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Abstract. A so-called Spectro-Geometric Method (SGM) is presented for the free transverse 

vibration analysis of orthotropic thin rectangular plates with arbitrary elastic supports along each 

of its edges, a class of problems which are rarely attempted in the literature. Regardless of 

boundary conditions, the displacement function is invariably and simply expressed, in spectral 

form, as a trigonometric series expansion with an accelerated polynomial rate of convergence as 

compared with the conventional Fourier series. All the unknown expansion coefficients are treated 

as the generalized coordinates, and determined using the Rayleigh-Ritz technique. This work 

allows a capability of modeling a wide spectrum of orthotropic thin rectangular plate under a 

variety of boundary conditions, and changing the boundary conditions as easily as modifying the 

material properties or dimensions of the plates. The accuracy and reliability of the SGM prediction 

are demonstrated though numerical examples. The SGM prediction can be readily and directly 

extended to other more complicated boundary conditions involving non-uniform restraints, point 

supports, partial supports and their combinations. 

Keywords: orthotropic rectangular plates, spectro-geometric method (SGM), transverse vibration, 

arbitrary elastic edge support. 

1. Introduction 

Orthotropic thin rectangular plates have been widely used in various kinds of engineering such 

as aeronautic, astronautic and marine structures and so on. This is largely because the orthotropic 

materials have high strength-to-weight and stiffness-to-weight ratios, which make them ideally 

suited for use in weight-sensitive structures. The wide use of such structures requires investigating 

the dynamic characteristics of orthotropic rectangular thin plates in order to develop accurate and 

reliable design. Therefore, a through understanding of their vibration behavior is essential for 

engineers and designers. 

A well-known monograph about the vibration problems of plates was given by Leissa [1]. 

Hurlebaus [2] presented an effective and simple solution for obtaining the modal characteristics 

of orthotropic rectangular plate with completely free boundary conditions. The vibration analysis 

of orthotropic rectangular plates with various boundary supports were carried out by Ahmadian 

[3] with superelements technique. Bisnacolini [4] investigated the free vibrations of thin 

orthotropic rectangular plates with an approximate solution. The vibration characteristics were 

validated by finite element results. Li [5] investigated the nonlinear vibration characteristics of 

orthotropic plates based on the higher-order shear deformation theory using differential quadrature 

method (DQM). Zhu [6] utilized Lagrange equation and modal superposition to study the dynamic 

behavior of an orthotropic plate under moving loads. Huang [7] developed a discrete method to 

analyze the free vibration characteristics of orthotropic rectangular plates with variable thickness. 

Dalaei [8] utilized the extended Kantorovich method to analyze the modal characteristics of 

clamped rectangular orthotropic plates. Xing [9] studied the free vibration problems of orthotropic 

rectangular plates using the novel separation of variables. In his work, only the plates with all 

combinations of simply supported and clamped boundary conditions were investigated. In his 

following work, he [10] presented the vibration solution for orthotropic rectangular plates with all 
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possible combinations of simply supported, clamped, free and guided conditions. Jafari [11] 

proposed a simple and efficient mixed Ritz-differential quadrature (DQ) method for free vibration 

and buckling analysis of orthotropic rectangular plates. The vibration characteristics are obtained 

and checked against results published in the literature. 

From the review of the literature, most of previous studies on orthotropic rectangular plates 

are confined to the classcical boundary conditions, such as free, simply supported, clamped and 

their combinations. However, a variety of possible boundary supports encountered in practice 

engineering applications may not always be classical in nature, and they will always be some 

elasticity along the supports, and there is a considerable lack of corresponding researches 

regarding the free transverse vibration of orthotropic rectangular thin plates subjected to arbitrary 

elastic edge supports. 

It is well known that the analytical solutions of vibration characteristics are avaiable for 

rectangular plates with some particular types of boundary conditions, such as two opposite edges 

simply supported. A versatile solution to the transverse vibration problem of orthotropic 

rectangular plates with arbitrary bounday conditions may become possible in light of recent 

progress in modelling beams [12, 13], plates [14], cylindrical shells [15] and built-up structures 

[16] with general elastic boundary supports and coupling conditions. 

