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Abstract. In this study, free vibration of beams with different boundary condi-
tions is analysed within the framework of the third-order shear deformation the-
ory. The boundary conditions of beams are satisfied using Lagrange multipliers.
To apply the Lagrange’s equations, trial functions denoting the deflections and the
rotations of the cross-section of the beam are expressed in polynomial form. Using
Lagrange’s equations, the problem is reduced to the solution of a system of alge-
braic equations. The first six eigenvalues of the considered beams are calculated
for different thickness-to-length ratios. The results are compared with the previous
results based on Timoshenko and Euler–Bernoulli beam theories.
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1. Introduction

There are many studies on the theory and analysis of beam-type structures in the literature.
The oldest and the well-known beam theory is the Euler–Bernoulli beam theory (or classical
beam theory—CBT) which assumed that straight lines perpendicular to the mid-plane before
bending remain straight and perpendicular to the mid-plane after bending. As a result of this
assumption, transverse shear strain is neglected. Although this theory is useful for slender
beams and plates, it does not give accurate solutions for thick beams and plates. The next
theory is the Timoshenko beam theory (the first order shear deformation theory—FSDT)
which assumed that straight lines perpendicular to the mid-plane before bending remain
straight, but no longer remain perpendicular to the mid-plane after bending. In FSDT, the
distribution of the transverse shear stress with respect to the thickness coordinate is assumed
constant. Thus, a shear correction factor is required to compensate for the error because of
this assumption in FSDT. The third-order shear deformation theory (TSDT) which assumed
parabolic distribution of the transverse shear stress and strain with respect to the thickness
coordinate was proposed for beams with rectangular cross-sections (Wang et al 2000). Also,
zero transverse shear stress condition of the upper and lower fibres of the cross-section is
satisfied without a shear correction factor in TSDT.
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There are many studies related with the problem of free vibration of beams based on CBT
and FSDT (Timoshenko & Young 1955; Hurty & Rubinstein 1967; Farghaly 1994; Baner-
jee 1998; Nallim & Grossi 1999; Kim & Kim 2001; Lee et al 2003; Auciello & Ercolano
2004; Zhou 2001; Lee & Schultz 2004; Şimşek 2005a, b; Kocatürk & Şimşek 2005a, b).
The relationship between the bending solution of TSDT and those of CBT and FSDT was
presented (Wang et al 2000). The exact stiffness matrix was derived from the solutions of
differential equations according to TSDT for isotropic beams (Eisenberger 2003). Frequency
equations and characteristic functions of homogeneous orthotropic beams having different
boundary conditions were obtained, and the first six natural frequency parameter was tabu-
lated for different values of stiffness ratios and values of thickness-to-length ratios (Soldatos
& Sophocleous 2001). Static deflections of the laminated composite beams subjected to uni-
formly distributed load were studied using the classical, the first-order, the second-order and
the third-order beam theories (Khdeir & Reddy 1997).

In the present study, free vibration of beams with different boundary conditions is anal-
ysed based on the third-order shear deformation theory (TSDT). Frequency equations of the
beams are derived using Lagrange’s equations. The boundary conditions of the beams are
considered using Lagrange multipliers. The trial functions for the deflections and rotations
of the cross-section of the beam are selected in polynomial form. The first six eigenvalues
of the considered beams are calculated for different thickness-to-length ratios. The obtained
results are compared with earlier results based on CBT and FSDT.

2. Theory and formulations

A straight uniform beam of length L, width b, depth h, having rectangular cross-section is
shown in figure 1. A Cartesian coordinate system (x, y, z) is defined on the central axis of
the beam, where the x axis is taken along the central axis, the y axis in the width direction
and the z axis in the depth direction. Also, the origin of the coordinate system is chosen at
the mid-point of the total length of the beam.

