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1. INTRODUCTION

The application of composite shafts has come a long way
from early low-speed automotive driveshafts to helicopter
tail rotors operating above the second critical speed. With
operation at supercritical speeds, a substantial amount of
payoffs and net system weight reductions are possible. At
the same time, the rotordynamic aspects assume more
importance, and detailed analysis is required. There are some
technological problems associated with implementation,
such as joints with bearings, affixing of lumped masses,
couplings, provision of external damping, and so forth. The
solutions proposed are just adequate, but require substantial
refinements, which might explain some of the differing
experiences of various authors.

Zinberg and Symonds [1] described a boron/epoxy com-
posite tail rotor driveshaft for a helicopter. The critical speeds
were determined using equivalent modulus beam theory
(EMBT), assuming the shaft to be a thin-walled circular tube
simply supported at the ends. Shear deformation was not
taken into account. The shaft critical speed was determined
by extrapolation of the unbalance response curve which was
obtained in the subcritical region.

Dos Reis et al. [2] published analytical investigations on
thin-walled layered composite cylindrical tubes. In part III

of the series of publications, the beam element was extended
to formulate the problem of a rotor supported on general
eight coefficient bearings. Results were obtained for shaft
configuration of Zinberg and Symmonds. The authors have
shown that bending-stretching coupling and shear-normal
coupling effects change with stacking sequence, and alter
the frequency values. Gupta and Singh [3] studied the effect
of shear-normal coupling on rotor natural frequencies and
modal damping. Kim and Bert [4] have formulated the
problem of determination of critical speeds of a composite
shaft including the effects of bending-twisting coupling. The
shaft was modelled as a Bresse-Timoshenko beam. The shaft
gyroscopics have also been included. The results compare
well with Zinberg’s rotor [1]. In another study, Bert and
Kim [5] have analysed the dynamic instability of a composite
drive shaft subjected to fluctuating torque and/or rotational
speed by using various thin shell theories. The rotational
effects include centrifugal and Coriolis forces. Dynamic
instability regions for a long span simply supported shaft are
presented.

M.-Y. Chang et al. [6] published the vibration behaviours
of the rotating composite shafts. In the model, the transverse
shear deformation, rotary inertia, and gyroscopic effects,
as well as the coupling effect due to the lamination of
composite layers have been incorporated. The model based
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on a first-order shear deformable beam theory (continuum-
based Timoshenko beam theory).

C.-Y. Chang et al. [7] published the vibration analysis
of rotating composite shafts containing randomly oriented
reinforcements. The Mori-Tanaka mean-field theory is
adopted here to account for the interaction at the finite
concentrations of reinforcements in the composite material.

Additional recent work on composite shafts dealing with
both the theoretical and experimental aspects was reported
by Singh [8], Gupta and Singh [3], and Singh and Gupta
[9, 10]. Rotordynamic formulation based on equivalent
modulus beam theory was developed for a composite
rotor with a number of lumped masses and supported on
general eight coefficient bearings. A layerwise beam theory
was derived by Gupta and Singh [3] from an available
shell theory, with a layerwise displacement field, and was
then extended to solve a general composite rotordynamic
problem. The conventional rotor dynamic parameters as
well as critical speeds, natural frequencies, damping factors,
unbalance response, and threshold of stability were analysed
in detail and results from the formulations based on the
two theories, namely, the equivalent modulus beam theory
(EMBT) and layerwise beam theory (LBT) were compared
[9, 10]. The experimental rotordynamic studies carried by
Singh and Gupta [11, 12] were conducted on two filament
wound carbon/epoxy shafts with constant winding angles
(±45◦ and ±60◦). Progressive balancing had to be carried
out to enable the shaft to traverse through the first critical
speed. Inspite of the very different shaft configurations used,
the authors’ have shown that bending-stretching coupling
and shear-normal coupling effects change with stacking
sequence, and alter the frequency values.

