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An approximate method is used for analyzing the free vibration problem of isotropic
and anisotropic right triangular plates with various aspect-ratios and variable thickness.
In this paper, a right triangular plate is considered as a kind of equivalent rectangular
plate with point supports. Therefore, the free vibration characteristics of any triangular
plate can be obtained by analyzing the equivalent rectangular plate. The differential
equations of the equivalent rectangular plate with point supports are established based on
the first-order shear deformation theory. By transforming the differential equations into
integral equations and using numerical integration, the solutions of the partial differential
equation can be obtained in discrete form. The Green function, which is the discrete
solution for the deflection, is introduced to obtain the characteristic equation of the
free vibration. Frequencies and mode shapes are shown for some triangular plates with
various aspect-ratio and variable thickness. The effects of boundary conditions and the
fibre orientation on the frequency parameters are considered. The efficiency and accuracy
of the numerical solutions by the present method are investigated.

Key Words : approximate method, triangular plate, point support, equivalent rectan-
gular plate, Green function, vibration

1. Introduction

The free vibration problems of isotropic triangu-
lar plates have been studied for many years. Early
studies were well compiled in Ref. 1). Further stud-
ies have been done for the past two decades. Gor-
man 2),3),4)and Saliba 5),6) analyzed the vibration of
isotropic right triangular plates with combinations of
clamped and simply supported boundary conditions.
The superposition method and the modified superpo-
sition method were used respectively. Kim and Dick-
inson 7) presented a comprehensive analysis of free vi-
bration of isotropic triangular plates with any combi-
nation of free, simply supported or clamped boundary
conditions. The free vibration of isotropic triangular
plates with linearly varying thickness were also stud-
ied by Mirza and Bijlani 8), Liew, Lim and Lim 9)

and McGee and Giaimo 10).

With the increasing use of anisotropic materials in
engineering, the study of free vibration problems of
anisotropic triangular plates has received more and
more attention. The free vibration of orthotropic
cantilever triangular plate was analyzed by Kim and
Dickinson 7) as one example. The Rayleigh-Ritz
method with simple polynomials was used and the
lowest six natural frequencies were obtained for the
plates with various aspect ratios. Lam, Liew and
Chow 11) presented the natural frequencies and mode
shapes for the orthotropic right triangular plates with
three kinds of boundary conditions. A set of two-
dimensional orthogonal was used as an admissible dis-
placement function in the Rayleigh-Ritz method. The
vibration of anisotropic isosceles triangular plates was
analyzed by Malhotra, Ganesan and Veluswami 12)

by using the finite element method. Bambill, Laura
and Rossi 13) considered the vibration of orthotropic
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cantilever isosceles triangular plates using the opti-
mized Rayleigh-Ritz method and trigonometric co-
ordinate functions. The first frequency parameter was
obtained. But compared with the study of the vibra-
tion problems of isotropic triangular plates, the study
of the anisotropic plates is rather limited.
In this paper, an approximate method is used

for analyzing the free vibration of isotropic and
anisotropic right triangular plates with various
boundary conditions, aspect-ratios and variable thick-
ness. By adding an additional triangular part, a right
triangular plate can be considered finally as a kind
of rectangular plate with non-uniform thickness and
point supports. The thickness of the additional part is
extremely thinner than that of the original part. The
boundary conditions along the original hypotenuse
are enforced by the appropriate use of some inter-
mediate point supports. Therefore, the free vibration
characteristics of any right triangular plate are ob-
tained by analyzing an equivalent rectangular plate
with non-uniform thickness. The characteristic equa-
tion of the free vibration is obtained by using Green
function, which is the discrete-form solution 14) for
the deflection of the plate with a concentrated load at
each discrete point. The frequencies and their mode
shapes are shown for some triangular plates with vari-
ous aspect-ratio and variable thickness. The efficiency
and accuracy of the numerical solutions by the present
method are investigated.