The third-order shear deformation theory (TSDT) is based on the following displacement
fields (Wang et al 2000);

ux(x, z, t) = zφ(x, t) − αz3[φ(x, t) + w,x(x, t)]

uz(x, z, t) = w(x, t), (1)

Figure 1. (a) Clamped-clamped, (b) clamped-pinned, (c) pinned-pinned, (d) pinned-guided straight
uniform beams with rectangular cross-section.
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where ux and uz are displacements in x and z directions at any material point in the (x, z)

plane, α = 4/(3h2), w is the transverse displacements, and φ represents the slope ∂ux/∂z at
z = 0 of the deformed line which was straight in the undeformed beam. In this case φ(x, t)

and α together define the third-order nature of the deformed line. The symbol (),x indicates
the derivative with respect to x. The strain-displacement relations are given by

εxx = ux,x = zφ,x − αz3(φ,x + w,xx),

γxz = ux,z + uz,x = (1 − 3αz2)(φ + w,x). (2)

The constitutive relations between stresses and strains for the linear elastic material become

σxx = Eεxx; τxz = Gγxz, (3)

where σxx is the longitudinal normal stress, εxx the longitudinal normal strain, τxz the trans-
verse shear stress, γxz the transverse shear strain, E the Young’s modulus, and G the shear
modulus. The strain energy of the beam in Cartesian coordinates is

V = 1

2

∫ L/2

−L/2

∫
A

(σxxεxx + τxzγxz)dAdx. (4)

Using (2), (3) and (4), the strain energy of the beam at any instant can be expressed as:

V = 1

2

∫ L/2

−L/2
{Dxx(φ,x)

2 − 2αFxxφ,x(φ,x + w,xx)

+ α2Hxx[(φ,x)
2 + 2φ,xw,xx + (w,xx)

2]

+ (Axz − 6αDxz + 9α2Fxz)[φ
2 + 2φw,x + (w,x)

2]}dx, (5)

where

(Dxx, Fxx, Hxx) =
∫

A

(z2, z4, z6)EdA, (Axz, Dxz, Fxz) =
∫

A

(1, z2, z4)GdA.

(6)

It follows from (1) that the velocities of any point on the beam take the form;

vx = u̇x(x, z, t) = zφ̇ − αz3(φ̇ + ẇ,x), vz = u̇z(x, z, t) = ẇ. (7)

The kinetic energy of the beam at any instant is

T = 1

2

∫ L/2

−L/2

∫
A

ρ(v2
x + v2

z )dAdx, (8)

where ρ is the mass of the beam per unit volume. By defining the following cross-sectional
inertial coefficients

(IA, ID, IF , IH ) =
∫

A

(1, z2, z4, z6)ρdA (9)
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and after some algebraic manipulations, the kinetic energy of the beam at any instant is
obtained in the following form;

T = 1

2

∫ L/2

−L/2
{IA(ẇ)2 + ID(φ̇)2 − 2αIF φ̇(φ̇ + ẇ,x)

+ α2IH [(φ̇)2 + 2φ̇ẇ,x + (ẇ,x)
2]}dx. (10)

In order to apply Lagrange’s equations, the trial functions w(x, t) and φ(x, t) are approxi-
mated by space-dependent polynomial terms x0, x1, x2, . . . , xN−1 and time-dependent gen-
eralized coordinates an(t) and bn(t). Therefore, by using Lagrange’s equations, by assuming
the displacement w(x, t) and the rotation of cross-sections φ(x, t) to be representable by a
series of admissible functions and adjusting the coefficients in the series to satisfy Lagrange’s
equations, approximate solutions are found for the displacement and rotation functions. Thus;

w(x, t) =
N∑

n=1

an(t)x
n−1,

φ(x, t) =
N∑

n=1

bn(t)x
n−1. (11)

The constraint conditions of the supports are satisfied using the Lagrange multipliers. It
should be noted at this stage that while both CBT and FSDT have two boundary conditions
at each support of the beam, TSDT has three at each support. Essential and natural boundary
conditions for TSDT theory are given below (Wang et al 2000):

The essential (kinematic or geometric) boundary conditions:

w, w,x, φ. (12)

The natural (dynamic) boundary conditions:

V̂x = α
dPxx

dx
+ Q̂x, αPxx, M̂xx, (13)

where V̂x is the effective shear force, and the quantities M̂xx, Pxx, Q̂x are defined as follows
(Wang et al 2000):

M̂xx = Mxx − αPxx, Q̂xx = Qx − 3αRx, (14)

where

Mxx =
∫

A

zσxxdA, Pxx =
∫

A

z3σxxdA, Qx =
∫

A

τxzdA, Rx =
∫

A

z2τxzdA.

