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Abstract Solutions, based on principle of collocating the

equations of motion at Chebyshev zeroes, are presented for

the free vibration analysis of laminated, polar orthotropic,

circular and annular plates. The analysis is restricted to

axisymmetric free vibration of the plates and employs first-

order shear deformation theory for the displacement field,

in terms of midplane displacements, u, a and w. The

eigenvalue problem is defined in terms of three equations

of motion in terms of the radial co-ordinate r, the radial

variation of the displacements being represented in poly-

nomial series, with appropriate boundary conditions.

Numerical results are presented to show the validity and

accuracy of the proposed method. Results of parametric

studies for laminated polar orthotropic circular and annular

plates with different boundary conditions, orthotropic ra-

tios, lamination sequences, number of layers and shear

deformation are also presented.

Keywords Free vibration � Chebyshev collocation

method � First-order shear deformation theory �
Laminated composites

List of symbols

r, h, z Cylindrical co-ordinates

t Time

U Inplane displacement in r direction

V Inplane displacement in h direction

W Inplane displacement in z direction

a1 Rotation in r direction

a2 Rotation in h direction

rr, rh, rz Normal stresses along principal material

directions

srh, shz, srz Shear stresses along principal material

directions

er, eh, ez Normal strains along principal material

directions

crh, chz, crz Shearing strains along principal material

directions

e0r ; e
0
h; c

0
rh

Midplane strains of a laminate

jr, jh, jrh Midplane curvatures of a laminate

Cij Plane-stress reduced lamina stiffnesses

a, b Outer and inner radii of the laminated plate

h Total thickness of the laminate

Z Distance of lamina from midplane

Nr, Nh, Nrh Inplane mechanical stress resultants

Mr, Mh, Mrh Moment mechanical stress resultants

Qr, Qh Transverse shear stress resultants

Aij Extension stiffness

Bij Bending–extension coupling stiffness

Dij Bending stiffness

N Number of collocation points

K
2 Shear correction factor

Er, Eh Modulus of elasticity

E, t Young’s modulus and Poisson’s ratio of an

isotropic material

D Bending stiffness of an isotropic material

Grh, Grz Shear modulus

trh Poisson’s ratio of the plate material

n Number of layers
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n Nondimensional radial co-ordinate

U, W, a Nondimensional displacement components

q Transverse load intensity

p Nondimensional load intensity

q Density

k Nondimensional frequency parameter

x Axisymmetric frequency parameter

C Clamped boundary condition

S Simply supported boundary condition

[K], [M] Stiffness and mass matrices of the laminate

Tr(x) rth-order Chebyshev polynomial

Tr
*(n) The shifted Chebyshev polynomial in the

specified range

Introduction

Fiber-reinforced composite structures are often subjected

to dynamic loading caused by time-dependent loads caus-

ing vibrations or wave propagation. Then, the response of

these structures under time-varying loads depends not only

on the distribution of the stiffness of material in the

structure, but also on the distribution of mass inertia. The

analyst has to then consider the effect of inertia forces set

up within the structure at any instant. The studies of flex-

ural vibrations of plates subjected to different boundary

conditions have thus received considerable interest because

of their technological importance, and also give a good

idea of response characteristics of the structure under dy-

namic loads.

Circular and annular plates are commonly used struc-

tural components in aerospace, civil, mechanical, elec-

tronic and nuclear engineering applications. In industrial

situations, it is often required to predict the free vibration

characteristics of these plates. For the free vibration ana-

lysis of various plates, there are a number of solution

techniques, such as analytical methods, energy methods,

finite difference methods and finite element methods.

Analytical solutions form an important basis for compar-

ison and verification of results obtained by numerical

methods such as the finite element method. Among the

different m is also the Chebyshev collocation method.

There have been a number of investigations of the free

vibration of homogeneous isotropic circular and annular

plates such as Han and Liew (1999), Haterbouch and Be-

namar (2005), Liew et al. (1997), Liew and Yang (1999),

Liew and Yang (2000), Selmane and Lakis (1999) and

Zhou et al. (2003). There are works employing solutions

using differential quadrature and generalized differential

quadrature methods for the study of this class of problems

and so also a few finite element solutions for the analysis of

laminated plates and shells such as Han and Liew (1997),

Lin and Tseng (1998), Ding and Xu (2000), Liew and Liu

(2000), Wu et al. (2002), Tornabene et al. (2009) and

Hosseini-Hashemi et al. (2010). In a recent paper (Xiang

et al. 2014), the equations of motion of composite

laminated annular plates, conical and cylindrical shells,

with various boundary conditions based on the first-order

shear deformation theory, have been solved for natural

frequencies using an innovative, Haar wavelet discretiza-

tion method. However, there are not many studies showing

use of collocation at Chebyshev zeroes as an effective

solution methodology for the determination of natural

frequencies of laminated circular and annular plates.