2. Discrete Green Function

The coordinate system for an anisotropic plate used
in the present study is shown in Fig. 1. The xyz
coordinate system is assumed to have its origin at the
corner of the middle plane of the plate. The surfaces
of the plate are at z = ±h/2 and h is the thickness
of the plate. 1-, 2- and 3-directions are principal axes
in the longitudinal, transverse and normal directions,
respectively. The differential equations of the plate
with a concentrated load P at point (xq, yr) and point
support at each discrete point (xc, yd) are:

∂Qx

∂x
+
∂Qy

∂y
+ Pδ(x− xq)δ(y − yr)

+
m∑

c=0

n∑
d=0

P 1cdδ(x− xc)δ(y − yd) = 0 (1)

∂Mx

∂x
+
∂Mxy

∂y
−Qx

+
m∑

c=0

n∑
d=0

P 2cdδ(x− xc)δ(y − yd) = 0 (2)

x = a

y = b
P

(xq, yr)

(xc, yd)

point support
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Fig. 1 Coordinate system for an anisotropic rectan-
gular plate

∂My

∂y
+
∂Mxy

∂x
−Qy

−
m∑

c=0

n∑
d=0

P 3cdδ(x− xc)δ(y − yd) = 0 (3)

Mx = D11
∂θx
∂x

+D12
∂θy
∂y
+D16

(
∂θx
∂y

+
∂θy
∂x

)
(4)

My = D12
∂θx
∂x

+D22
∂θy
∂y
+D26

(
∂θx
∂y

+
∂θy
∂x

)
(5)

Mxy = D16
∂θx
∂x

+D26
∂θy
∂y

+D66

(
∂θx
∂y

+
∂θy
∂x

)
(6)

Qy = kA44

(
∂w

∂y
+ θy

)
+ kA45

(
∂w

∂x
+ θx

)
(7)

Qx = kA45

(
∂w

∂y
+ θy

)
+ kA55

(
∂w

∂x
+ θx

)
(8)

where Qx and Qy are the transverse shear forces, Mx

and My are the bending moments, Mxy is the twist-
ing moment, P 1cd is vertical reaction, P 2cd, P 3cd are
moment reactions around x-, y-axes, k = 5/6 is the
shear correction factor, δ(x − xq) and δ(y − yr) are
Dirac’s delta functions, Aij is the extensional stiffness
(i, j = 4, 5), Dij is the bending stiffness (i, j = 1, 2, 6).
Aij , Dij can be obtained by the following expres-

sions.

Aij = Qijh, Dij =
1
12
Qijh

3

Q11 = Q11c
4 + 2(Q12 + 2Q66)c2s2 +Q22s

4

Q12 = Q12(c4 + s4) + (Q11 +Q22 − 4Q66)c2s2,

Q16 = (Q11 −Q12 − 2Q66)c3s− (Q22 −Q12 − 2Q66)cs3

Q22 = Q11s
4 + 2(Q12 + 2Q66)c2s2 +Q22c

4

Q26 = (Q11 −Q12 − 2Q66)cs3 − (Q22 −Q12 − 2Q66)c3s

Q66 = (Q11 +Q22 − 2Q12 − 2Q66)c2s2 +Q66(c4 + s4)

Q44 = Q44c
2 +Q55s

2, Q45 = (Q55 −Q44)cs

Q55 = Q44s
2 +Q55c

2, c = cos θ, s = sin θ

Q11 =
E1

1− ν12ν21 , Q22 =
E2

1− ν12ν21
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Q12 =
ν12E2

1− ν12ν21 , Q44 = G23

Q55 = G31, Q66 = G12

where E1 is the axial modulus in the 1-direction, E2

is the axial modulus in the 2-direction, ν12 is the Pois-
son’s ratio associated with loading in the 1-direction
and strain in the 2-direction, ν21 is the Poisson’s ratio
associated with loading in the 2-direction and strain in
the 1-direction, G12, G23 and G31 are the shear mod-
uli in 1-2, 2-3 and 1-3 planes.
By using the non-dimensional expressions

[X1, X2] =
a2

D0(1− ν12ν21) [Qy, Qx]

[X3, X4, X5] =
a

D0(1− ν12ν21) [Mxy,My,Mx]

[X6, X7, X8] =
[
θy, θx,

w

a

]
, [η, ζ, ξ] =

[x
a
,
y

b
,
z

h

]

whereD0 = E2h
3
0/12(1−ν12ν21) is the standard bend-

ing rigidity, h0 is the standard thickness of the plate.
The differential Eqs. (1) ∼ (8) can be rewritten as