(15)

It is known that some expressions satisfying essential (geometric) boundary conditions are
chosen for w(x, t), φ(x, t), and by using the Lagrange’s equations, the natural boundary
conditions are also satisfied. Therefore, by choosing the appropriate boundary conditions
given by (12) and (13), the constraint conditions of the beams are given as follows:
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(i) For the clamped-clamped beam

w(xA, t) = 0, w,x(xA, t) = 0, φ(xA, t) = 0, w(xB, t) = 0,

w,x(xB, t) = 0, φ(xB, t) = 0. (16)

(ii) For the clamped-pinned beam

w(xA, t) = 0, w,x(xA, t) = 0, φ(xA, t) = 0, w(xB, t) = 0. (17)

(iii) For the pinned-guided beam

w(xA, t) = 0, w,x(xB, t) = 0, φ(xB, t) = 0. (18)

(iv) For the pinned-pinned beam

w(xA, t) = 0, w(xB, t) = 0. (19)

xA and xB denote the location of left and right supports of the beam respectively. By intro-
ducing the Lagrange multipliers formulation, the Lagrangian functional of the problem is
obtained as follows:

J = T − V + GS, (20)

where for the clamped-clamped beam

GS = θ1 · w(xA, t) + β1 · w,x(xA, t) + δ1 · φ(xA, t) + θ2 · w(xB, t)

+ β2 · w,x(xB, t) + δ2 · φ(xB, t); (21)

for the clamped-pinned beam

GS = θ1 · w(xA, t) + β1 · w,x(xA, t) + δ1 · φ(xA, t) + θ2 · w(xB, t); (22)

for the pinned-guided beam

GS = θ1 · w(xA, t) + β2 · w,x(xB, t) + δ2 · φ(xB, t); (23)

for the pinned-pinned beam

GS = θ1 · w(xA, t) + θ2 · w(xB, t). (24)

In equations (21) to (24), θi , βi and δi are the Lagrange multipliers. The Lagrange’s equations
are given as follows:

∂J

∂qk

− d

dt

∂J

∂q̇k

= 0 k = 1, 2, . . . , 2N + M (25)

where the overdot stands for the partial derivative with respect to time, M is the number of
the Lagrange multipliers, and

qk = an k = 1, 2, . . . , N

qk = bn−N k = N + 1, . . . , 2N (26)
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for the clamped-clamped beam

q2N+1 = θ1, q2N+2 = θ2, q2N+3 = β1, q2N+4 = β2, q2N+5 = δ1, q2N+6 = δ2;
(27)

for the clamped-pinned beam

q2N+1 = θ1, q2N+2 = θ2, q2N+3 = β1, q2N+4 = δ1, q2N+5 = 0, q2N+6 = 0, (28)

for the pinned-guided beam

q2N+1 = θ1, q2N+2 = β2, q2N+3 = δ2, q2N+4 = 0, q2N+5 = 0, q2N+6 = 0, (29)

for the pinned-pinned beam

q2N+1 = θ1, q2N+2 = θ2, q2N+3 = 0, q2N+4 = 0, q2N+5 = 0, q2N+6 = 0. (30)

For free vibration of the beam, the time-dependent generalized displacement coordinates can
be expressed as follows:

an(t) = ān expiωt ,

bn(t) = b̄n expiωt , (31)

where ω is the natural frequency of the beam. Dimensionless amplitudes of the displacement
and normal rotation of a cross-section of the beam can be expressed as follows:

w̄(x) =
N∑

n=1

ānx
n−1,

φ̄(x) =
N∑

n=1

b̄nx
n−1. (32)

Introducing the following non-dimensional parameters

x̂ = x

L
, ŵ = w

L
, φ̂ = φ, λ2 = ρAω2L4

EI
, μ = h2

L2
, κ = L2

h2(1 + ν)
(33)

and using (25), the following simultaneous sets of linear algebraic equations (frequency
equation) are obtained which can be expressed in the following matrix form

K̃q̃ − λ2M̃q̃ = 0 (34)

The elements of stiffness matrix K̃ and the mass matrix M̃ are given in the Appendix. The
eigenvalues (characteristic values) λ are found from the condition that the determinant of the
system of equations given by (34) must vanish.