The objective of this investigation is to provide a so-called Spectro-Geometric Method (SGM) 

for the free transverse vibration analysis of orthotropic thin rectangular plates with arbitrary elastic 

edge supports. The term “spectro-geometric” has two important implications. Firstly, the 

geometry of a substructure is accurately described in terms of mathematical or design parameters, 

rather than a computational grid or mesh. Secondly, an unknown solution variable on each 

substructure is expressed, in spectral form, as a trigonometric series expansion with an accelerated 

polynomial rate of convergence. Transverse vibration displacement of the plates, regardless of 

boundary conditions, is expanded as a standard two-dimensional consine series supplemented with 

four singe sine functions introduced to eleminate all the relevant discontinuities with the 

displacement and its derivatives at the edges. In comparison with the Fourier series supplemented 

by polynomials, this modification is advantageous mathematically because of the  

“dual-invariance” of trigonometric functions under differential and integral operations. The series 

expansion coefficients are treated as the generalized coordinates, and determined using 

Rayleigh-Ritz method. Compared with most of the existing techniques, the current approach can 

be applicable to arbitrary boundary supports without any modifying any special procedures 

schemes. Several numerical examples are presented to verify the reliability and accuracy of the 

SGM predition and to demonstrate the flexibility in dealing with different boundary conditions. 

2. Theoretical formulation 

As shown in Fig. 1, an orthotropic thin rectangular plate with arbitrary elastic edge supports is 

depicted in a Cartesian coordinate system (𝑂, 𝑥, 𝑦, 𝑧). The plate has the constant thickness ℎ. 𝑎 

and 𝑏 are the length and width of the thin rectangular plate, respectively. The transverse vibration 

displacement on the middle surface of the plate is denoted by 𝑤(𝑥, 𝑦). The arbitrary elastic edge 

supports are imposed by setting two types of uniformly distributed restraining springs (linear and 

rotational springs) with independent stiffness values along each edge. The stiffness distribution 

function for each type of elastic restraint can be specified independently and vary continuously or 

discontinuously along an edge. In this way, the elastic restraints not only themselves represent a 

class of boundary conditions of practical interest, but also can be used to unite all the classical 

homogeneous boundary conditions by accordingly setting the stiffness constants equal to either 

zero or infinity. For example, a clamped edge (C) refers to a special case of the elastic supports 

when the stiffnesses for both of the (linear and rotational) restraining springs become infinity 

(represented by 1013 in the numerical calculations). The free edge (F) can be readily achieved by 

setting the stiffness values to zero for the two sets of springs. The simply supported case (S) for 



1158. FREE TRANSVERSE VIBRATIONS OF ORTHOTROPIC THIN RECTANGULAR PLATES WITH ARBITRARY ELASTIC EDGE SUPPORTS.  

DONGYAN SHI, XIANJIE SHI, WEN L. LI, QINGSHAN WANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 391 

the transverse vibration motion can be created by specifying the infinite stiffness for the linear 

springs, and zero stiffness for the rotational springs. Thus, the boundary conditions for a plate are 

fully specified by using four letters with the first one indicating the boundary support along the 

first edge, 𝑥 = 0. The remaining (the second to the fourth) edges are ordered in the 

counterclockwise direction. 
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Fig. 1. An orthotropic thin rectangular plate with elastically restrained edge 

The governing differential equation for the transverse vibration of an orthotropic thin 

rectangular plate can be expressed as [17]: 

𝐷11

𝜕4𝑤(𝑥, 𝑦)

𝜕𝑥4
+ 2(𝐷11 + 2𝐷66)

𝜕4𝑤(𝑥, 𝑦)

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤(𝑥, 𝑦)

𝜕𝑦4
− 𝜌ℎ𝜔2𝑤(𝑥, 𝑦) = 0, (1) 

where 𝐷𝑖𝑗  are the standard bending rigidities in the classical lamination theory, 𝜌 is the mass 

density of the plate, 𝜔 is the frequency of the harmonic motion. 