In the present work, it is proposed to study the free

vibration characteristics of laminated polar orthotropic

circular and annular plates by Chebyshev collocation

method. The possible application of orthogonal collocation

to boundary value problems has been discussed by Vil-

ladsen and Stewart as early as (1967). Carey and Finlayson

(1974) have explored the concept of orthogonal collocation

in finite element analysis. The method has been used earlier

for solving problems of free vibration analysis and large

amplitude deflection analysis of isotropic and orthotropic

spherical shells—static analysis (Dumir et al. 1984; Nath

and Jain 1986). Dumir et al. (2001) have presented

geometrically nonlinear analysis of a moderately thick,

laminated composite annular plate subjected to uniformly

distributed ring loads. Narasimhan (1992) has analyzed the

problem of dynamic response analysis of laminated sphe-

rical shells using the same method. Herein, the possible

application of the methodology for solution of axisym-

metric free vibration response of circular and annular

(polar) orthotropic plates has been illustrated.

In the present research, the reference plane displace-

ments u, a and w are expanded in polynomial series and

then orthogonal point collocation method is used to dis-

cretise the governing equations. The eigenvalue problem is

derived from the equations of motion, neglecting the rotary

inertia and inplane inertia terms. To demonstrate the con-

vergence of the method, numerical results are presented for

clamped and simply supported isotropic and polar

orthotropic circular and annular plates. The validity of the

solution methodology adopted is confirmed by comparing

nondimensional frequencies for isotropic and polar

orthotropic plates obtained from the proposed solution with

data obtained from open literature. It is observed that the

present method is efficient in obtaining the free vibration

frequencies and mode shapes of the laminated circular and

annular plates made of composite materials. Parametric

130 Int J Adv Struct Eng (2015) 7:129–141

123



studies are also conducted and it is concluded that free

vibration frequencies are dependent not only on the

boundary conditions, but also on the parameters such as

fiber orientation, lamination sequence and hole diameter.

Methods

Mathematical formulation

The laminated plate of constant thickness h is composed of

polar orthotropic laminae stacked in any arbitrary se-

quence, but with their fiber reinforcement aligned either in

radial or circumferential directions only is considered.

Polar co-ordinates (r, h, z) are used for plate co-ordinates as

shown in Fig. 1, where u, v, w denote the displacements of

any point of the plate in the corresponding r, h, z directions.

First-order shear deformation theory is employed in the

present study and the displacement field is assumed to be of

the form

uðr; h; zÞ ¼ u0ðr; hÞ þ za1ðr; hÞ;

vðr; h; zÞ ¼ v0ðr; hÞ þ za2ðr; hÞ;

wðr; h; zÞ ¼ w0ðr; hÞ ð1Þ

where u0, v0, w0 denote the displacements of any point on

the middle surface and a1, a2 are the rotations of the normal

to the midplane about h, r axes, respectively.

The linear strain displacement relations for the general

motion of a point on the reference surface of laminated

orthotropic circular plates are given by

er ¼ e0r þ z � jr; eh ¼ e0h þ z � jh; crh ¼ c0rh þ z � jrh;

crz ¼ c0rz; chz ¼ c0hz ð2Þ

where the reference surface strains and curvatures are

given by

e0r ¼
ou0

or
; e0h ¼

1

r
�

ov0

oh
þ u0

� �

c0rh ¼
1

r
�

ou0

oh
� v0

� �

þ
ov0

or
;

c0rz ¼ a1 þ
ow

or
; c0hz ¼ a2 þ

1

r
�

ow

oh

� �

jr ¼
oa1

or
; jh ¼

1

r
�

oa2

oh
þ a1

� �

;

jrh ¼
1

r
�

oa1

oh
� a2

� �

þ
oa2

or
ð3Þ

According to the shear deformation theory, the consti-

tutive equations for the kth layer of a polar orthotropic

laminated plate can be written in the following form in

polar co-ordinates

rr

rh

srh

8

>

<

>

:

9

>

=

>

;

ðkÞ

¼

C11 C12 0

C12 C22 0

0 0 C66

2

6

4

3

7

5

ðkÞ
er

eh

crh

8

>

<

>

:

9

>

=

>

;

ðkÞ

;

srz

shz

� �ðkÞ

¼
C44 0

0 C55

� �ðkÞ
crz

chz

� �ðkÞ

; ð4Þ

where the elastic constants are expressed in terms of ma-

terial constants of the lamina in the plate co-ordinates as

C11 ¼
Er

1� trhthr
C12 ¼

trhEh

1� trhthr
¼

thrEr

1� trhthr

C22 ¼
Eh

1� trhthr

C44 ¼ Grz; C55 ¼ Ghz; C66 ¼ Grh

ð5Þ

where Er and Eh are Young’s moduli of elasticity in r and h

directions. trh and thr are Poisson’s ratios. Grh, Ghz and Grz

are the shear moduli in the respective planes.