Some practical aspects such as effect of shaft disc
angular misalignment, interaction between shaft bow, which
is common in composite shafts and rotor unbalance, and an
unsuccessful operation of a composite rotor with an external
damper were discussed and reported by Singh and Gupta
[11]. The Bode and cascade plots were generated and orbital
analysis at various operating speeds was performed. The
experimental critical speeds showed good correlation with
the theoretical prediction.

This paper deals with the p-version, hierarchical finite
element method applied to free vibration analysis of rotating
composite shafts. The hierarchical concept for finite element
shape functions has been investigated during the past 25
years. Babuska et al. [13] established a theoretical basis for
p-elements, where the mesh keeps unchanged and the poly-
nomial degree of the shape functions is increased; however,
in the standard h-version of the finite element method the
mesh is refined to achieve convergence and the polynomial
degree of the shape functions remains unchanged. Since
then, standard forms of the hierarchical shape functions have
been represented in the literature elsewhere; see for instance
[14, 15].

Meirovitch and Baruh [16] and Zhu [17] have shown
that the hierarchical finite element method yields a better
accuracy than the h-version for eigenvalues problems. The
hierarchical shape functions used by Bardell [18] are based
on integrated Legendre orthogonal polynomials; the sym-
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Figure 1: The cylindrical coordinate system.

bolic computing is used to calculate the mass and stiffness
matrices of beams and plates. Côté and Charron [19] give
the selection of p-version shape functions for plate vibration
analysis.

In the presented composite shaft model, the Timoshenko
theory will be adopted. It is the purpose of the present work
to study dynamic characteristics such as natural frequencies,
whirling frequencies, and the critical speeds of the rotating
composite shaft. In the model, the transverse shear defor-
mation, rotary inertia, and gyroscopic effects, as well as the
coupling effect due to the lamination of composite layers
have been incorporated. To determine the rotating shaft
system’s responses, the hierarchical finite element method
with trigonometric shape functions [20, 21] is used here to
approximate the governing equations by a system of ordinary
differential equations.

2. EQUATIONS OF MOTION

2.1. Kinetic and strain energy expressions

The shaft is modelled as a Timoshenko beam, that is, first-
order shear deformation theory with rotary inertia and
gyroscopic effect is used. The shaft rotates at constant speed
about its longitudinal axis. Due to the presence of fibers
oriented than axially or circumferentially, coupling is made
between bending and twisting. The shaft has a uniform,
circular cross-section.

The following displacement field of a rotating shaft is
assumed by choosing the coordinate axis x to coincide with
the shaft axis:

U(x, y, z, t) = U0(x, t) + zβx(x, t)− yβy(x, t),

V(x, y, z, t) = V0(x, t)− zφ(x, t),

W(x, y, z, t) =W0(x, t) + yφ(x, t),

(1)

where U , V , and W are the flexural displacements of any
point on the cross-section of the shaft in the x, y, and z
directions (see Figure 1), the variables U0, V0, and W0 are
the flexural displacements of the shaft’s axis, while βx and βy
are the rotation angles of the cross-section, about the y and
z axis, respectively. The φ is the angular displacement of the
cross-section due to the torsion deformation of the shaft.
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The strain components in the cylindrical coordinate
system (as shown in Figures 1-2) can be written in terms of
the displacement variables defined earlier as

εxx =
∂U0

∂x
+ r sin θ

∂βx
∂x

− r cos θ
∂βy
∂x

,

εrr = εθθ = εrθ = 0,

εxθ = εθx

=
1

2

(

βy sin θ+ βx cos θ−sin θ
∂V0

∂x
+ cos θ

∂W0

∂x
+ r

∂φ

∂x

)

,

εxr = εrx

=
1

2

(

βx sin θ − βy cos θ − sin θ
∂W0

∂x
+ cos θ

∂V0

∂x

)

.

(2)

Let us consider a composite shaft consists of k layered
(Figure 2) of fiber inclusion reinforced laminate. The con-
stitutive relations for each layer are described by
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Figure 4: The definitions of the principal coordinate axes on an
arbitrary layer of the composite.

where C′i j are the effective elastic constants, they are related to
lamination angle η (as shown in Figures 3-4) and the elastic
constants of principal axes.