For an orthotropic plate, the stiffness constants can be expressed with the lamina engineering 

constants and plate thickness in the form of: 

𝐷11 =
𝐸1ℎ3

12(1 − 𝑣12𝑣21)
,   𝐷22 =

𝐸2ℎ3

12(1 − 𝑣12𝑣21)
,   𝐷12 = 𝑣12𝐷22,   𝐷66 = 𝐺12ℎ3. (2) 

An orthotropic material is characterized by the fact that the mechanical elastic properties have 

two perpendicular planes of symmetry. Due to this only four elastic constants 𝐸1, 𝐸2, 𝐺12 and 𝑣12 

are independent, the coefficient 𝑣21 can be determined according to the following relation: 

𝑣12

𝐸1
=

𝑣21

𝐸2
. (3) 

In terms of the transverse vibration displacement 𝑤, the boundary conditions for a generally 

supported orthotropic thin rectangular plate can be expressed as: 

𝑘𝑥0𝑤 = −𝐷11

𝜕3𝑤

𝜕𝑥3
− (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑥𝜕𝑦2
,    𝐾𝑥0

𝜕𝑤

𝜕𝑥
= 𝐷11

𝜕2𝑤

𝜕𝑥2
+ 𝐷12

𝜕2𝑤

𝜕𝑦2
   at   𝑥 = 0, (4) 

𝑘𝑥𝑎𝑤 = 𝐷11

𝜕3𝑤

𝜕𝑥3
+ (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑥𝜕𝑦2
,    𝐾𝑥𝑎

𝜕𝑤

𝜕𝑥
= −𝐷11

𝜕2𝑤

𝜕𝑥2
− 𝐷12

𝜕2𝑤

𝜕𝑦2
   at   𝑥 = 𝑎, (5) 

𝑘𝑦0𝑤 = −𝐷22

𝜕3𝑤

𝜕𝑦3
− (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
,    𝐾𝑦0

𝜕𝑤

𝜕𝑦
= 𝐷22

𝜕2𝑤

𝜕𝑦2
+ 𝐷12

𝜕2𝑤

𝜕𝑥2
   at   𝑦 = 0, (6) 

𝑘𝑦𝑏𝑤 = 𝐷22

𝜕3𝑤

𝜕𝑦3
+ (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
,    𝐾𝑦𝑏

𝜕𝑤

𝜕𝑦
= −𝐷22

𝜕2𝑤

𝜕𝑥2
− 𝐷12

𝜕2𝑤

𝜕𝑥2
   at   𝑦 = 𝑏, (7) 

where 𝑘𝑥0 and 𝑘𝑥𝑎 (𝑘𝑦0 and 𝑘𝑦𝑏) are the linear spring constants, and 𝐾𝑥0 and 𝐾𝑥𝑎 (𝐾𝑦0 and 𝐾𝑦𝑏) 

are the rotational spring constants at 𝑥 = 0 and 𝑥 = 𝑎  (𝑦 = 0 and 𝑦 = 𝑏), respectively. 
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In order to model the transverse vibration problem of orthotropic thin rectangular plate with 

arbitrary elastic edge supports, the transverse vibration displacement is universally sought in 

spectral form as an accelerated trigonometric series expansion as: 

𝑤(𝑥, 𝑦) = ∑ ∑ 𝐴𝑚𝑛𝜑𝑚(𝑥)

∞

𝑛=−4

∞

𝑚=−4

𝜑𝑛(𝑦), (8) 

where 𝐴𝑚𝑛 denotes the unknown series expansion coefficient to be determined: 

𝜑𝑚(𝑥) = {
cos𝜆𝑎𝑚𝑥, 𝑚 ≥ 0,
sin𝜆𝑎𝑚𝑥, 𝑚 < 0,

    𝜆𝑎𝑚 =
𝑚𝜋

𝑎
, (9) 

𝜑𝑛(𝑦) = {
cos𝜆𝑏𝑛𝑦, 𝑛 ≥ 0,
sin𝜆𝑏𝑛𝑦, 𝑛 < 0,

      𝜆𝑏𝑛 =
𝑛𝜋

𝑏
. (10) 

In the SGM model, the geometries for the plate can be fully and conveniently defined by the 

coordinates of several key points or other relevant parameters, rather than being approximated by 

a mesh consisting of a number of nodes and elements as typically associated with the existing 

methods. More importantly, the parametric description of the plate will allow an automatic change 

or update of the model without the need of “re-meshing”. This has profound implications to 

sensitivity studies, optimization, uncertainty analysis, and statistical or stochastic predictions. 