3. Numerical results

The first six dimensionless frequency parameters (eigenvalues) of the beams with clamped-
clamped (CC), clamped-pinned (CP), pinned-pinned (PP), pinned-guided (PG) boundary
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Table 1. Convergence study of the first six dimensionless frequency parameters
λi of the pinned-pinned (PP) beam for h/L = 0·1 according to TSDT.

N λ1 λ2 λ3 λ4 λ5 λ6

6 3·115916 6·102613 9·829280 13·85760 - -
8 3·115696 6·090875 8·873625 11·52865 16·07145 -

10 3·115696 6·090825 8·841825 11·35213 13·84615 16·36586
12 3·115696 6·090825 8·841488 11·34637 13·63057 15·75051
14 3·115696 6·090825 8·841488 11·34631 13·62094 15·69566
16 3·115696 6·090825 8·841488 11·34631 13·62079 15·69385
18 3·115696 6·090825 8·841462 11·34630 13·62074 15·69364

conditions are given in tables 2 to 5 for the different thickness-to-length ratios. The frequencies
obtained are compared with the previously published results of CBT (Hurty & Rubinstein
1967) and FSDT (Lee & Schultz 2004; Kocatürk & Şimşek 2005a). Convergence study of the
beam with pinned-pinned boundary conditions is carried out for h/L = 0·1 and the results
are given in table 1. In all the following calculations, Poisson’s ratio is taken as ν = 0·3 and
thickness-to-length ratios range from h/L = 0·002 to 0·2.

It is observed from table 1 that the natural frequencies decrease as the number of polynomial
terms increases. It means that the convergence to the exact value is from above, i.e. by
increasing the number of the polynomial terms, the exact value can be approached from above.
It should be remembered that energy methods always overestimate the fundamental frequency,
so with more refined analyses, the exact value can be approached from above. From here on,
the number of the polynomial terms N is taken as 16 in all of the numerical investigations.

It is known that for simplifying some problems such as beam problems and plate problems,
some restrictions are made and some unknown functions are expressed by other unknown

Table 2. The first six dimensionless frequency parameters λi of the
clamped-clamped (CC) beam for different h/L values.

Method h/L λ1 λ2 λ3 λ4 λ5 λ6

CBT1 4·7300 7·8532 10·9956 14·1372 17·2788 20·4204
FSDT2

0·002
4·7299 7·8529 10·9949 14·1358 17·2765 20·4166

TSDT3 4·7299 7·8529 10·9949 14·1359 17·2766 20·4170
FSDT

0·005
4·7296 7·8516 10·9916 14·1293 17·2650 20·3983

TSDT 4·7296 7·8516 10·9917 14·1294 17·2652 20·3989
FSDT

0·01
4·7283 7·8468 10·9799 14·1061 17·2244 20·3336

TSDT 4·7284 7·8469 10·9801 14·1064 17·2249 20·3350
FSDT

0·02
4·7234 7·8281 10·9339 14·0154 17·0675 20·0866

TSDT 4·7235 7·8283 10·9345 14·0167 17·0696 20·0911
FSDT

0·05
4·6898 7·7035 10·6399 13·4611 16·1586 18·7316

TSDT 4·6902 7·7052 10·6447 13·4703 16·1754 18·7573
FSDT

0·1 4·5795 7·3312 9·8559 12·1453 14·2323 16·1478
TSDT 4·5820 7·3407 9·8810 12·1861 14·3018 16·2373
FSDT

0·2 4·2419 6·4179 8·2852 9·9036 11·3486 12·6357
TSDT 4·2563 6·4642 8·3758 10·0364 11·5314 12·8563

(1Hurty & Rubinstein 1967; 2Kocatürk & Şimşek 2005a; 3present study)
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Table 3. The first six dimensionless frequency parameters λi of the clamped-pinned
(CP) beam for different h/L values.