The stress resultants acting on a laminate are obtained

as:

Nr Mr

Nh Mh

Nrh Mrh

2

6

4

3

7

5
¼

Z

h=2

�h=2

rr

rh

srh

8

>

<

>

:

9

>

=

>

;

ð1; zÞdz

¼
X

n

k¼1

Z

zk

zk�1

rr

rh

srh

8

>

<

>

:

9

>

=

>

;

ðkÞ

ð1;zÞ dz;

Qr

Qh

� �

¼ K2

Z

h=2

�h=2

srz

shz

� �

dz ¼ K2
X

n

k¼1

Z

zk

zk�1

srz

shz

� �ðkÞ

dz

ð6Þ

where z is the distance of the lamina from the middle plane.

w, z Layer number 

Middle surface 

h

1

2

n

r
a 

b

u 

v 

u, r

noitceSnalP

Fig. 1 Geometry of n-layered laminate
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The first-order shear deformation theory used herein

assumes a constant state of transverse shear strain through

the thickness of the plate and hence requires shear cor-

rection factors introduced to account for non-uniform dis-

tribution of the transverse shear strains through the

thickness of the plate. In Eq. (6), K2 is the Shear correction

factor introduced to account for non-uniform distribution

of the transverse shear strains through the thickness of the

plate, which is taken as p2/12.

Substituting the stress strain relations in the expressions

for stress resultants, we have

Since e0r ; e
0
h; c

0
rh; jr; jh; jrh; c

0
rz; c

0
hz are middle surface

strains and curvatures and not functions of z, they can be

taken out of the integration signs. Thus, the total plate

constitutive equations can be written as

where; Aij ¼
X

n

k¼1

ðCijÞ
ðkÞ

zk � zk�1ð Þ; i; j ¼ 1; 2; 6; 4; 5

Bij ¼
1

2

X

n

k¼1

ðCijÞ
ðkÞðz2k � z2k�1Þ; i; j ¼ 1; 2; 6

Dij ¼
1

3

X

n

k¼1

ðCijÞ
ðkÞðz3k � z3k�1Þ; i; j ¼ 1; 2; 6 ð9Þ

Aij is the extensional stiffness, Bij is the bending–ex-

tension coupling stiffness, Dij is the bending stiffness.

If the plates are subjected to transverse loads only, the

stress resultants and stress couples must satisfy the fol-

lowing equilibrium equations (Ravichandran 1989)

Nr

Nh

Nrh

8

>

<

>

:

9

>

=

>

;

¼
X

n

k¼1

C11 C12 0

C12 C22 0

0 0 C66

2

6

4

3

7

5

ðkÞ
Z

zk

zk�1

e
�

r

e
�

h

c
�

rh

8

>

<

>

:

9

>

=

>

;

dz þ

Z

zk

zk�1

jr

jh

jrh

8

>

<

>

:

9

>

=

>

;

z dz

8

>

<

>

:

9

>

=

>

;

Mr

Mh

Mrh

8

>

<

>

:

9

>

=

>

;

¼
X

n

k¼1

C11 C12 0

C12 C22 0

0 0 C66

2

6

4

3

7

5

ðkÞ
Z

zk

zk�1

e
�

r

e
�

h

c
�

rh

8

>

<

>

:

9

>

=

>

;

z dzþ

Z

zk

zk�1

jr

jh

jrh

8

>

<

>

:

9

>

=

>

;

z2dz

8

>

<

>

:

9

>

=

>

;

Qr

Qh

� �

¼ K2
X

n

k¼1

C44 0

0 C55

� �ðkÞ Z

zk

zk�1

c
�

rz

c
�

hz

( )

dz

8

<

:

9

=

;

:

ð7Þ

Nr

Nh

Nrh

Mr

Mh

Mrh

Qr

Qh

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

¼

A11 A12 0 B11 B12 0 0 0

A12 A22 0 B12 B22 0 0 0

0 0 A66 0 0 B66 0 0

B11 B12 0 D11 D12 0 0 0

B12 B22 0 D12 D22 0 0 0

0 0 B66 0 0 D66 0 0

0 0 0 0 0 0 K2A44 0

0 0 0 0 0 0 0 K2A55

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

e
�

r

e
�

h

c
�

rh

jr
jh
jrh
c
�

rz

c
�

hz

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

ð8Þ
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oNr

or
þ
1

r

oNrh

oh
þ
ðNr � NhÞ

r
¼ 0;