From a practical point of view, this automated analysis capability can lead to a substantial 

reduction of the time spent on creating computational models, the major cost concern with CAE 

analyses nowadays. 

The four sine terms in both 𝑥- and 𝑦-directions are introduced to eliminate the potential 

discontinuities (or jumps), along the edges of the plate, of the displacement functions when it is 

periodically extended and expressed as a trigonometric series expansion. As a result, the Gibbs 

effect can be eliminated and the convergence rate of the series expansion can be adequately 

improved. Mathematically, it can be proven that the series expansion given in Eq. (8) converges 

uniformly and polynomially over the rectangular solution domain. As a matter of fact, Eq. (8) is 

able to expand and uniformly converge to any function 𝑓(𝑥, 𝑦) ∈ ℂ3  for  

(𝑥, 𝑦) ∈ 𝐷: ([0, 𝑎]⨂[0, 𝑏]). Also, any secondary variables of interest can be readily obtained 

from appropriate mathematical operations. 

In practice, the solution in the form of Eq. (8) can be obtained in both strong and weak forms. 

In seeking a strong form of solution, the series will have to satisfy both governing differential 

equations and boundary conditions exactly on a point-wise basis. This solution process has been 

used to determine the in-plane [18] and out-of-plane [19] vibrations of rectangular plates although 

different forms of series expressions were used there. From the standpoint of numerical 

implementations, it is often much easier to find a weak form of solution based on a variational or 

energy principle. In such a case, all the series expansion coefficients will be treated as the 

generalized coordinates which are independent from each other. The final system of equations can 

be readily derived from, for example, the Rayleigh-Ritz technique. When the solution is 

constructed sufficiently smooth, the weak solution is mathematically equivalent to the strong form. 

The weak form of solution will be sought here since it will be more attractive in modeling complex 

structures. 

The Lagrangian function of the orthotropic thin rectangular plate can be eventually written as: 

𝐿 = 𝑉 − 𝑇, (11) 

where 𝑉 and 𝑇 denote the total potential energy and the total kinetic energy, respectively. For the 

plate model shown in Fig. 1, the total potential energy, including the transverse vibration strain 

energy and the potential energy stored in the boundary springs, can be written as: 
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𝑉 =
1

2
∫ ∫ [𝐷11 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 𝐷22 (
𝜕2𝑤

𝜕𝑦2
)

2

+ 2𝐷12

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
+ 4𝐷66 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

]
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦    

+
1

2
∫ {[𝑘𝑦0𝑤2 + 𝐾𝑦0 (

𝜕𝑤

𝜕𝑦
)

2

]
𝑦=0

+ [𝑘𝑦𝑏𝑤2 + 𝐾𝑦𝑏 (
𝜕𝑤

𝜕𝑦
)

2

]
𝑦=𝑏

} 𝑑𝑥   
𝑎

0

+
1

2
∫ {[𝑘𝑥0𝑤2 + 𝐾𝑥0 (

𝜕𝑤

𝜕𝑥
)

2

]
𝑥=0

+ [𝑘𝑥𝑎𝑤2 + 𝐾𝑥𝑎 (
𝜕𝑤

𝜕𝑥
)

2

]
𝑥=𝑎

} 𝑑𝑦
𝑏

0

. 