8∑
s=1

{F1ts
∂Xs

∂ζ
+ F2ts

∂Xs

∂η
+ F3tsXs}

+
3∑

f=1

m∑
c=0

n∑
d=0

Pfcdδ(η − ηc)δ(ζ − ζd)δft

+Pδ(η − ηq)δ(ζ − ζr)δ1t = 0 (t = 1 ∼ 8) (9)

where [P,P1cd, P2cd, P3cd] = [Pa, P 1cda, P 2cd,−P 3cd]
/D0(1 − ν12ν21); δft is Kronecker’s delta, F1ts, F2ts

and F3ts are given in Appendix A.
By dividing a rectangular plate vertically into m

equal-length parts and horizontally into n equal-
length parts as shown in Fig. 2, the plate can be
considered as a group of discrete points which are
the intersections of the (m+1)-vertical and (n+1)-
horizontal dividing lines. In this paper, the rectangu-
lar area, 0 ≤ η ≤ ηi, 0 ≤ ζ ≤ ζj , corresponding to the
arbitrary intersection (i, j) as shown in Fig. 2 is de-
noted as the area [i, j], the intersection (i, j) denoted
by © is called the main point of the area [i, j], the
intersections denoted by ◦ are called the inner depen-
dent points of the area, and the intersections denoted
by • are called the boundary dependent points of the
area.

By integrating the equation (9) over the area
[i, j], the following integral equation is obtained.

8∑
s=1

{
F1ts

∫ ηi

0

[Xs(η, ζj)−Xs(η, 0)]dη

+F2ts

∫ ζj

0

[Xs(ηi, ζ)−Xs(0, ζ)]dζ

a

b

. . .

...
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2

2

3
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j
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Fig. 2 Discrete points on a rectangular plate

+F3ts

∫ ηi

0

∫ ζj

0

Xs(η, ζ)dηdζ
}

+
3∑

f=1

m∑
c=0

n∑
d=0

Pfcdu(η − ηc)u(ζ − ζd)δft

+Pu(η − ηq)u(ζ − ζr)δ1t = 0 (10)

where u(η− ηc), u(ζ− ζd), u(η− ηq) and u(ζ− ζr) are
the unit step functions.
Next, by applying the numerical integration

method, the simultaneous equation for the unknown
quantities Xsij = Xs(ηi, ζj) at the main point (i, j)
of the area [i, j] is obtained as follows.

8∑
s=1

{
F1ts

i∑
k=0

βik(Xskj −Xsk0)

+F2ts

j∑
l=0

βjl(Xsil −Xs0l)

+F3ts

i∑
k=0

j∑
l=0

βikβjlXskl

}

+
3∑

f=1

m∑
c=0

n∑
d=0

Pfcduicujdδft + Puiqujrδ1t = 0

(11)

where βik = αik/m, βjl = αjl/n, αik = 1 − (δ0k +
δik)/2, αjl = 1− (δ0l + δjl)/2, t = 1 ∼ 8, i = 1 ∼ m,
j = 1 ∼ n.
The solutionXpij of the simultaneous equation (11)

is

Xpij =
8∑

t=1

{ i∑
k=0

βikApt[Xtk0 −Xtkj(1− δik)]

+
j∑

l=0

βjlBpt[Xt0l −Xtil(1− δjl)]

+
i∑

k=0

j∑
l=0

βikβjlCptklXtkl(1− δikδjl)
}
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−
3∑

f=1

m∑
c=0

n∑
d=0

γpfPfcduicujd −Ap1Puiqujr

(12)

where p = 1 ∼ 8, Apt, Bpt, Cptkl and γpf are given in
Appendix B.
In the equation (12), the quantity Xpij at the main

point (i, j) of the area [i, j] is related to the quanti-
ties Xtk0 and Xt0l at the boundary dependent points
of the area and the quantities Xtkj , Xtil and Xtkl

at the inner dependent points of the area. With the
spreading of the area [i, j] according to the regular
order as [1, 1], [1, 2], · · ·, [1, n], [2, 1], [2, 2], · · ·, [2, n],
· · ·, [m, 1], [m, 2], · · ·, [m,n], a main point of a smaller
area becomes one of the inner dependent points of the
following larger areas. Whenever the quantity Xpij

at the main point (i, j) is obtained by using the equa-
tion (12) in the above mentioned order, the quantities
Xtkj , Xtil and Xtkl at the inner dependent points of
the following larger areas can be eliminated by sub-
stituting the obtained results into the corresponding
terms of the right side of equation (12). By repeating
this process, the equation Xpij at the main point is
only related to the quantitiesXrk0 (r=1,3,4,6,7,8) and
Xs0l (s=2,3,5,6,7,8), which are six independent quan-
tities at the each boundary dependent point along the
horizontal axis and the vertical axis in Fig. 2, respec-
tively. The result is