Method h/L λ1 λ2 λ3 λ4 λ5 λ6

CBT1 3·9269 7·0685 10·2101 13·3517 16·4933 19·6349
FSDT2

0·002
3·9265 7·0684 10·2097 13·3508 16·4916 19·6319

TSDT3 3·9265 7·0684 10·2097 13·3508 16·4916 19·6322
FSDT

0·005
3·9264 7·0676 10·2074 13·3458 16·4825 19·6169

TSDT 3·9264 7·0676 10·2074 13·3459 16·4826 19·6173
FSDT

0·01
3·9258 7·0646 10·1992 13·3283 16·4504 19·5638

TSDT 3·9258 7·0647 10·1992 13·3284 16·4506 19·5646
FSDT

0·02
3·9234 7·0530 10·1668 13·2595 16·3256 19·3601

TSDT 3·9234 7·0531 10·1671 13·2600 16·3266 19·3624
FSDT

0·05
3·9071 6·9747 9·9562 12·8306 15·5852 18·2150

TSDT 3·9072 6·9754 9·9582 12·8349 15·5932 18·2290
FSDT

0·1 3·8517 6·7305 9·3658 11·7583 13·9329 15·9194
TSDT 3·8525 6·7346 9·3769 11·7802 13·9692 15·9742
FSDT

0·2 3·6656 6·0726 8·0743 9·7860 11·2866 12·6191
TSDT 3·6708 6·0947 8·1219 9·8636 11·3979 12·7717

(1Hurty & Rubinstein 1967; 2Kocatürk & Şimşek 2005a; 3present study)

functions. This situation results in decreasing the freedom of the considered problem. As is
known, the frequencies become greater when the considered element becomes more rigid.
Therefore, by decreasing the freedom of the element, the frequencies become greater from
the exact frequencies. In CBT, the plane cross sections remain plane and perpendicular to
the elastic curve after bending. In this case, rotations of the cross sections of the beam are
expressed in terms of displacements. The first derivative of the elastic curve of the beam with

Table 4. The first six dimensionless frequency parameters λi of the pinned-pinned
(PP) beam for different h/L values.

Method h/L λ1 λ2 λ3 λ4 λ5 λ6

CBT1 3·1415 6·2831 9·4247 12·5664 15·7080 18·8496
FSDT2

0·002
3·1415 6·2831 9·4244 12·5656 15·7066 18·8471

TSDT3 3·1415 6·2831 9·4244 12·5656 15·7066 18·8472
FSDT

0·005
3·1415 6·2826 9·4229 12·5621 15·6996 18·8351

TSDT 3·1415 6·2826 9·4229 12·5621 15·6996 18·8352
FSDT

0·01
3·1413 6·2810 9·4176 12·5494 15·6749 18·7925

TSDT 3·1413 6·2810 9·4176 12·5494 15·6749 18·7926
FSDT

0·02
3·1405 6·2747 9·3962 12·4993 15·5784 18·6280

TSDT 3·1405 6·2747 9·3963 12·4994 15·5784 18·6283
FSDT

0·05
3·1349 6·2313 9·2553 12·1812 14·9926 17·6802

TSDT 3·1349 6·2313 9·2554 12·1816 14·9935 17·6829
FSDT

0·1 3·1156 6·0906 8·8404 11·3430 13·6131 15·6769
TSDT 3·1156 6·0908 8·8414 11·3463 13·6207 15·6938
FSDT

0·2 3·0453 5·6715 7·8394 9·6569 11·2219 12·5971
TSDT 3·0454 5·6731 7·8469 9·6769 11·2625 12·6723

(1Hurty & Rubinstein 1967; 2Kocatürk & Şimşek 2005a; 3present study)
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Table 5. The first six dimensionless frequency parameters λi of the pinned-guided
(PG) beam for different h/L values.

Method h/L λ1 λ2 λ3 λ4 λ5 λ6

CBT1 1·5708 4·7123 7·8539 10·9955 14·1371 17·2787
FSDT4

0·002
1·5708 4·7123 7·8538 10·9951 14·1362 17·2770

TSDT3 1·5708 4·7123 7·8538 10·9951 14·1362 17·2770
FSDT

0·005
1·5708 4·7121 7·8529 10·9927 14·1311 17·2677

TSDT 1·5708 4·7121 7·8529 10·9927 14·1311 17·2677
FSDT

0·01
1·5707 4·7114 7·8498 10·9842 14·1130 17·2348

TSDT 1·5707 4·7114 7·8498 10·9842 14·1131 17·2349
FSDT

0·02
1·5706 4·7088 7·8374 10·9505 14·0423 17·1073

TSDT 1·5706 4·7088 7·8375 10·9505 14·0423 17·1073
FSDT

0·05
1·5699 4·6902 7·7542 10·7319 13·6020 16·3524

TSDT 1·5699 4·6903 7·7542 10·7320 13·6025 16·3537
FSDT

0·1 1·5674 4·6276 7·4963 10·1223 12·5056 14·6697
TSDT 1·5675 4·6277 7·4967 10·1241 12·5106 14·6805
FSDT

0·2 1·5578 4·4202 6·8065 8·7852 10·4663 11·9320
TSDT 1·5578 4·4207 6·8103 8·7979 10·4953 11·9861

(4Lee & Schultz 2004)