(12) 

By neglecting rotary inertia, the kinetic energy of the plate is expressed as: 

𝑇 =
1

2
𝜌ℎ ∫ ∫ (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

=
1

2
𝜌ℎ𝜔2 ∫ ∫ 𝑤2𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

. (13) 

Substituting the displacement expression, Eq. (8), into the Lagrangian, Eq. (11) and 

minimizing it against all the unknown series expansion coefficients, one can obtain a system of 

linear algebraic equations as: 

(𝐊 − 𝜔2𝐌)𝐄 = 𝟎, (14) 

where: 

𝐄 = {𝐴−4,−4, 𝐴−4,−3, … , 𝐴𝑚,−4, … , 𝐴𝑚,𝑛, … , 𝐴𝑀,𝑁}
𝑇

, (15) 

denotes the vector that contains all the unknown series expansion coefficients; 𝐊 and 𝐌 are the 

stiffness and mass matrices, respectively. 

The natural frequencies and eigenvectors now can be easily determined from solving a 

standard matrix eigenvalue problem, Eq. (14). Each of the eigenvectors actually contains the series 

expansion coefficients for the corresponding mode. The physical mode shapes can be simply 

obtained by using Eq. (8). Although this investigation is focused on the free vibration of 

orthotropic thin rectangular plates, the dynamic responses to an applied load can be easily 

determined by including its work in the Lagrangian, eventually resulting in a force term on the 

right side of Eq. (14). 

It should also be noted that the current method is particularly advantageous in obtaining other 

variables of interest such as power flows through appropriate mathematical operations in an 

analytical manner. Since the displacement is constructed to be sufficiently smooth, the 

mathematical operations can be directly applied to the displacement expansions term-by-term as 

warranted by the property of absolute and uniform convergence. For example, the vibration 

velocity can be easily written as the product of displacement and factor of 𝑗𝜔 for the case of 

harmonic motion with time factor of 𝑒𝑗𝜔𝑡, and also give the structural mobility which is defined 

as the ratio of vibration velocity to external force. 

3. Results and discussions 

In this section, several numerical examples will be carried out to demonstrate the correctness 

of the current method for the free transverse vibration analysis of orthotropic thin rectangular 

plates as well as the code written. Numerical analyses are subsequently performed to obtain the 

transverse vibration characteristics of orthotropic thin rectangular plates subject to various 

boundary conditions. For orthotropic thin rectangular plates, the material properties need to be 

specified include 𝐸1 = 208 GPa, 𝐸2 = 18.9 GPa, 𝐺12 = 5.7 GPa, 𝜌 = 2000 kg/m3, and  

𝑣12 = 0.23. The thickness ℎ = 0.02 m is used in the following numerical calculations. 
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First, consider an orthotropic rectangular thin plate which is fully clamped along each edge 

(C-C-C-C). The plate has an aspect ratio 𝑏/𝑎 = 1. The first ten dimensionless frequency 

parameters, Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

, are listed in Table 1 for different series truncation numbers:  

𝑀 = 𝑁 =  4, 5, …, 12. Two sets of reference results taken from [9] and obtained using an FEM 

(ABAQUS) model are also given there. A good convergence behavior is observed. Of equal 

importance, the solution also shows an excellent numerical stability, meaning that the values 

essentially remain the same as the truncation numbers become increasingly large. Once the 

convergence behavior is understood, the series will be consistently truncated to 𝑀 = 𝑁 = 10 in 

all the subsequent calculation. 

Table 1. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4  for a C-C-C-C plate (𝑏 𝑎⁄ = 1) 

 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

𝑀 = 𝑁 = 4 4.88 5.53 6.70 7.93 8.17 8.18 8.74 9.64 9.90 10.92 

𝑀 = 𝑁 = 5 4.88 5.52 6.70 7.92 8.17 8.17 8.73 9.64 9.90 10.92 

𝑀 = 𝑁 = 6 4.88 5.52 6.70 7.92 8.17 8.17 8.73 9.64 9.76 10.82 

𝑀 = 𝑁 = 7 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.64 9.76 10.82 

𝑀 = 𝑁 = 8 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.63 9.76 10.82 

𝑀 = 𝑁 = 9 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.63 9.76 10.82 

𝑀 = 𝑁 = 10 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.63 9.76 10.82 

𝑀 = 𝑁 = 11 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.63 9.76 10.82 

𝑀 = 𝑁 = 12 4.88 5.52 6.70 7.92 8.16 8.17 8.73 9.63 9.76 10.82 

Ref. [9] 4.87 5.50 6.68 7.91 8.15 8.16 8.72 9.62 9.75 10.81 

FEM 4.88 5.52 6.69 7.91 8.16 8.17 8.72 9.62 9.75 10.81 

Next, consider a completely free orthotropic rectangular (F-F-F-F). The completely free 

boundary condition represents a classical, but quite challenging, case for testing a plate solution. 