Xpij =
6∑

d=1

{ i∑
f=0

apijfdXrf0 +
j∑

g=0

bpijgdXs0g

}

+
3∑

f=1

m∑
c=0

n∑
d=0

qfpijcdPfcd + qpijP (13)

where apijfd, bpijgd, qfpijcd and qpij are given in Ap-
pendix C.
The equation (13) gives the discrete solution of the

fundamental differential equation (9) of the bending
problem of a plate under a concentrated load, and the
discrete Green function is chosen as X8ij/[Pa/D0(1−
ν12ν21].

3. Equivalent Rectangular Plate of a

Triangular Plate

An idea of equivalent rectangular plate is intro-
duced to solve the bending problem of anisotropic
right triangular plates. A right triangular plate is
quite different from uniform rectangular plates, but
it can be translated into equivalent rectangular plates
with non-uniform thickness (shown in Fig. 3). In

hhh

hhh
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CC
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SS

S S

S

F

F

F

F

F

F

F

F

F

a

b

ht � h ht � hht � h

Fixed hypotenuse Simply supported
hypotenuse

Free hypotenuse

Fig. 3 Triangular plates and their equivalent rect-
angular plates (C: clamped edge; S: simply
supported edge; F: free edge)

order to ensure half part of the equivalent rectan-
gular plate has the same boundary and load condi-
tions as the original triangular plate, some point sup-
ports shown by (· · · · · ·) at discrete points along the
hypotenuse are used to enforce the boundary condi-
tions along the original hypotenuse, the another half
part of the equivalent rectangular plate with two free
edges has very thin thickness and there is no load on
it. The values of three reactions P1cd, P2cd, P3cd at
each point support can be determined by the following
conditions.
θt = θn = w = 0, if original hypotenuse is fixed.
Mn = θt = w = 0, if original hypotenuse is simply

supported.
P1cd = P2cd = P3cd = 0, if original hypotenuse is free.
The conditions θt = θn = w = 0 mean that the

slope around the tangential axis of the line of point
supports, the slope around the normal axis of the line
of point supports and the deflection at each point sup-
port are zero. The conditionsMn = θt = w = 0 mean
that the bending moment around the tangential axis
of the line of point supports, the slope around the
normal axis of the line of point supports and the de-
flection at point support are zero. The conditions
P1cd = P2cd = P3cd = 0 mean that there is no point
support along the hypotenuse.
The thickness of the actual part of original right

triangular plate is expressed by h, the thickness of
additional part of the equivalent rectangular plate is
expressed as ht and the thickness at a point on the
border line between the actual part and the additional
part of the equivalent rectangular plate is taken as
(h+ht)/2. The fixed, simply supported and free edges
are denoted by the symbols C, S, F, respectively and
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shown by thick solid line , solid line and
dotted line . The first symbol indicates the con-
ditions at x = 0, the second at y = 0 and the third at
the hypotenuse.

4. Characteristic Equation of Free Vi-

bration of Rectangular Plate with

Non-uniform Thickness

By applying the Green function w(x0, y0, x, y)/P
which is the displacement at a point (x0, y0) of a plate
with a concentrated load P at a point (x, y) and point
support at each discrete point (xc, yd), the displace-
ment amplitude ŵ(x0, y0) at a point (x0, y0) of the
rectangular plate during the free vibration is given as

ŵ(x0, y0) =
∫ b

0

∫ a

0

ρhω2ŵ(x, y)[w(x0, y0, x, y)/P ]dxdy

(14)

where ρ is the mass density of the plate material.
The non-dimensional expressions are used as,

λ4 =
ρ0h0ω

2a4

D0(1− ν12ν21) , H(η, ζ) =
ρ(x, y)
ρ0

h(x, y)
h0

W (η, ζ) =
ŵ(x, y)
a

G(η0, ζ0, η, ζ) =
w(x0, y0, x, y)

a

D0(1− ν12ν21)
Pa

here ρ0 is the standard mass density.
By using the numerical integration method, equa-

tion (14) is discretely expressed as

kWkl =
m∑

i=0

n∑
j=0

βmiβnjHijGklijWij , k = 1/(µλ4)