The stress-strain relations of the nth layer expressed in
the cylindrical coordinate system (Figure 5) can be expressed
as

σxx = C′11nεxx + ksC
′
16nγxθ ,

τxθ = τθx = ksC
′
16nεxx + ksC

′
66nγxθ ,

τxr = τrx = ksC
′
55nγxr ,

(4)

where ks is the transverse shear correction factor.
The formula of the strain energy is

Ed =
1

2

∫

V

(
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dV. (5)

The various components of strain energy come from the
shaft:
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(6)

where Ai j and Bi j are given in the appendix.
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Figure 5: The stress components: (a) in the coordinate axes (x, y, z), (b) in the coordinate axes (x , r , θ).
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The kinetic energy of the rotating composite shaft,
including the effects of translatory and rotary inertia, can be
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Figure 8: Convergence of the frequency ω for the 5 bending modes
of the clamped-clamped (C-C) shaft as a function of the number of
hierarchical terms p.

written as

Ec =
1

2

∫ L

0

[

Im
(

U̇2
0 + V̇ 2

0 + Ẇ2
0

)

+ Id
(

β̇2
x + β̇2

y

)

− 2ΩIpβxβ̇y

+ 2ΩIpφ̇ + Ipφ̇
2 + Ω

2Ip + Ω
2Id
(

β2
x + β2

y

)]

dx,

(7)

where Ω is the rotating speed of the shaft which is assumed
constant, L is the length of the shaft, the 2ΩIpβxβ̇y term

accounts for the gyroscopic effect, and Id(β̇2
x + β̇2

y) represent
the rotary inertia effect. The mass moments of inertia Im,
the diametrical mass moments of inertia Id, and polar mass
moment of inertia Ip of rotating shaft per unit length are
defined in the appendix. As the Ω2Id(β2

x + β2
y) term is far

smaller than Ω2Ip, it will neglected in further analysis.
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2.2. Hierarchical beam element formulation

The spinning flexible beam is descretised into one hierarchi-
cal finite element is shown in Figure 6. The element’s nodal
d.o.f. at each node are U0, V0, W0, βx, βy , and φ. The local
and nondimensional coordinates are related by

ξ = x/L, (0 ≤ ξ ≤ 1). (8)

Table 1: Properties of composite materials [22].

Boron-epoxy Graphite-epoxy

E11 (GPa) 211.0 139.0

E22 (GPa) 24.1 11.0

G12 (GPa) 6.9 6.05

G23 (GPa) 6.9 3.78

v12 0.36 0.313

ρ (kg/m3) 1967.0 1578.0

The vector displacement formed by the variables U0, V0, W0,
βx, βy , and φ can be written as

U0 =

pU
∑

m=1

xm(t)· fm(ξ),

V0 =

pV
∑

m=1

ym(t)· fm(ξ),

W0 =

pW
∑

m=1

zm(t)· fm(ξ),

βx =

pβx
∑

m=1

βxm(t)· fm(ξ),

βy =

pβy
∑

m=1

βym(t)· fm(ξ),

φ =

pφ
∑

m=1

φm(t)· fm(ξ).

(9)

And it can be expressed as
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where [N] is the matrix of the shape functions, given by
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[

NU ,V ,V ,βx ,βy ,φ
]

=
[

f1 f2 · · · fpU ,pV , pW ,pβx ,pβy ,pφ

]

, (12)

where pU , pV , pW , pβx , pβy , and pφ are the numbers of
hierarchical terms of displacements (are the numbers of
shape functions of displacements).

In this work, pU = pV = pW = pβx = pβy = pφ = p.
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Table 2: The critical speed of the boron-epoxy composite shaft.