The first ten frequency parameters, Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

, are listed in Table 2 for orthotropic thin 

rectangular plates with different aspect ratios. The numerical results calculated using an FEM 

(ABAQUS) model are also given there for comparison. These two sets of solutions agree well 

with each other. 

Table 2. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4

 for an F-F-F-F plate 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 1.96 2.59 3.22 4.31 4.68 4.73 4.87 5.31 6.04 6.14 

FEM 1.96 2.59 3.21 4.30 4.68 4.73 4.86 5.31 6.03 6.13 

2.0 
Present 1.30 1.37 2.05 2.15 2.73 3.02 3.45 3.88 4.22 4.72 

FEM 1.30 1.37 2.05 2.15 2.73 3.01 3.45 3.88 4.22 4.71 

3.0 
Present 0.86 1.11 1.44 1.62 2.01 2.08 2.55 2.58 3.04 3.16 

FEM 0.86 1.11 1.44 1.62 2.01 2.08 2.55 2.58 3.03 3.16 

To further validate the accuracy and reliability of the SGM, the orthotropic thin rectangular 

plates with different aspect ratios are studied under various restraining conditions. Presented in 

Table 3 are the first ten frequency parameters, Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

, for plates which is simply 

supported along all of its edges. Due to a lack of analytical solutions, the numerical results 

calculated using an FEM (ABAQUS) model are given there for comparisons. Since the reference 

solutions for orthotropic rectangular plates are scarce, the plates with other classical boundary 

conditions are also studied systematically and the corresponding results are listed in Tables 4-5. 

Such results can be particularly useful in benchmarking other solution methods. Traditionally, the 

displacement expressions and the subsequent solution algorithms and implementations are 
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dictated by the intended boundary condition. Consequently, most studies are specifically related 

to a particular type of boundary conditions. In the above examples, it has been demonstrated that 

the proposed SGM prediction model can be lightly applied to arbitrary elastic edge supports with 

no need of making any algorithm or procedural modifications; the modifying boundary conditions 

is as simple as changing plate parameters such as geometrical and material properties. 

Table 3. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4

 for an S-S-S-S plate 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 3.32 4.15 5.55 6.35 6.63 7.14 7.28 8.31 8.80 9.47 

FEM 3.32 4.15 5.54 6.35 6.63 7.14 7.27 8.30 8.79 9.46 

2.0 
Present 3.18 3.32 3.64 4.15 4.81 5.55 6.30 6.33 6.35 6.45 

FEM 3.18 3.32 3.64 4.15 4.81 5.54 6.30 6.33 6.35 6.45 

3.0 
Present 3.16 3.21 3.32 3.51 3.79 4.15 4.58 5.05 5.55 6.07 

FEM 3.16 3.21 3.32 3.51 3.79 4.15 4.58 5.05 5.54 6.06 

Table 4. Frequency parameters Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

 for a C-S-C-F plate 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 4.74 4.87 5.39 6.43 7.83 7.86 7.94 8.17 8.67 9.39 

FEM 4.74 4.87 5.39 6.43 7.82 7.86 7.94 8.17 8.66 9.38 

2.0 
Present 4.73 4.76 4.83 4.99 5.28 5.71 6.26 6.92 7.63 7.85 

FEM 4.73 4.76 4.83 4.99 5.27 5.70 6.26 6.91 7.62 7.85 

3.0 
Present 4.73 4.74 4.77 4.82 4.90 5.04 5.24 5.50 5.83 6.21 

FEM 4.73 4.74 4.77 4.82 4.90 5.04 5.24 5.50 5.83 6.20 

Table 5. Frequency parameters Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

 for a C-F-F-F plate 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 1.87 2.06 2.99 4.47 4.69 4.79 5.14 5.91 6.13 7.06 