(15)

From equation (15) homogeneous linear equations in
(m+1)×(n+1) unknownsW00,W01,· · ·,W0n,W10,W11

· · ·,W1n,· · · Wm0,Wm1,· · ·,Wmn are obtained as
m∑

i=0

n∑
j=0

(βmiβnjHijGklij − kδikδjl)Wij = 0

(k = 0, 1, · · · ,m, l = 0, 1, · · · , n) (16)

The characteristic equation of the free vibration of
a rectangular plate with variable thickness is obtained
from the equation (16) as follows.




K00 K01 K02 . . . K0m

K10 K11 K12 . . . K1m

K20 K21 K22 . . . K2m

...
...

...
. . .

...
Km0 Km1 Km2 . . . Kmm



= 0 (17)

where

Kij = βmj




βn0Hj0Gi0j0 − kδij βn1Hj1Gi0j1

βn0Hj0Gi1j0 βn1Hj1Gi1j1 − kδij
βn0Hj0Gi2j0 βn1Hj1Gi2j1

...
...

βn0Hj0Ginj0 βn1Hj1Ginj1

βn2Hj2Gi0j2 · · · βnnHjnGi0jn

βn2Hj2Gi1j2 · · · βnnHjnGi1jn

βn2Hj2Gi2j2 − kδij · · · βnnHjnGi2jn

...
. . .

...
βn2Hj2Ginj2 · · · βnnHjnGinjn − kδij




5. Numerical Results

The results for the isotropic and anisotropic right
triangular plates are given to show the convergence
and accuracy of the numerical solution obtained by
the present method. For the isotropic plate, the
Poisson’s ratio ν = 0.3. For the anisotropic plate,
the graphite/epoxy material is used. Its properties
are given as E1/E2 = 17.57, G12/E2 = G13/E2 =
0.7, G23/E2 = 0.5, ν12 = 0.28.

5.1 Convergence of Solution

In order to examine the convergence, numerical cal-
culation is carried out by varying the number of divi-
sionsm and n. The lowest eight natural frequency pa-
rameters of isotropic isosceles CFF plate are shown in
Fig. 4. Fig. 5 is used to determine the suitable thick-
ness ratio h/ht of the original and additional parts.
Fig. 6 and Fig. 7 show the convergence for the or-
thotropic CFF plate. It can be noticed that conver-
gent results can be obtained for CFF plate when m
and n are not smaller than 10 and it is sufficient to set
the thickness ratio h/ht ≥ 5. So, for CFF plate, the
thickness ratio h/ht = 5 is used and the convergent
values of frequency parameter are obtained by using
Richardson’s extrapolation formula for two cases of
divisional numbersm (=n) of 10 and 12. By the same
method, for SSC and SSS plates, the thickness ratio
h/ht = 5 is also used but the convergent values of
frequency parameter are obtained by using Richard-
son’s extrapolation formula for two cases of divisional
numbers m (=n) of 14 and 16.

5.2 Accuracy of Solution

To investigate the accuracy of the results obtained
by the present method, frequencies and their mode
shapes of isotropic and anisotropic triangular plates
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Fig. 4 Natural frequency parameter λ versus the
number of divison m(= n) for isotropic CFF
isosceles right triangular plate
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Fig. 5 Natural frequency parameter λ versus the
thickness ratio h/ht for isotropic CFF isosce-
les right triangular plate
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Fig. 6 Natural frequency parameter λ versus the
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tio h/ht for orthotropic CFF isosceles right
triangular plate

Table 1 Natural frequency parameter λ for isotropic
CFF isosceles right triangular plate

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.498 4.860 5.850 7.466 9.059
12 × 12 2.507 4.875 5.833 7.502 8.997
Ex. 2.527 4.908 5.796 7.585 8.856
Kim 7) 2.542 4.959 5.852 7.672 8.951
Lam 11) 2.540 4.957 5.858 7.873 −

Ex.: Richardson’s extrapolation results.

Table 2 Natural frequency parameter λ for isotropic
SSC isosceles right triangular plate

Mode sequence number
References 1 2 3 4 5
Present
14 × 14 8.667 12.132 13.541 16.112 17.143
16 × 16 8.590 11.924 13.355 15.661 16.727
Ex. 8.340 11.244 12.747 14.188 15.368
Kim 7) 8.305 11.267 12.726 14.378 15.575

are presented. Plates with uniform and variable thick-
ness are analyzed for two cases of thin and moderate
thickness.