oQr

or
þ
1

r

oQh

oh
þ
Qr

r
¼ Io

o
2w

ot2
;
oMr

or

þ
1

r

oMrh

oh
þ
ðMr �MhÞ

r
¼ Qr

oNrh

or
þ
1

r

oNh

oh
þ 2

Nrh

r
¼ 0;

oMrh

or
þ
1

r

oMh

oh
þ 2

Mrh

r
¼ Qh

ð10Þ

where I0 ¼
X

n

k¼1

Z

hk

hk�1

qðkÞ dz

¼ qh
X

n

k¼1

qðkÞ

qh
hk � hk�1ð Þ

� �

¼ q hRm

ð11Þ

where Rm ¼
X

n

k¼1

qðkÞ

q h
hk � hk�1ð Þ

� �

ð11aÞ

and q is a reference density.

For axisymmetric case, the stresses and strains are in-

dependent of h and srh = szh = 0, v0 = 0, a2 = 0 and also
o

oh
ð Þ = 0. This also leads to Nrh = 0, Mrh = 0 and

Qh = 0.

Substituting for stress resultants and stress couples in

Eq. (10) in terms of strains and curvatures which in turn are

substituted in terms of displacements given by Eq. (3), the

equations take the form

A11

o
2u0

or2
þ

ou0

r � or

� �

� A22

u0

r2
þ B11

o
2a1

or2
þ

oa1

r � or

� �

� B22

a1

r2
¼ 0

B11

o
2u0

or2
þ

ou0

r � or

� �

� B22

u0

r2
þ D11

o
2a1

or2
þ

oa1

r � or

� �

� D22

a1

r2
¼ K2A44 a1 þ

ow

or

� �

K2A44

oa1

or
þ
a1

r
þ
o
2w

or2
þ

ow

r � or

� �

¼ I0
o
2w

o t2
: ð12Þ

The following dimensionless parameters are introduced

for convenience

U ¼
u0 � ða� bÞ

h2
; W ¼

w0

h
; a ¼

a1 � ða� bÞ

h
;

n ¼
r � b

a� b
; p ¼

q � ða� bÞ4

ET � h4
;

a44 ¼
K2 � A44

ET � h
; bij ¼

Bij

ET � h2
; dij ¼

Dij

ET � h3
: ð13Þ

Here, ET is the reference Young’s modulus. In case of

laminated composites with layers of same material, ET can

be taken conveniently to be the Young’s modulus in the

direction transverse to fiber direction.

Using the nondimensional quantities defined in (13), a

set of equations of motion can now be written as

a11
1

ða� bÞ2
�
o
2U

on2
þ

1

ðn aþ ð1� nÞbÞ � ða� bÞ
�
oU

on

 !

� a22
U

ðn aþ ð1� nÞbÞ2

þ b11
1

ða� bÞ2
�
o
2a

on2
þ

1

ðn aþ ð1� nÞbÞ � ða� bÞ
�
oa

on

 !

� b22
a

ðn aþ ð1� nÞbÞ2
¼ 0

b11
1

ða� bÞ2
�
o
2U

on2
þ

1

ðn aþ ð1� nÞbÞ � ða� bÞ
�
oU

on

 !

� b22
U

ðn aþ ð1� nÞbÞ2

þ d11
1

ða� bÞ2
�
o
2a

on2
þ

1

ðn aþ ð1� nÞbÞ � ða� bÞ
�
oa

on

 !

� d22
a

ðn aþ ð1� nÞbÞ2
¼

a44

h2
aþ

oW

on

� �

a44ETh
2

 

1

ða� bÞ
�
oa

on
þ

a

ðn aþ ð1� nÞbÞ
þ

1

ða� bÞ
�
o
2W

on2

þ
1

ðn aþ ð1� nÞbÞ
�
oW

on

!

¼ Io
o
2W

ot2
:

ð14Þ

Polynomial series solution by collocation

at Chebyshev zeroes

To set up the eigenvalue problem for determination of free

vibration frequencies and the corresponding mode shapes,

Int J Adv Struct Eng (2015) 7:129–141 133

123



in the present work, Chebyshev collocation method is used.

The dependent variables U, a and W and their derivatives

are expressed in Chebyshev series as

fUðn; tÞ; aðn; tÞ;Wðn; tÞg ¼
XNþ1

n¼1
ðUn; an;WnÞn

n�1
n o

eixt:

ð15Þ

Using Eq. (15) the equations of motion can now be written

as

a11
X

Nþ1

n¼1

ðn� 1Þðn� 2ÞUnn
n�3

ða� bÞ2
þ

ðn� 1ÞUnn
n�2

ðn aþ ð1� nÞbÞ � ða� bÞ

 !