L = 2.47 m, D = 12.69 cm, e = 1.321 mm, 10 layers of equal thickness (90◦, 45◦, −45◦, 0◦6, 90◦), ks = 0.503

Theory or method
First critical

speed (rpm)

Zinberg and Symonds [1]
Measured experimentally 6000

EMBT 5780

dos Reis et al. [2]
Bernoulli-Euler beam theory with stiffness

4942
determined by shell finite elements

Kim and Bert [4] Sanders shell theory 5872

Bert [23] Donnell shallow shell theory 6399

Bert and Kim [22] Bernoulli-Euler beam theory 5919

Bresse-Timoshenko beam theory 5788

Gupta and Singh [3] EMBT 5747

LBT 5620

M.-Y. Chang et al. [6] Continuum-based Timoshenko beam theory 5762

Present
Timoshenko beam theory by the p-version

5760
of the finite element method

The vector of generalised coordinates given by

{q} =
{

qU , qV , qW , qβx , qβy , qφ
}T

, (13)

where

{

qU
}

=
{

x1, x2, x3, . . . , xpU
}T

exp( jωt),

{

qV
}

=
{

y1, y2, y3, . . . , ypV
}T

exp( jω t),

{

qW
}

=
{

z1, z2, z3, . . . , ypW
}T

exp( jω t),

{

qβx
}

=
{

βx1 ,βx2 ,βx3 , . . . ,βxPβx
}T

exp( jωt),

{

qβy
}

=
{

βy1 ,βy2 ,βy3 , . . . ,βyPβy
}T

exp( jωt),

{

qφ
}

=
{

φ1,φ2,φ3, . . . ,φpφ

}T
exp( jωt).

(14)

The group of the shape functions used in this study is
given by

f1 = 1− ξ,

f2 = ξ,

fr+2 = sin
(

δrξ
)

,

δr = rπ; r = 1, 2, 3, . . . .

(15)

The functions ( f1, f2) are those of the finite element
method necessary to describe the nodal displacements of the
element, whereas the trigonometric functions fr+2 contribute
only to the internal field of displacement and do not affect
nodal displacements. The most attractive particularity of the
trigonometric functions is that they offer great numerical
stability. The shaft is modeled by only one element called
hierarchical finite element.

By applying the Euler-Lagrange equations, the equations
of motion of free vibration of spinning flexible shaft can be
obtained:

[M]
{

q̈
}

+ [G]
{

q̇
}

+ [K]{q} = {0}. (16)

The system obtained is linear of which equations are
coupled once by the gyroscopic effect, represented by the
matrix [G].

[M] and [K] are the conventional hierarchical finite
element mass and stiffness matrix, [G] is the gyroscopic
matrix (the different matrices of the system of equation are
given in the appendix).

3. RESULTS

A program based on the formulation proposed was devel-
oped for the resolution of (16).

3.1. Convergence

First, the material properties for boron-epoxy are listed in
Table 1, and the geometric parameters are L = 2.47 m, D =

12.69 cm, e = 1.321 mm, 10 layers of equal thickness (90◦,
45◦, −45◦, 0◦6, 90◦). The shear correction factor ks = 0.503
and the rotating speed Ω = 0.

The results of the five bending modes for various
boundary conditions of the composite shaft as a function of
the number of hierarchical terms are shown in Figures 7 and
8. Figures clearly show that rapid convergence from above to
the exact values occur as the number of hierarchical terms is
increased.

3.2. Numerical examples and discussions

In all the following examples, p = 10.
In the first example, the properties of the boron-epoxy

composite shaft are given by Table 1. The results obtained
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Table 3: The critical speed of the graphite-epoxy composite shaft.

L = 2.47 m, D = 12.69 cm, e = 1.321 mm, 10 layers of equal thickness (90◦, 45◦, −45◦, 0◦6, 90◦), ks = 0.503

Theory or method
First critical

speed (rpm)

Bert and Kim [22]

Sanders shell theory 5349

Donnell shallow shell theory 5805

Bernoulli-Euler beam theory 5302

Bresse-Timoshenko beam theory 5113

M.-Y. Chang et al. [6] Continuum-based Timoshenko beam theory 5197

Present
Timoshenko beam theory by the p-version

5200
of the finite element method

Table 4: The critical speed (rpm) of the graphite-epoxy composite shaft for various lengths to mean diameter ratio.

