions

are compared in Fig. 40. Although the trim and sinkage are

varied, the wave fields appear almost the same. Similarly

Fig. 40 Comparison of computed wave contours of free condition

(top) and even-keel condition (bottom). Contour interval �ζ = 0.0005

Fig. 41 Comparison of computed wave profiles on a ship hull surface.

Red line: with trim and sinkage, blue line: even-keel

the comparison of the wave profiles in Fig. 41 shows only

small difference in the bow. However, this slightly higher

bow waves of the trim-free case together with the change of

attitude yield the larger wave resistance (see Table 3).

4.3.2 Flows Around a Ship in Steady Drift and Turning

Conditions

Ship Model and Computational Grid Free surface flow

simulations for steady drift and steady turning conditions

are carried out in order to estimate maneuvering properties

of a ship.

A ship model is Series 60 (Cb = 0.6) which has been

used for various CFD validations. Flow conditions are as

follows: the Froude number is Fn = 0.316 and the Reynolds

number is 4.0 × 106. In case of steady drift, the drift angle

β is 10 degrees, while in steady turning, non-dimensional

angular velocity r ′(= rL/U) is 0.4. Note that the validation

data is available for the steady drift case [56]. The Spalart-

Allmaras model is used as a turbulence model.

A computational grid of O–O type with 129 × 129 × 81

points is generated for both sides of a ship hull. The solution

domain is set

−1.5 ≤ x ≤ 3, −2.5 ≤ y ≤ 2.5, −2.45 ≤ z ≤ 0.05,
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Fig. 42 Computational grid

around Series 60 (Cb = 0.6)

and the averaged minimum spacing near the solid wall is

4.5 × 10−6. The generated grid is shown in Fig. 42.

Flow Field of Steady Drift Case The computed wave con-

tour in steady drift case is shown in Fig. 43. Asymmetric

wave pattern can be observed. The wave profiles along a ship

hull are compared between the computation and the mea-

surement [56] in Fig. 44. Although the computed wave peak

at the pressure side is slightly under-estimated, both wave

profiles agree well with each other.

Figure 45 compares the measured [56] and computed ve-

locity distributions in the cross sections. The starboard shift

of low speed region in the downstream direction which cor-

responds to the vortex movements is reproduced in the com-

putation.

Flow Field of Steady Turning Case The computed wave

contour in case of steady turning is shown in Fig. 46. Differ-

ence of flow directions between the drift case and the turn-

ing case affects the wave pattern significantly. In the turning

case, stern waves are larger in the starboard side, whereas

the stern waves in the port side are larger in the drift case.

The difference can also be observed in the comparison of

wave profiles of two cases in Fig. 47.

Figure 48 shows the velocity distribution in various cross

sections. Distorted wake pattern is different from the steady

drift case in Fig. 45 and the low speed region shifts to the

port side. This is again due to the difference of flow direc-

tions.

4.3.3 Flows Around a Waterjet Ship

Ship Model and Computational Grid The last example is

for a waterjet propelled ship. Since the ship speed is quite

high and a waterjet duct and a jet flow behind a hull make

a flow field extremely complicated, the flexibility of a level

set method is demonstrated in this simulation.

The ship model used is a high-speed boat of 30.5 m long

which is equipped with twin waterjet propulsors [36].

Fig. 43 Computed wave contour of Series 60 (Cb = 0.60) in steady

drift, β = 10 deg

Fig. 44 Comparison of computed and measured wave profiles of Se-

ries 60 (Cb = 0.60) in steady drift, β = 10 deg

The Froude number and the Reynolds number of com-

putations are about 1.0 and 106, respectively. Although the

flow solver has a capability for estimating trim and sink-
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Fig. 45 Comparison of computed and measured velocity distributions

of Series 60 (Cb = 0.60) in steady drift, β = 10 deg

age of a ship in a running condition, the attitude of a ship

measured in the model test is given and fixed in the present

computations.

Two grids are prepared: one for the bare hull without a

waterjet duct and the other is a hull with a duct. Both grids

are based on multiblock structured grids covering only the

port side of a domain assuming y-symmetry.

The grid in the case with a duct is generated first and

the bare hull grid is obtained by removing a duct block.

Thus, the grid blocks around a main hull are identical for

both grids. The blocks around a ship consist of 97× 81 × 65

points and its topology is an O–O type. In the case with a

duct, an additional block with 17 × 17 × 65 points is placed

inside a duct. Note that a waterjet impeller/stator, shaft and

nozzle geometries are not included in the grid for simplic-

ity and the waterjet impeller is modeled by an actuator disk

model.