� a22
X

Nþ1

n¼1

Unn
n�1

ðn aþ ð1� nÞbÞ2
þ

b11
X

Nþ1

n¼1

ðn� 1Þðn� 2Þann
n�3

ða� bÞ2
þ

ðn� 1Þann
n�2

ðn aþ ð1� nÞbÞ � ða� bÞ

 !

� b22
X

Nþ1

n¼1

ann
n�1

ðn aþ ð1� nÞbÞ2
¼ 0

b11
X

Nþ1

n¼1

ðn� 1Þðn� 2ÞUnn
n�3

ða� bÞ2
þ

ðn� 1ÞUnn
n�2

ðn aþ ð1� nÞbÞ � ða� bÞ

 !

� b22
X

Nþ1

n¼1

Unn
n�1

ðn aþ ð1� nÞbÞ2
þ

d11
X

Nþ1

n¼1

ðn� 1Þðn� 2Þann
n�3

ða� bÞ2
þ

ðn� 1Þann
n�2

ðn aþ ð1� nÞbÞ � ða� bÞ

 !

� d22
X

Nþ1

n¼1

ann
n�1

ðn aþ ð1� nÞbÞ2

ð16Þ

�
a44

h2

X

Nþ1

n¼1

ann
n�1 þ ðn� 1ÞWnn

n�2
� 	

¼ 0 ð17Þ

a44 � a
4

ða� bÞd11 � h2

X

Nþ1

n¼1

 

ðn� 1Þ an n
n�2

ða� bÞ
þ:

ann
n�1

ðn a þ ð1� nÞbÞ

þ
ðn� 1Þðn� 2ÞWnn

n�3

ða� bÞ
þ

ðn� 1ÞWnn
n�2

ðn aþ ð1� nÞbÞ

!

¼ �k 2
X

Nþ1

n¼1

Wn n
n�1

ð18Þ

where k ¼ x a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh=D11

p

: ð19Þ

Boundary conditions considered: The following combi-

nations of boundary conditions have been considered in the

present work.

Clamped boundary condition

At outer boundary r ¼ a; u0 ¼ a01 ¼ w0 ¼ 0

for both circular plate and annular plate:

At inner boundary r ¼ b;

u0 ¼ a01 ¼ dw0=dr ¼ 0 for circular plates and

u0 ¼ a01 ¼ w0 ¼ 0 for annular plates:

Simply supported condition type

At outer boundary r ¼ a; u0 ¼ Mr ¼ w0 ¼ 0

for both circular plate and annular plate:

At inner boundary r ¼ b;

u0 ¼ a01 ¼ dw0=dr ¼ 0 for circular plates and

u0 ¼ Mr ¼ w0 ¼ 0 for annular plates:

Simply supported condition type

At outer boundaryr ¼ a; Nr ¼ Mr ¼ w0 ¼ 0

for both circular plate and annular plate:

At inner boundary r ¼ b;

u0 ¼ a01 ¼ dw0=dr ¼ 0 for circular plates and

Nr ¼ Mr ¼ w0 ¼ 0 for annular plates:

The Nth-degree Chebyshev polynomial TN
* has N zeroes

at

ni ¼
1

2
1þ cos

ð2 � i� 1Þp

2N

� �� �

i ¼ 1; 2; . . .;N: ð20Þ

By forcing the satisfaction of each of the three differ-

ential equations at the (N - 1) zeroes of T(N-1)
* (n),

0 B n B 1—the (N - 1)th degree shifted Chebyshev

Polynomial, along with the stipulation of the three

boundary conditions at each edge the dynamic equilibrium

equations, can be expressed by a set of algebraic equations

as

L11½ � Uf g þ L12½ � af g þ L13½ � qf g þ L14½ � Wf g ¼ 0f g

L21½ � Uf g þ L22½ � af g þ L23½ � qf g þ L24½ � Wf g ¼ 0f g

L31½ � Uf g þ L32½ � af g þ L33½ � qf g þ L34½ � Wf g

¼ �k2 M½ � Wf g ð21Þ

where {U}, {a}, {q} and {W} are the vectors containing

the unknown coefficients which are defined by following

equations

Uf gT¼ U1; U2; . . .;Unþ1f g;

Table 1 Free vibration frequencies of isotropic circular plate for

convergence study

t = 0.3, boundary condition: clamped

Number of terms Frequency parameter k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

1 2 3 4

8 10.007 37.518 80.288 141.926

10 10.007 37.514 79.617 132.955

12 10.007 37.514 79.617 132.568
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af gT¼ a1; a2; . . .; anþ1f g;

qf gT¼ W1; W2f g;

Wf gT¼ W3; W4; . . .;Wnþ1f g: ð22Þ

The Eq. (21) can be written together in matrix form as

½�L11� ½�L12�
½�L21� ½�L22�

� �

fxg
fyg

� �

¼ k2
0 0

½ �M21� ½ �M22�

� �

fxg
fyg

� �

ð23Þ

where xf gT¼ Uf gT af gT qf gT
� �

; yf gT¼ Wf gT : ð24Þ

By matrix condensation, Eq. (23) can be rewritten as

½K� fyg ¼ k2 ½M� fyg: ð25Þ

The solution of the above eigenvalue problem leads to

the determination of the natural frequencies and mode

shapes of the laminated orthotropic circular and annular

plates undergoing axisymmetric vibrations.