respect to the coordinate along the axis of the beam gives the rotation function. In FSDT, plane
sections remain plane but not necessarily perpendicular to the elastic curve after bending. In
TSDT, plane sections are not plane and are not perpendicular to the elastic curve in general
cases. In these theories, TSDT satisfies the free surface stress conditions. At the upper and
lower surfaces of the beam, the shear stresses are zero in the third-order shear deformation
theory. It can be deduced from these explanations that in these three categories of beam
theories, frequencies of TSDT should be lower than those of others. However, it is interesting
to note that this is not so because it can be deduced from tables 2 to 5 that the frequencies
of TSDT remain between the frequencies of CBT and FSDT. This situation can be explained
as follows. The displacement field ux for the first-order shear deformation theory (FSDT) is
ux = zφFSDT (Wang et al 2000), and for the third-order shear deformation theory (TSDT)
ux = zφTSDT − αz3(φTSDT + w,x) in equation (1). It is expected that the rotations φFSDT

and φTSDT must be very close to each other. In this case, because of the negative terms in
the displacement equation of TSDT, the displacements of TSDT become generally smaller
than the displacements of FSDT. As a result of this situation, the strains of TSDT become
generally smaller than the strains of FSDT. Therefore, the more flexible FSDT scheme results
in greater displacements and smaller frequencies compared to the TSDT scheme. A similar
situation is encountered in the frequency tables given for the classical plate, the first-order
plate and the third-order plate theories (Reddy 1984).

The three solutions are close to each other for small values of h/L (i.e. h/L = 0·002 and
0·005) as seen from tables 2 to 5. The results of TSDT are a little greater than those of FSDT.

It should be remembered that the eigenvalues obtained using the first-order or higher-order
beam theories are lower than the corresponding eigenvalues obtained by the classical beam
theory. The FSDT and TSDT results are very close to each other for the considered param-
eters. It can be seen from tables 2 to 5 that the results obtained using FSDT are fairly accu-
rate; the difference between the results of FSDT and TSDT increases with increasing mode
number.
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Although the TSDT results are more accurate than the CBT and FSDT results for beams
with rectangular cross-sections, higher-order beam theories cannot be used for beams with
cross-sections other than rectangular shape.

It can be deduced from tables 2 to 5 that the difference between the eigenvalues of CBT
and the other two theories increases for increasing mode numbers. This means that the effect
of shear deformations increases for increasing mode numbers.

Tables 2 to 5 also show that the difference between the eigenvalues of CBT and the other
two theories increases for increasing thickness-to-length ratios h/L. The effect of shear defor-
mations increases for increasing values of h/L.

4. Conclusions

The free vibrations of the beams have been investigated for different thickness-to-length ratios
according to TSDT. The eigenvalues of the beams obtained with various boundary conditions
are compared with the previously available results of CBT and FSDT. Using Lagrange’s equa-
tions with the trial functions in the polynomial form and satisfying the constraint conditions
by the use of Lagrange multipliers is a nice way for studying the free vibration characteristics
of the beams.

Numerical calculations have been carried out to clarify the effects of the thickness-to-length
ratio on the eigenvalues of the beams. It is observed from the investigations that the CBT, FSDT
and TSDT results are close to each other for small values of h/L. However, as the thickness-
to-length ratio becomes greater, the results of the classical beam theory significantly differ
from others. This situation is also observed as the mode numbers increase. It is interesting to
note that the frequencies of TSDT are slightly greater than that of FSDT. Although it is not
investigated here, it is expected that the results of the third-order shear deformation theory
give the closest frequency values to the exact frequency values in the considered three beam
theories as it is proved for plates (Reddy 1984). The results obtained are accurate and are
expected to be useful to other researchers for comparison.