Since the ship speed is quite high and the wave length of

generated waves becomes long, the computational domain

Fig. 46 Computed wave contour of Series 60 (Cb = 0.60) in steady

turning, r ′ = 0.4

Fig. 47 Comparison of computed wave profiles of Series 60

(Cb = 0.60) between steady drift and steady turning conditions

is set larger than that of the conventional mid-speed applica-

tions. Thus, the domain size is

−4 ≤ x ≤ 5, −4.5 ≤ y ≤ 0,

−4.42 ≤ z ≤ 0.115,

where the ship is placed between 0 ≤ x ≤ 1.

The turbulence model used is the Spalart-Allmaras model

and flow fields are assumed to be fully turbulent.

Two computations are carried out. The first one is for

a bare hull in a towing condition, the second is for a self-

propulsion condition with a hull with a duct configuration.

Flow fields The computed wave patterns are shown in

Fig. 49. The Froude number is so high (around 1.0) that the

ship is in a planing condition. The so-called “rooster tail”

waves are generated behind a transom stern of a ship. The
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Fig. 48 Computed velocity distribution of Series 60 (Cb = 0.60) in

steady turning, r ′ = 0.4

waterjet can be observed in the propelled condition where

the actuator disk accelerates the flow inside the duct.

Figure 50 depicts the comparisons of the computed wave

contours between towed and propelled conditions. The wave

pattern of towed condition is larger than that of propelled

condition.

Figure 51 shows the pressure distributions in the duct

center plane for the propelled condition. High pressure in

the lip of the duct inlet and the low pressure in the fore edge

of the inlet can be observed. Also seen is the pressure jump

in the impeller position due to the body force. The shape of

jet flows is captured by the present level set method quite

well.

4.4 Summary and Perspectives

In this section, one of the interface capturing approaches, the

level set method adopted in the Navier-Stokes solver SURF

has been presented.

The key issues of numerical implementation, such as dis-

cretization of the convection equation, the procedure for re-

initialization and the one-phase flow approach have been de-

scribed in the framework of an unstructured grid solver.

Various test cases associated with ship hydrodynamics

which include ship flows with straight ahead with and with-

out sinkage and trim, flows around a ship in a drift motion

or in a turning motion, flow around a ship with a water-

jet propulsor, have been shown to demonstrate practical ap-

plicability of the present method.

Although the simulations of steady-state flows have been

main fields of applications so far, the method can be applied

to unsteady free surface flows as well. The flexibility of the

present approach will boost the unsteady applications such

as seakeeping and dynamic manoeuvring simulations fur-

ther in the near future.

Fig. 49 Computed wave patterns: Towed (top) and Propelled (bottom)

5 Conclusions

In the preceding sections, we have seen that the three meth-

ods presented each have their own strong points, which

makes them preferable in specific situations. Someone wish-

ing to choose a water surface discretizations method must

therefore answer the question, in what situation the method

will be used and what will be its requirements, before mak-

ing a choice. Below, we discuss the factors that may influ-

ence such a choice.

Wave Making Prediction In the examples given in the pre-

vious sections, we have seen that all three methods presented

here are able to accurately predict wave patterns of ships.

Thus, the choice of the method must be based on other con-

siderations as well. For those cases where it is applicable, the

steady surface fitting method produces a high level of con-

vergence and numerical accuracy quickly and easily. This

may be essential for the application envisaged. On the other

hand, the capturing methods are more general: they can be
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Fig. 50 Comparisons of computed wave contours: Towed (top) and

Propelled (bottom)

Fig. 51 Computed pressure distributions in the duct center plane

used for more complex problems and the same method is

applicable to a wider variety of problems. The influence of

several other factors is discussed below.

Complexity of Ship Geometry Some ship geometries are

more complex than others. A first example of a complica-

tion can be the existence of a bulbous bow or a partially

immersed transom stern. Also, appendages can add compli-

cations.

For surface fitting, the grid must continue to match the

hull surface precisely during the mesh deformation, which

in practice may impose limitations on the complexity of the

ship geometry near the water surface. An example is the flow

over a bulbous bow for which a thin sheet of water passes

over the bulb; automatically generating a grid for all flow

regimes met in the iterative solution can then be hard. De-

pending on the mesh deformation technique, however, high

complexity in regions below the surface is not necessarily a

problem.