Results and discussion

A C-program developed by Antia (2002) is used in the

present work for the free vibration analysis of laminated

polar orthotropic circular and annular plates based on the

solution methodology described in the preceding sections.

Convergence and comparison studies were made to estab-

lish the validity of the method. Results of parametric

Table 2 Fundamental natural frequencies of clamped isotropic circular plates

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

, t = 0.3

h/a Present (FSDT) Lin and Tseng (1998) (FSDT) Liew et al. (1997) (FSDT) Liew and Yang (1999) (3D)

0.05 10.153 10.047 10.145 –

0.10 10.007 9.812 9.941 9.991

0.15 9.764 9.453 9.628 –

0.20 9.450 9.016 9.240 9.322

0.3 8.703 – – 8.467

0.4 7.905 – – 7.600

0.5 7.124 – – 6.807

Table 3 Fundamental natural

frequencies of clamped–

clamped isotropic annular plate

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

qh =D
p

, t = 0.3

b/a a/h Present (FSDT) Lin and Tseng (1998) (FSDT) Han and Liew (1999) (FSDT)

0.1 10 25.116 24.480 24.629

40 27.135 27.466 –

100 27.241 27.585 –

0.3 10 40.455 38.621 39.398

40 44.982 45.143 –

100 45.127 45.406 –

0.5 10 73.192 67.934 70.277

40 87.931 88.069 –

100 89.028 89.034 –

Fig. 2 Effect of number of layers on fundamental natural frequencies

of laminated polar orthotropic annular plates
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studies are also presented. In all the results presented here,

the orientations of the fibers in the layers are identified

either as 0� or 90�, depending upon whether the layer is

reinforced radially or circumferentially. The material

properties along the principal directions are assumed to be

the same in all the layers.

Free vibration frequencies of clamped isotropic circu-

lar plate are shown in Table 1. It can be seen from the

results that converged results are obtained with 10–12

terms of the Chebyshev series approximation. Compar-

isons between the present results and those of the existing

results based on the classical plate theory, three-dimen-

sional plate theory and first-order shear deformation the-

ory are made. Table 2 shows the fundamental natural

frequencies of clamped isotropic circular plate which are

in good agreement with the results obtained by Lin and

Tseng (1998).

Good agreement between the present results and those

of Lin and Tseng (1998) and Han and Liew (1999) for

isotropic annular plates clamped at both edges is also seen

in Table 3

Parametric study

Free vibration analysis has been carried out on orthotropic

circular and annular plates. Material properties of speci-

mens used in this study as obtained from literature (Lin and

Tseng 1998) are as given below.

Material I: Eh/Er = 5, Grh/Er = 0.35, Grz/Er = 0.292,

Ghz/Er = 0.292, thr = 0.3, q = 1.0.

Fig. 4 Effect of hole radius on fundamental natural frequencies of

laminated polar orthotropic annular plates

Fig. 5 Effect of orthotropy ratio on fundamental natural frequencies

of laminated polar orthotropic annular plates

Fig. 3 Effect of boundary conditions on fundamental natural fre-

quencies of laminated polar orthotopic annular plates

Fig. 6 Effect of shear deformation on fundamental natural frequen-

cies of circular plates
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Material II: Eh/Er = 50, Grh/Er = 0.6613, Grz/

Er = 0.5511, Ghz/Er = 0.5511, thr = 0.26, q = 1.0.

Material III (ultra-high-modulus graphite epoxy):

Er = 310 9 103 N/mm2, Eh = 6.2 9 103 N/mm2, Grh =

4.1 9 103 N/mm2, trh = 0.26, q = 1.613 9 103 kg/m3.

In all the parametric studies reported herein, a 12-term

solution is adopted hereafter, in computation of the free

vibration response of different plates.