Appendix

K̃(m)(n) = 16

5
κ

1/2∫

−1/2

(xm−1)′(xn−1)′dx + 1

21

1/2∫

−1/2

(xm−1)′′(xn−1)′′dx

m, n = 1, 2, . . . , N

K̃(m)(N+n) = 16

5
κ

1/2∫

−1/2

(xm−1)(xn−1)′dx− 16

105

1/2∫

−1/2

(xm−1)′(xn−1)′′dx

m, n = 1, 2, . . . , N

K̃(N+m)(n) = 16

5
κ

1/2∫

−1/2

(xm−1)′(xn−1)dx− 16

105

1/2∫

−1/2

(xm−1)′′(xn−1)′dx

m, n = 1, 2, . . . , N
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K̃(N+m)(N+n) = 16

5
κ

1/2∫

−1/2

(xm−1)(xn−1)dx + 68

105

1/2∫

−1/2

(xm−1)′(xn−1)′dx

m, n = 1, 2, . . . , N

M̃(m)(n) =
1/2∫

−1/2

(xm−1)(xn−1)dx + μ

252

1/2∫

−1/2

(xm−1)′(xn−1)′dx

m, n = 1, 2, . . . , N

M̃(m)(N+n) =
(

1

252
− 1

60

)
μ

1/2∫

−1/2

(xm−1)(xn−1)′dx m, n = 1, 2, . . . , N

M̃(N+m)(n) =
(

1

252
− 1

60

)
μ

1/2∫

−1/2

(xm−1)′(xn−1)dx m, n = 1, 2, . . . , N

M̃(N+m)(N+n) =
(

1

12
+ 1

252
− 1

30

)
μ

1/2∫

−1/2

(xm−1)(xn−1)dx

m, n = 1, 2, . . . , N

(35)

The elements of matrices K̃ and M̃ are obtained from the boundary conditions (Lagrange
multipliers) are not given here.

List of symbols

an time-dependent generalized coordinate of the displacements of the cross-section;
ān amplitude of time-dependent generalized coordinate an;
bn time-dependent generalized coordinate of the rotations of the cross-sections;
b̄n amplitude of time-dependent generalized coordinate bn;
b width of the cross-section;
h depth of the cross-section;
qk generalized coordinates;
t time;
ux displacements in x direction at any material point;
uz displacements in z direction at any material point;
vx velocity of any point on the beam in x direction;
vz velocity of any point on the beam in z direction;
w displacements of the beam;
ŵ dimensionless displacements of the beam;
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w̄ dimensionless amplitudes of the displacements;
x x coordinate;
x̂ dimensionless x coordinate;
y y coordinate;
z z coordinate;
Axz a cross-sectional stiffness coefficients;
Dxx a cross-sectional stiffness coefficients;
Dxz a cross-sectional stiffness coefficients;
E elastic modulus of the beam;
Fxx a cross-sectional stiffness coefficients;
Fxz a cross-sectional stiffness coefficients;
G shear modulus of the beam;
GS Lagrange multipliers formulation;
Hxx a cross-sectional stiffness coefficients;
IA a cross-sectional inertial coefficients;
ID a cross-sectional inertial coefficients;
IF a cross-sectional inertial coefficients;
IH a cross-sectional inertial coefficients;
K̃ stiffness matrix of the beam;
L length of the beam;
M number of the Lagrange multipliers;
M̃ mass matrix of the beam;
Mxx bending moment;
N number of the polynomial terms;
Pxx a higher order stress resultants;
Qx shear force;
Rx a higher order stress resultants;
T kinetic energy of the beam;
V strain energy of the beam;
V̂x effective shear force;
α a parameter in the displacement fields (equal to 4/3h2);
β1, β2 Lagrange multipliers;
δ1, δ2 Lagrange multipliers;
εxx longitudinal normal strain;
φ rotations of the cross-sections;
φ̂ dimensionless rotations of the cross-sections;
φ̄ dimensionless amplitudes of the rotations of the cross-sections;
γxz transverse shear strain;
κ a dimensionless quantity;
λ1, λ2, . . . dimensionless frequency parameter of the beam;
μ a dimensionless quantity;
ν Poisson’s ratio;
θ1, θ2 Lagrange multipliers;
ρ mass of the beam per unit volume;
σxx longitudinal normal stress;
τxz transverse shear stress;
ω natural frequency of the beam.
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