(1) Right Triangular Plate with Uniform
Thickness

Table1 ∼ Table 4 give the numerical solutions for
the lowest five frequencies of isotropic CFF, SSC, SSS
and orthotropic CFF plates (b/a = 1). The thick-
ness ratio h/a is equal to 0.01. The mode shapes of
isotropic CFF, SSC and orthotropic CFF plates with
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Table 3 Natural frequency parameter λ for isotropic
SSS isosceles right triangular plate

Mode sequence number
References 1 2 3 4 5
Present
14 × 14 7.430 10.757 12.221 14.534 15.628
16 × 16 7.384 10.620 12.086 14.213 15.325
Ex. 7.234 10.175 11.646 13.165 14.333
Kim 7) 7.193 10.174 11.608 13.314 14.490

Table 4 Natural frequency parameter λ for or-
thotropic CFF isosceles right triangular
plate

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.631 7.236 10.355 10.075 13.266
12 × 12 4.630 7.250 10.331 11.042 13.227
Ex. 4.628 7.283 10.277 10.967 13.139
Kim 7) 4.659 7.350 10.398 11.091 13.313

Table 5 Natural frequency parameter λ for isotropic
CFF right triangular plate (b/a = 1.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.432 4.298 5.614 6.283 8.006
12 × 12 2.437 4.308 5.589 6.311 7.992
Ex. 2.447 4.333 5.532 6.374 7.959
Kim 7) 2.464 4.372 5.588 6.449 8.072

Table 6 Natural frequency parameter λ for or-
thotropic CFF right triangular plate (b/a =
1.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.486 6.459 8.768 10.765 11.128
12 × 12 4.483 6.457 8.732 10.652 11.036
Ex. 4.476 6.454 8.652 10.396 10.826
Kim 7) 4.501 6.506 8.730 10.561 10.896

aspect ratio b/a = 1 are shown in Fig. 8. The mode
shapes of SSS is the same as those of SSC. Table 5
and Table 6 give the natural frequency parameters of

1st 2nd 3rd 4th 5th

(b)  isotropic   SSC

(a)  isotropic    CFF

1st 2nd 3rd 4th 5th

(c)  orthotrpic   CFF

1st 2nd 3rd 4th 5th

Fig. 8 Nodal patterns for isosceles right triangular
plate

1st 2nd 3rd 5th4th

(a)  isotropic   CFF

(b)  orthotropic   CFF

1st 2nd 3rd 4th 5th

Fig. 9 Nodal patterns for CFF right triangular plate
(b/a = 1.5)

isotropic and orthotropic CFF plates with aspect ra-
tio b/a = 1.5, respectively. The mode shapes of them
are shown in Fig. 9. The present results are com-
pared with those obtained by Kim and Dickinson 7)

and Lam, Liew and Chow 11). They are in close agree-
ment.

Fig. 10 ∼ Fig. 12 show that the variation of the
lowest three frequencies of isosceles right CFF, SSC
and SSS plates with fibre orientation. As the angle
of fibre orientation θ increases from 0o to 45o, the
frequency decreases for CFF plate but increases for
SSC and SSS plates. As θ increases from 45o to 90o,
the frequency decreases for all the plates. The first
frequency reaches a maximum at θ = 0o for CFF plate
and θ = 45o for SSC and SSS plates.

(2) Right Triangular Plate with Variable
Thickness

In this paper, for the plate with variable thickness,
its thickness varies linearly along the x-axis according
to the equation h(x, y) = h0(1− αx/a).
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Fig. 10 The lowest three frequencies versus the fibre
orientation for anisotropic CFF plate
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Fig. 11 The lowest three frequencies versus the fibre
orientation for anisotropic SSC plate
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Fig. 12 The lowest three frequencies versus the fibre
orientation for anisotropic SSS plate

Table 7 Natural frequency parameter λ for isotropic
CFF isosceles right triangular plate with
variable thickness (α = 0.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.471 4.520 5.340 6.812 8.098
12 × 12 2.486 4.529 5.339 6.816 8.023
Ex. 2.519 4.549 5.337 6.826 7.854
Liew 9) 2.582 4.636 5.479 6.906 8.002