Theory or method
L/D

2 5 10 15 20 25 30 35

Sanders shell 112400 41680 16450 8585 5183 3441 2440 1816

Bert and Kim [22] Bernoulli-Euler 329600 76820 20210 9072 5121 3283 2282 1677

Bresse-Timoshenko 176300 54830 17880 8543 4945 3209 2246 1658

M.-Y. Chang et al. [6]
Continuum-based Timoshenko

181996 55706 17929 8527 4925 3192 2233 1648
beam theory

Present

Timoshenko beam theory by

184667 56196 18005 8549 4934 3198 2236 1650the p-version of the finite

element method

using the present model are shown in Table 2 together with
those of referenced papers. As can be seen from the table, our
results are close to those predicted by other beam theories.
Since in the studied example the wall of the shaft is relatively
thin, models based on shell theories [4] are expected to
yield more accurate results. In the present example, the
critical speed measured from the experiment however is
still underestimated by using Sander shell theory, while
overestimated by Donnell shallow shell theory. When the
material of the shaft is changed to the graphite-epoxy given
in Table 1 with other conditions left unchanged, the critical
speed obtained from the present model is shown in Table 3.
In this case, the result from the present model is compatible
to that of the Bresse-Timoshenko beam theory of M.-Y.
Chang et al. [6].

Next, comparisons are made with those of [6, 22]
for different length to mean diameter ratios L/D. The
shafts being analysed are made of the graphite-epoxy
material given in Table 1 and all have the same lamination
[90◦/45◦/45◦/0◦6/90◦]. The mean diameter and the wall
thickness of the shaft remain the same as the previous
examples. The shear correction factor being used is again
0.503. The results are listed in Table 4. Further results being
compared are for generalized orthotropic composite tube
of different lamination angles η. The results are shown in
Table 5.

In our work, the shaft is modelled by only one element
with two nodes, but in the model of [6] the shaft is modelled
by 20 finite elements of equal length (h-version). The rapid

convergence while taking only one element and a reduced
number of shape functions shows the advantage of the
method used.

From the thin-walled shaft systems studied above, the
present shaft model yields result in all cases close to those
of the model of Bert and Kim [22] based on the Bresse-
Timoshenko theory. One should stress here that the present
model is not only applicable to the thin-walled composite
shafts as studied above, but also to the thick-walled shafts as
well as to the solid ones.

In the following example, the frequencies responses
of a graphite-epoxy composite shaft system are analysed.
The material properties are those listed in Table 1. The
lamination scheme of the shaft remains the same as previous
examples, while its geometric properties, the Campbell
diagram containing the frequencies of the first five pairs of
bending whirling modes of the above composite system is
shown in Figure 9. The intersection point of the line (Ω =

ω) with the whirling frequency curves indicate the speed
at which the shaft will vibrate violently (i.e., the critical
speed). The first 10 eigenvalues correspond to 5 forward
(F) and 5 backward (B) whirling bending modes of the
shaft.

The gyroscopic effect causes a coupling of orthogonal
displacements to the axis of rotation, and by consequence
separates the frequencies in two branches: backward pre-
cession mode and forward precession mode. In all cases,
the backward modes increase with increasing rotating speed
however the forward modes decrease.
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Table 5: The critical speed (rpm) of the graphite-epoxy composite shaft for various lamination angles.

Theory or method
Lamination angle η (◦)

0 15 30 45 60 75 90

Sanders shell 5527 4365 3308 2386 2120 2020 1997

Bert and Kim [22] Bernoulli-Euler 6425 5393 4269 3171 2292 1885 1813

Bresse-Timoshenko 6072 5209 4197 3143 2278 1874 1803

M.-Y. Chang et al. [6]
Continuum-based Timoshenko

6072 5331 4206 3124 2284 1890 1816
beam theory

Timoshenko beam theory by the

6094 5359 4222 3129 2284 1890 1816Present p-version of the finite element

method

Figure 10 shows the variation of the bending funda-
mental frequency ω as a function of the rotating speed Ω

(Campbell diagram) for different boundary conditions and
different rotating speeds.

The gyroscopic effect inherent to rotating structures
induces a precession motion. The backward precession
modes (1B) increase with increasing the rotating speed,
however the forward precession (1F) modes decrease.