Capturing techniques can in principle handle arbitrar-

ily complex geometries. An important point for these tech-

niques is to ensure that the water surface can move over the

hull surface, despite the no slip condition (see Sect. 4.2.2).

Allowing the surface to move, becomes more difficult for

complicated surface shapes. However, a good extrapolation

approach for the volume fraction or the level set in the

boundary layer should take care of this problem.

Solution Speed For those cases where the surface fitting

method is applicable, it is very fast. As there is no need to

compute and resolve the flow in the air region, and there are

no particular requirements for a fine vertical grid resolution

in the free-surface region, the method is very economic in

the grid points needed. The fitting method used in PARNAS-

SOS, owing to a fast convergence of the solution to steady

state that is not inhibited by transient wave effects, is re-

markably fast even compared to alternative fitting methods.

Compared to the fitting method, both capturing tech-

niques need to resolve an extra flow equation, and require

a fine grid around the location of the water surface. The

single-fluid level set method has the advantage over the

volume-of-fluid method of not needing computation in the

air region; however, it requires extra computation for the re-

initialization of the level set function. The real computation

speed for all methods depends much on the numerical im-

plementation chosen, e.g. the performance of linear solvers.

A case in which solution speed is absolutely essential is

the automatic optimization of hull forms, as this requires not

one but many different simulations. Surface fitting is a log-

ical choice for this case; capturing methods can probably

be used by computing the free-surface shape once and then

keeping it in the same place for all subsequent simulations.

Breaking Waves The modeling of breaking waves is sig-

naled as an important point in all three presentations. While

none of the methods contains a physically correct model for

wave breaking, the volume-of-fluid method comes closest as

it approximates the formation of foam and bubbly regions

by zones where the volume fraction is dispersed. Numeri-

cal dissipation in these zones, while not related to the actual

physical dissipation in breaking waves, takes on the same

role of dissipating energy, as well as keeping the solution

stable. Thus, the method is robust and reasonably accurate

even in the presence of strong plunging breakers.

While the level set method always keeps a sharp in-

terface, it can model plunging breakers and flow topology

changes. Thus, it is in principle suitable for use in the case

of strong breakers.

In surface fitting, the grid must be deformed to match

the free surface. Therefore, topology changes, such as in
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overturning waves, cannot be well accommodated and the

simulation of steep waves might be difficult. However, as

Sect. 2.4.3 shows, the method can be made robust with re-

spect to spilling breakers. The need to impose free-surface

boundary conditions may be a benefit in certain cases, e.g.

as it may allow to add terms in those conditions modelling

the effect of spilling breakers. However, the method is most

suitable for flows with mild breaking only.

Steady or Unsteady Flows Of the three methods presented

here, ISIS-CFD and SURF are used regularly for unsteady

flow simulation. In fact, there is no fundamental difficulty

in using either the level set or the volume-of-fluid model

for unsteady flows, as these methods, even for steady cases,

are usually solved with (pseudo-) time marching. The fit-

ting technique of PARNASSOS is only applicable to steady

flows in the present formulation, it would lose its particular

efficiency if it was reformulated for unsteady flow.

Ship Movement The simulation of ship movement is

needed in two cases, for the steady resistance problem with

free hull position and for the unsteady manoeuvring and sea-

keeping problems.

The resistance problem with the hull free in trim and

sinkage is considered very important for RANS methods and

is treated in all three contributions. Only ISIS-CFD, with its

6-DOF motion capacity, is able to simulate the dynamic ship

movement to its equilibrium position. Nevertheless, the iter-

ative solving—remeshing techniques of the two other codes

constitute a straightforward and attractive alternative. The

choice between these two ship motion techniques is in prin-

ciple independent of the water surface model, except that

one must choose an unsteady surface model to perform re-

solved unsteady motion.

While manoeuvring is in principle an unsteady process

requiring ship motion, results for elementary manoeuvres

(drift, turning) can be obtained with a steady computation,

as demonstrated for SURF in Sect. 4.3.2. An example of a

seakeeping simulation is found in Sect. 3.7.3.

Summing up this final discussion, it can be seen that for

the whole spectrum of ship flow problems as presented in the

Introduction, at least one RANS method is well suited. Thus,

due to the greater accuracy and physical realism that these

methods offer over older techniques, the coupled simulation

of wavemaking and viscous effects deserves its current use

for practical ship design, and it is highly probable that this

use will strongly increase in the coming years.
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