The results of parametric study to know the effect of the

number of layers on the free vibration frequencies of a

Table 4 Fundamental

frequencies of polar orthotropic

laminated circular plates

composed of different materials;

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh=D11

p

BC a/h III II III/II/III/II III/II/II/III II/III/III/II

Clamped 10 26.248 13.404 15.226 21.132 13.456

20 27.735 13.867 15.869 21.789 14.189

50 28.867 14.003 16.071 21.985 14.381

100 28.940 14.031 16.100 22.022 14.414

Simply supported 10 21.644 8.392 10.522 15.910 8.689

20 22.690 8.512 10.714 16.182 8.873

50 23.011 8.542 10.789 16.261 8.936

100 23.058 8.548 10.798 16.268 8.944

Table 5 Fundamental

frequencies of polar orthotropic

laminated annular plates

composed of different materials;

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh=D11

p

BC b/a a/h III II III/II/III/II III/II/II/III II/III/III/II

C–C 0.1 10 46.409 28.146 30.287 41.634 26.921

20 55.849 31.223 34.113 45.553 31.220

50 60.127 32.300 35.464 46.937 32.864

100 60.712 32.453 35.678 47.125 33.111

0.5 10 91.516 71.796 71.319 89.052 65.952

20 105.339 85.002 83.017 96.991 82.563

50 110.485 90.203 87.437 99.602 89.984

100 111.282 91.021 88.147 100.015 91.211

Sin–Cout 0.1 10 47.388 26.034 28.387 47.629 25.271

20 55.840 28.130 30.575 47.896 28.867

50 57.619 28.867 31.037 48.041 29.196

100 63.231 28.915 31.376 48.337 29.482

0.5 10 83.800 62.683 62.907 78.015 58.752

20 93.823 71.031 70.499 83.131 69.741

50 97.312 74.023 73.166 84.758 74.084

100 97.823 74.473 73.561 84.972 74.785

Cin–Sout 0.1 10 39.467 20.471 23.219 33.171 19.972

20 46.359 22.193 25.612 35.860 22.443

50 49.183 22.777 26.477 36.788 23.370

100 49.727 22.877 26.594 36.948 23.515

0.5 10 73.741 53.467 54.137 67.040 50.539

20 81.649 59.665 59.911 70.941 58.813

50 84.394 61.839 61.898 72.168 61.981

100 84.818 62.160 62.197 72.357 62.475

S–S 0.1 10 40.403 18.575 21.320 36.054 18.432

20 46.092 19.561 22.055 38.258 19.868

50 48.235 19.764 22.062 37.456 20.372

100 49.758 19.765 22.205 37.739 20.338

0.5 10 66.860 44.220 46.299 57.241 42.969

20 72.074 46.978 49.242 59.328 46.906

50 73.801 47.847 50.175 59.954 48.213

100 74.043 47.973 50.315 60.051 48.410
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laminated annular plate with both the edges clamped are pre-

sented in Fig. 2. Figure 3 presents the results of a study con-

ducted to study the effect of boundary conditions on free

vibration frequencies of a laminated polar orthotropic annular

plate.Effect of the sizeof theholeon the fundamental frequency

of annular plates clamped at both edges is shown in Fig. 4.

Table 7 Fundamental natural

frequencies of polar orthotropic

laminated annular plates: effect

of fiber orientation; material III;

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh=D66

p

BC b/a a/h 0� 90� 90�/0�/90�/0� 0�/90�/90�/0� 90�/0�/0�/90�

C–C 0.1 10 100.321 59.215 90.759 98.966 76.628

20 157.582 69.404 128.809 152.979 97.916

50 207.345 73.185 153.266 197.449 108.503

100 219.159 74.597 158.034 207.613 110.397

0.5 10 208.288 115.794 198.968 207.256 175.899

20 377.587 130.811 329.368 371.544 247.840

50 629.316 136.171 459.363 602.475 290.864

100 727.778 136.999 493.563 686.964 298.940

Sin–Cout 0.1 10 99.800 59.496 89.550 98.342 74.680

20 152.127 69.673 122.840 147.313 92.489

50 191.530 74.247 141.676 182.331 100.316

100 200.080 75.701 145.156 189.694 101.529

0.5 10 203.615 105.514 191.741 202.154 163.539

20 355.177 116.247 301.101 347.776 216.777

50 544.734 119.883 391.840 519.034 243.975

100 606.004 120.429 412.638 571.102 248.759

Cin–Sout 0.1 10 74.124 49.962 67.450 73.107 58.035

20 107.670 57.792 89.694 104.313 70.728

50 130.732 61.233 98.010 124.902 76.673

100 135.444 61.244 104.507 129.024 77.732

0.5 10 184.427 92.648 170.325 182.361 141.251

20 307.002 101.113 255.906 299.610 181.071

50 449.466 103.975 321.611 427.412 200.401

100 491.889 104.404 335.842 463.340 203.700

S–S 0.1 10 73.821 50.144 66.328 72.490 55.971

20 100.055 58.261 83.888 96.673 65.938

50 114.123 61.061 92.253 109.304 69.572

100 116.713 61.221 93.658 111.601 69.843

0.5 10 184.302 83.565 166.689 181.608 127.837

20 284.440 89.122 229.536 274.617 150.414

50 362.666 90.871 265.092 342.997 159.272

100 379.978 91.135 271.662 357.530 160.664

Table 6 Fundamental natural

frequencies of polar orthotropic

laminated circular plates: effect

of fiber orientation; material III;