4. CONCLUSION

This paper has presented the free vibration analysis of
spinning composite shaft using the p-version, hierarchical
finite element method with trigonometric shape functions.
Results obtained using the method has been evaluated
against those available in the literature and the agreement has
been found to be good. The main conclusions have emerged
from this work, these are itemised below.

(1) Monotonic and uniform convergence is found to
occur as the number of hierarchical functions is
increased.

(2) The dynamic characteristics of rotating composite
shaft are influenced significantly by varying the
fiber orientation, the rotating speed, and boundary
conditions.

(3) The gyroscopic effect causes a coupling of orthogonal
displacements to the axis of rotation, and by con-
sequence separates the frequencies in two branches:
backward and forward precession modes. In all cases,
the backward modes increase with increasing rotating
speed however the forward modes decrease.

APPENDIX

The terms Ai j , Bi j of (6) and Im, Id, Ip of (7) are given as fol-
lows:

A11 = π
k
∑

n=1

C′11n

(

R2
n − R2

n−1

)

,

A55 =
π

2

k
∑

n=1

C′55n

(

R2
n − R2

n−1

)

,

A66 =
π

2

k
∑

n=1

C′66n

(

R2
n − R2

n−1

)

,

A16 =
2π

3

k
∑

n=1

C′16n

(

R3
n − R3

n−1

)

,

B11 =
π

4

k
∑

n=1

C′11n

(

R4
n − R4

n−1

)

,

B66 =
π

2

k
∑

n=1

C′66n

(

R4
n − R4

n−1

)

,

Im = π
k
∑

n=1

ρn
(

R2
n − R2

n−1

)

,

Id =
π

4

k
∑

n=1

ρn
(

R4
n − R4

n−1

)

,

Ip =
π

2

k
∑

n=1

ρn
(

R4
n − R4

n−1

)

,

(A.1)

where k is the number of the layer, Rn−1 is the nth layer inner
radius of the composite shaft, and Rn is the nth layer outer
of the composite shaft. L is the length of the composite shaft
and ρn is the density of the nth layer of the composite shaft.

Whereas the various matrices of (16) are expressed as
follows:

[M] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

MU
]

0 0 0 0 0

0
[

MV
]

0 0 0 0

0 0
[

MW
]

0 0 0

0 0 0
[

Mβx

]

0 0

0 0 0 0
[

Mβy

]

0

0 0 0 0 0
[

Mφ
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

[K] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

KU
]

0 0 0 0
[

K1

]

0
[

KV
]

0
[

K2

] [

K3

]

0

0 0
[

KW
] [

K4

] [

K5

]

0

0
[

K2

]T [

K4

]T [

Kβx

] [

K6

]

0

0
[

K3

]T [

K5

]T [

K6

]T [

Kβy

]

0
[

K1

]T
0 0 0 0

[

Kφ
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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[G] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
[

G1

]

0

0 0 0 −
[

G1

]T
0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

[

MU
]

= ImL

∫ 1

0

[

NU
]T[

NU
]

dξ,

[

MV
]

= ImL

∫ 1

0

[

NV
]T[

NV
]

dξ,

[

MW
]

= ImL

∫ 1

0

[

NW
]T[

NW
]

dξ,

[

Mβx

]

= IdL

∫ 1

0

[

Nβx

]T[
Nβx

]

dξ,

[

Mβy

]

= IdL

∫ 1

0

[

Nβy

]T[
Nβy

]

dξ,

[

Mφ
]

= IpL

∫ 1

0

[

Nφ
]T[

Nφ
]

dξ,

[

KU
]

=
1

L
A11

∫ 1

0

[

N ′
U

]T[
N ′

U

]

dξ,

[

KV
]

=
1

L
ks
(

A55 + A66

)

∫ 1

0

[

N ′
V

]T[
N ′

V

]

dξ,

[

KW
]

=
1

L
ks
(

A55 + A66

)

∫ 1

0

[

N ′
W

]T[
N ′

W

]

dξ,

[

K1

]