Table 8 Natural frequency parameter λ for isotropic
CFF isosceles right triangular plate with
variable thickness (α = 0.5, b/a = 1.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.401 4.039 5.050 5.809 7.292
12 × 12 2.411 4.050 5.033 5.816 7.251
Ex. 2.436 4.076 4.996 5.832 7.157

Table 9 Natural frequency parameter λ for or-
thotropic CFF isosceles right triangular
plate with variable thickness (α = 0.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.575 6.873 9.520 10.008 12.164
12 × 12 4.588 6.891 9.472 9.994 12.091
Ex. 4.616 6.931 9.361 9.963 11.922

Table 10 Natural frequency parameter λ for or-
thotropic CFF right triangular plate with
variable thickness (α = 0.5, b/a = 1.5)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.442 6.145 8.211 9.585 10.384
12 × 12 4.450 6.153 8.157 9.517 10.223
Ex. 4.470 6.173 8.036 9.361 9.859

Table 7 ∼ Table 10 give the natural frequency pa-
rameters of CFF right triangular plate with variable
thickness (α = 0.5) for aspect ratio b/a = 1 and 1.5.
The thickness ratio h0/a is equal to 0.01. Isotropic

8
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Fig. 13 Nodal patterns for isotropic CFF right tri-
angular plate with variable thickness (α =
0.5)
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(a) b/a = 1
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Fig. 14 Nodal patterns for orthotropic CFF right
triangular plate with variable thickness (α =
0.5)

and orthotropic cases are considered. The results
of isosceles right triangular plate for isotropic case
are compared with those obtained by Liew, Lim and
Lim 9) and it shows that they agree closely. The five
mode shapes of these plates are shown in Fig. 13 and
Fig. 14.

(3) CFF Right Triangular Plate with Moder-
ate Thickness

Numerical solutions for the lowest five frequencies
of isotropic and orthotropic CFF moderately thick
plates with uniform and variable thickness (α = 0.4)
are shown in Table 11 ∼ Table 14. In this analy-
sis, the aspect ratio b/a = 1 and h0/a = 0.006 are
used. By comparing the present results with those of
McGee 10), it can be seen that a close agreement has
been achieved. The mode shapes of these plates are
similar to those of the plates with thin thickness.

6. Conclusions

An approximate method has been used for the free
vibration of isotropic and orthotropic right triangular

Table 11 Natural frequency parameter λ for
isotropic CFF moderately thick triangu-
lar plate with uniform thickness

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.496 4.805 5.729 7.357 8.830
12 × 12 2.494 4.816 5.720 7.381 8.790
Ex. 2.487 4.841 5.700 7.433 8.697
McGee 10) 2.541 4.964 5.871 7.689 8.997

Table 12 Natural frequency parameter λ for
isotropic CFF moderately thick tri-
angular plate with variable thickness
(α = 0.4)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 2.477 4.562 5.364 6.879 8.165
12 × 12 2.487 4.575 5.353 6.904 8.137
Ex. 2.511 4.603 5.328 6.960 8.074
McGee 10) 2.569 4.713 5.580 7.095 8.242

Table 13 Natural frequency parameter λ for or-
thotropic CFF isosceles right triangular
plate with uniform thickness

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.561 7.006 9.907 10.368 12.409
12 × 12 4.552 7.023 9.818 10.362 12.384
Ex. 4.537 7.052 9.661 10.351 12.338

Table 14 Natural frequency parameter λ for or-
thotropic CFF isosceles right triangular
plate with variable thickness (α = 0.4)

Mode sequence number
References 1 2 3 4 5
Present
10 × 10 4.524 6.769 9.418 9.785 11.863
12 × 12 4.532 6.788 9.291 9.776 11.733
Ex. 4.546 6.822 9.066 9.760 11.501

plate with various aspect ratios and variable thick-
ness. An equivalent rectangular plate is used to re-
place the right triangular plate. Point supports are
introduced in the fundamental differential equations
and used to enforce the boundary condition along the