FEM 1.87 2.06 2.99 4.47 4.69 4.79 5.14 5.90 6.13 7.05 

2.0 
Present 1.87 1.93 2.14 2.61 3.28 4.05 4.69 4.72 4.79 4.87 

FEM 1.87 1.93 2.14 2.61 3.28 4.05 4.69 4.72 4.78 4.86 

3.0 
Present 1.87 1.90 1.98 2.17 2.49 2.91 3.39 3.91 4.45 4.69 

FEM 1.87 1.90 1.98 2.17 2.49 2.91 3.39 3.91 4.44 4.69 

All the examples considered thus far have been limited to the classical edge supports which 

are viewed as the special cases of elastically restrained edges. We now turn to orthotropic thin 

rectangular plates with arbitrary elastic edge supports. First consider a simply supported 

orthotropic thin rectangular plate, but with uniform rotational restraint (stiffness constants for 

rotational springs represent by 𝐾), along each edge. The calculated frequency parameters are given 

in Table 6 together with the FEM results. The second example deals with a cantilever plate 

(clamped at 𝑥 = 0) with identical elastic restraints at other edges. While the linear stiffness of the 

linear springs is fixed to 𝑘 = 106 N/m, the rotational springs will be specified to take various 

stiffness values: 𝐾 = 100, 104, 108 and 1012 Nm/rad. The corresponding frequency parameters are 

shown in Table 7. In all the cases, a good agreement is observed between the current solution and 

the FEM results. The third example considers an orthotropic thin rectangular plate elastically 

restrained along all the edges. The stiffnesses for the linear and rotational restraining springs are 

set equal to 𝑘 = 106 N/m and 𝐾 = 107 Nm/rad, respectively. The first ten frequency parameters 

are shown in Table 8. For any given modal frequency, the corresponding physical mode shape can 

be lightly determined from Eq. (8). As an example, the mode shapes for the plate with 𝑏 𝑎⁄ = 1 

are plotted in Fig. 2. 
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Table 6. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4  for simply supported plates with uniform rotational 

restraint along all the edges (𝑏 𝑎⁄ = 2) 

𝐾 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

100 
Present 3.18 3.32 3.64 4.15 4.81 5.55 6.30 6.33 6.35 6.45 

FEM 3.18 3.32 3.64 4.15 4.81 5.54 6.30 6.33 6.35 6.45 

104 
Present 3.20 3.34 3.67 4.18 4.83 5.57 6.31 6.35 6.36 6.47 

FEM 3.20 3.34 3.67 4.18 4.83 5.57 6.31 6.35 6.36 6.47 

108 
Present 4.74 4.82 4.99 5.32 5.79 6.38 7.05 7.79 7.84 7.88 

FEM 4.74 4.81 4.99 5.32 5.79 6.37 7.05 7.78 7.84 7.88 

1012 
Present 4.75 4.83 5.01 5.33 5.80 6.38 7.06 7.80 7.86 7.90 

FEM 4.75 4.83 5.01 5.33 5.79 6.38 7.06 7.79 7.86 7.90 

Table 7. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4  for C-F-F-F plates with identical elastic restraint at 

“free” edges (𝑏 𝑎⁄ = 1) 

𝐾 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

100 
Present 2.61 2.98 3.57 4.70 4.79 4.93 5.29 6.01 6.22 7.12 

FEM 2.60 2.98 3.58 4.69 4.79 4.93 5.28 6.00 6.21 7.11 

104 
Present 2.62 2.98 3.61 4.77 4.81 4.94 5.31 6.04 6.28 7.16 

FEM 2.62 2.99 3.62 4.76 4.81 4.94 5.30 6.04 6.28 7.15 

108 Present 2.79 3.08 3.93 5.37 5.53 5.62 5.94 6.69 7.01 7.85 

1012 Present 2.79 3.08 3.93 5.38 5.54 5.63 5.94 6.69 7.01 7.86 

Table 8. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4  for orthotropic thin rectangular plates with elastic 

restraints at all four edges: 𝑘 = 106 N/m and 𝐾 = 107 Nm/rad 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 2.25 2.66 3.40 3.62 3.69 4.33 5.25 5.62 6.25 6.33 