=
1

L
ksA16

∫ 1

0

[

N ′
φ

]T[
N ′

U

]

dξ,

[

K2

]

= −
1

2L
ksA16

∫ 1

0

[

N ′
V

]T[
N ′

βx

]

dξ,

[

K3

]

= −ks
(

A55 + A66

)

∫ 1

0

[

Nβy

]T[
N ′

V

]

dξ,

[

K4

]

= ks
(

A55 + A66

)

∫ 1

0

[

Nβx

]T[
N ′

W

]

dξ,

[

K5

]

= −
1

2L
ksA16

∫ 1

0

[

N ′
W

]T[
N ′

βy

]

dξ,

[

K6

]

=

[

1

2
ksA16

∫ 1

0

[

Nβy

]T[
N ′

βx

]

dξ
]

−

[

1

2
ksA16

∫ 1

0

[

Nβx

]T[
N ′

βy

]

dξ
]

,

[

Kβx

]

=

[

1

L
B11

∫ 1

0

[

N ′
βx

]T[
N ′

βx

]

dξ
]

+

[

Lks
(

A55 + A66

)

∫ 1

0

[

Nβx

]T[
Nβx

]

dξ
]

,

[

Kβy

]

=

[

1

L
B11

∫ 1

0

[

N ′
βy

]T[
N ′

βy

]

dξ
]

+

[

Lks
(

A55 + A66

)

∫ 1

0

[

Nβy

]T[
Nβy

]

dξ
]

,

[

Kφ
]

=
1

L
B66

∫ 1

0

[

N ′
φ

]T[
N ′

φ

]

dξ,

[

G1

]

= ΩIpL

∫ 1

0

[

Nβx

]T[
Nβy

]

dξ,

(A.2)

where [N ′
i ] = ∂[Ni]/∂ξ, with (i = U ,V ,W ,βx,βy ,φ).

The terms of the matrices are a function of the integrals,

J
αβ
mn =

∫ 1
0 f αm(ξ) f

β
n (ξ)dξ, (m,n) indicate the number of the

shape functions used, where (α,β) is the order of derivation.

NOMENCLATURE

U(x, y, z): Displacement in x direction
V(x, y, z): Displacement in y direction
W(x, y, z): Displacement in z direction
βx: Rotation angles of the cross-section on y axis
βy : Rotation angles of the cross-section on z axis
φ: Angular displacement of the cross-section

due to the torsion deformation of the shaft
(x, y, z): Cartesian coordinates

(�i , �j , �k): Axes of the Cartesian coordinates
(x , r , θ): Cylindrical coordinates

(�i , �er , �eθ): Axes of the cylindrical coordinates
(1, 2, 3): Principal axes of a layer of laminate
C′i j : Elastic constants

E: Young modulus
G: Shear modulus
v: Poisson coefficient
ρ: Masse density
ks: Shear correction factor
L: Length of the shaft
D: Mean radius of the shaft
e: Wall thickness of the shaft
k: Number of the layer of the composite shaft
Rn−1: The nth layer inner radius of the composite

shaft
Rn: The nth layer outer radius of the composite

shaft
R0: Inner radius of the composite shaft
Rk: Outer radius of the composite shaft
η: Lamination angle
θ: Circumferential coordinate
ξ: Local and nondimensional coordinates
εi j : Strain tensor
σi j : Stress tensor
ω: Frequency, eigenvalue
Ω: Rotating speed
f (ξ): Shape functions
[N]: Matrix of the shape functions
p: Number of the shape functions or number of

hierarchical terms
t: Time
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Ec: Kinetic energy
Ed: Strain energy
{qi}: Generalised coordinates, with

(i = U ,V ,W ,βx,βy ,φ)
[M]: Masse matrix
[K]: Stiffness matrix
[G]: Gyroscopic matrix.
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[14] B. A. Szabó and G. J. Sahrmann, “Hierarchic plate and
shell models based on p-extension,” International Journal for
Numerical Methods in Engineering, vol. 26, no. 8, pp. 1855–
1881, 1988.
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