9



hypotenuse. Green function, which is the solution
for the deflection, is used to obtain the characteris-
tic equation of free vibration. Some frequency pa-
rameters and their mode shapes are shown in Tables
and Figures. It can be seen the boundary condition,
aspect ratio, the variation of thickness and the an-
gle of the fibre orientation have great effects on the
frequency parameters. Boundary condition also af-
fects the trend of the variation of the frequency with
fibre orientation. For the plates with different bound-
ary conditions, the angle of the fibre orientation at
which the first frequency reaches a maximum may be
quite different. The results by the present method
have been compared with those previously reported.
It shows that the present results have a good conver-
gence and satisfactory accuracy.
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Appendix A

F111 = F123 = F134 = 1,
F146 = D12, F147 = D16

F156 = D22, F157 = F166 = D26,

F167 = D66, F178 = kA44 F188 = kA45

F212 = F225 = F233 = µ, F246 = F267 = µD16,

F247 = µD11 F256 = µD26, F257 = µ,D12,
F266 = µD66 F278 = F30907 = F31006 = µkA45,

F288 = F387 = µkA55,

F322 = F331 = −µ, F345 = F354 = F363 = −µD
F371 = F382 = −µDT
otherFkts = 0
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Appendix B

Ap1 = γp1, Ap2 = 0, Ap3 = γp2,
Ap4 = γp3, Ap5 = 0,
Ap6 = D12γp4 +D22γp5 +D26γp6,
Ap7 = D16γp06 +D26γp07 +D66γp08,
Ap8 = k(A44γp7 +A45γp8)
Bp1 = 0, Bp2 = µγp1,Bp3 = µγp3,
Bp4 = 0, Bp5 = µγp2,
Bp6 = µ(D16γp4 +D26γp5 +D66γp6),
Bp7 = µ(D11γp4 +D12γp5 +D16γp6),
Bp8 = µk(A45γp7 +A55γp8),
Cp1kl = µγp3 + µDT klγp7,
Cp2kl = µγp2 + µDT klγp8,
Cp3kl = µDklγp6,
Cp4kl = µDklγp7,
Cp5kl = µDklγp4,
Cp6kl = −µk(A44γp7 +A45γp8,
Cp7kl = −µk(A45γp7 +A55γp8),
Cp8kl = 0 [γpt] = [ρtp]−1,
ρ11 = βii, ρ12 = −µβjj , ρ22 = −µβij ,
ρ23 = βii, ρ25 = µβjj , ρ31 = −µβij ,
ρ33 = µβjj , ρ34 = βii, ρ45 = −µβijDij ,
ρ46 = D12βii + µD16βjj , ρ47 = D16βii + µD11βjj ,
ρ54 = −µβijDij , ρ56 = D22βii + µD26βjj ,
ρ57 = D26βii + µD12βjj , ρ63 = −µβijDij ,
ρ666 = D26βii + µD66βjj , ρ67 = D66βii + µD16βjj ,
ρ71 = −µβijDij , ρ76 = µkA44βij ,
ρ77 = µkA45βij , ρ78 = k(A44βii + µA45βjj),
ρ82 = −µβijDij , ρ86 = µkA45βij ,
ρ87 = µkA55βij , ρ88 = k(A45βii + µA55βjj),
other ρtp = 0

Appendix C

a1i0i01 = a3i0i02 = a4i0i03 = 1
a6i0i04 = a7i0i05 = a8i0i06 = 1,
b20jj01 = b30jj02 = b50jj03 = 1
b60jj04 = b70jj05 = b80jj06 = 1,
b300002 = 0

apijfd =
13∑

t=1

{ i∑
k=0

βikApt[atk0fd − atkjfd(1− δki)]

+
j∑

l=0

βjlBpt[at0lfd − atilfd(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptklatklfd(1− δkiδlj)
}

bpijfd =
13∑

t=1

{ i∑
k=0

βikApt[btk0gd − btkjgd(1− δki)]

+
j∑

l=0

βjlBpt[bt0lgd − btilgd(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptklbtklgd(1− δkiδlj)
}

qfpijcd =
8∑

e=1

{ i∑
k=0

βikApe[qfek0cd − qfekjcd(1− δki)]

+
j∑

l=0

βjlBpe[qfe0lcd − qfeilcd(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCpeklqfeklcd(1− δkiδlj)
}

− γpfuikujrufkl

qpij =
13∑

t=1

{ i∑
k=0

βikApt[qtk0 − qtkj(1− δki)]

+
j∑

l=0

βjlBpt[qt0l − qtil(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptkl −Ap1uiqujr
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