k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qh=D66

p

BC a/h 0� 90� 90�/0�/90�/0� 0�/90�/90�/0� 90�/0�/0�/90�

Clamped 10 48.552 32.793 49.549 45.539 41.959

20 56.622 34.868 57.553 51.420 46.584

50 64.415 35.522 61.475 52.646 48.173

100 71.887 35.619 67.681 60.335 48.416

Simply supported 10 26.726 6.482 25.819 10.867 27.735

20 27.735 9.950 26.726 12.598 28.867

50 28.329 19.611 26.547 21.320 29.437

100 28.867 22.880 26.130 28.860 30.151
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Figure 5 shows the results of a study conducted to know

the effect of orthotropy ratio on the free vibration fre-

quencies of a two-layered asymmetric cross-ply annular

plate with both the edges clamped.

A comparison of the natural frequencies calculated from

the present shear deformation theory with those predicted

by CPT is presented in Fig. 6. It can be observed that the

effect of shear deformation is to decrease the free vibration

frequencies in case of thick plates.

Fundamental natural frequencies of polar orthotropic

laminated circular plates with clamped and simply sup-

ported boundary conditions are listed in Table 4. Results

show that natural frequencies are influenced by stacking

sequence and the order of the magnitude of the funda-

mental frequency for the five different laminates. For an-

nular plates, the effects of stacking sequence on natural

frequencies when the inner and outer edges are either

clamped or simply supported are illustrated in Table 5 and

are similar to those for circular plates.

Results of the fundamental frequency of several polar

orthotropic laminated circular plates with clamped or

simply supported boundary conditions are shown in

Table 6. The ultra-high-modulus graphite epoxy compos-

ites are used in the examples. They reveal that among these

different stacking sequences, the smallest natural frequency

occurs when the plate is composed of laminae in which

fibers are oriented in circumferential direction only. It

seems to be reasonable, since the displacement and cur-

vature of the first vibration mode of the plates are varied in

the radial direction only. Hence, the laminated plate having

higher stiffness in the radial direction would produce

higher natural frequency and vice versa. Because the fibers

are placed along circumferential direction in this laminate,

the stiffness in the radial direction is smaller than any other

laminates.

Fundamental frequencies of C–C, Sa–C, Ca–S and S–S

polar orthotropic laminated annular plates listed in Table 7

show that the order of the magnitude of the fundamental

frequency for these five laminates is (0�)[ (0�/90�//90�/

0�)[ (90�/0�/90�/0�)[ (90�/0�/0�/90�)[ (90�). The same

behavior has been found for laminated plates given by Lin

and Tseng (1998). Typical axisymmetric mode shapes

(torsionless) corresponding to fundamental natural frequen-

cies for the laminated circular and annular plates with dif-

ferent boundary conditions, showing the effect of stacking

sequences, are plotted in Figs. 7, 8, 9, 10, 11 and 12.

Fig. 7 Fundamental mode shapes for laminated polar orthotropic

clamped circular plates

Fig. 8 Fundamental mode shapes for laminated polar orthotropic

simply supported circular plates

Fig. 9 Fundamental mode shapes for laminated polar orthotropic C–

C annular plates
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Conclusions

Free vibration characteristics of composite circular and

annular plates were studied in detail, with formulation

based on a first-order shear deformation theory and a so-

lution methodology employing the Chebyshev collocation

technique. Convergence tests were conducted for the

Chebyshev collocation technique and it can be seen that

there is excellent convergence even when we take four or

six terms in the series for the problem considered. Further,

numerical results have aided to conclude that

• The solution method, based on collocating the equa-

tions of motion at Chebyshev zeroes as proposed

herein, developed systematically in polar co-ordinates,

is reliable and effective for finding natural frequencies

and mode shapes of polar orthotropic circular and

annular plates. The fundamental frequency of polar

orthotropic laminated annular plates increases with an

increase in number of layers, hole size and orthotropy

ratio. Fundamental frequencies are higher for clamped

boundary conditions.

• Transverse shear effects are more significant for polar

orthotropic laminated plates than isotropic plates.

Further, the transverse shear effects are negligible in

case of thin plates.

• For polar orthotropic laminated circular and annular

plates with clamped edges, the laminate stacked with

all layers having fibers oriented along the radial

direction has the highest fundamental frequency.

• Parametric studies conclude that free vibration fre-

quencies are dependent not only on the radius to

thickness ratio, but also on plate parameters such as the

fiber orientation, lamination sequence, hole diameter

and the boundary conditions.
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