FEM 2.25 2.66 3.40 3.63 3.69 4.33 5.25 5.61 6.25 6.33 

2.0 Present 2.01 2.22 2.50 2.95 3.35 3.42 3.56 3.62 3.83 4.28 

3.0 Present 1.95 2.04 2.21 2.43 2.72 3.11 3.33 3.37 3.43 3.53 

 

 
a) 

 
b) 

 
c) 

Fig. 2. The mode shapes for an orthotropic rectangular plate (𝑏 𝑎⁄ = 1) with elastic restraints, 𝑘 = 106 N/m 

and 𝐾 = 107 Nm/rad, along each edge: the a) first, b) second, c) third mode 

Finally, the vibration behavior of orthotropic rectangular plate under the combinations of point 

supported and partially supported boundary conditions is investigated. The first ten frequency 

parameters Ω = 𝑎 √𝜔2𝜌ℎ/𝐷1
4

 for the point supported and partially supported orthotropic 

rectangular plates are listed in Table 9. The boundary support arrangements along each edge are 

illustrated in Fig. 3. In this support arrangement, the plate is point supported at the center of edges 

(𝑥 = 0 and 𝑥 = 𝑎), and partially supported with the edge (0, 𝑎/4) and (3𝑎/4, 𝑎) of the edges  

(𝑦 = 0 and 𝑦 = 𝑏). Some selected mode shapes are plotted in Fig. 4. It can be seen that the current 
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solutions agree well with the FEM results. 

Table 9. Frequency parameters Ω = 𝑎√𝜔2𝜌ℎ/𝐷1
4

 for plate  

with point and partially supported boundary conditions 

𝑏/𝑎 Method 
Mode sequence 

1 2 3 4 5 6 7 8 9 10 

1.0 
Present 3.67 4.16 4.74 5.07 5.69 5.84 6.10 7.17 7.23 7.98 

FEM 3.66 4.16 4.73 5.05 5.68 5.83 6.09 7.17 7.23 7.97 

2.0 Present 2.18 2.40 2.61 2.78 3.60 3.74 4.23 4.42 4.69 4.93 

3.0 Present 1.48 1.66 1.91 2.00 2.58 2.69 2.99 3.11 3.57 3.70 

 
Fig. 3. Point and partially supported boundary conditions for plates 

 

 
a) 

 
b) 

 
c) 

Fig. 4. Mode shapes for an orthotropic rectangular plate (𝑏/𝑎 = 1) with point supported and  

partially supported boundary conditions: the a) fifth, b) eighth, c) ninth mode 

4. Conclusions 

A meshless and parametric modeling method, the so-called Spectro-Geometric Method (SGM), 

is presented for the free transverse vibration analysis of orthotropic thin rectangular plates with 

arbitrary elastic restraints along each edge, which allows treating the classical homogenous 

boundary conditions as the special cases when the stiffness for each of the restraining spring is 

equal to zero or infinity. The term “spectro-geometric” implies: 1) the geometry of a structural 

component is accurately described in terms of mathematical or design parameters, and 2) the 

primary variables are sought, in spectral form, as a trigonometric series expansion with an 

accelerated rate of convergence. Unlike in most existing studies where solutions are often 

developed for a specified type of boundary conditions, the SGM prediction can generally applied 

to a wide spectrum of boundary conditions with no need of modifying solution algorithms and 

procedures. The prominent convergence and accuracy of the SGM have been proved through a 

number of numerical examples on free vibrations of orthotropic thin rectangular plates. Although 

the stiffness for each restraining springs is here assumed to be uniform, any non-uniform, discrete, 

or partial stiffness distribution can be readily considered by accordingly modifying potential 

energies given in Eq. (12). 
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