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Free vibration of conical shells of variable thickness is analysed under shear deformation theory with simply supported and
clamped free boundary conditions by applying collocation with spline approximation. Sinusoidal thickness variation of layers is
assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and a
generalized eigenvalue problem is obtained. 1is problem is solved numerically for an eigenfrequency parameter and an as-
sociated eigenvector of spline coefficients.1e vibration of composite conical shells consisting of three layers and five layers where
each layer is made up of different materials is analysed. Parametric studies are made for analysing the frequencies of the shell with
respect to the coefficients of thickness variations, length ratio, cone angle, circumferential node number, and different ply angles
with different combinations of the materials. 1e results are presented in terms of tables and graphs.

1. Introduction

Laminated composite materials are widely used in engi-
neering applications, since they have the ability to achieve
desired weight as they have higher specific modulus and
specific strength. Moreover, composite materials can tailor
the mechanical properties. 1e strength and deformation of
composite structural elements are influenced by ply orien-
tation, stacking sequence, and material properties. 1e main
aim of the designer is to control the unwarranted vibration,
which in return leads to the failure of the structure. 1us,
conical shell structures are source of attraction for most of
the contemporary engineers for being stiffer structural el-
ement in modern construction. Conical shells structures
have a wide range of applications in the fields of aviation,
ship building, rocket, missile, and chemical industry.

Complex shells of variable thickness were examined by
Kang [1]. Moreover, conical shells of variable thickness were
investigated using the Haar wavelet method by Cao et al. [2].
Akbari et al. [3] studied the conical panels consisting of
functionally graded materials using the generalized differ-
ential quadrature method. Similarly, the generalized

differential quadrature method was used by Bacciocchi et al.
[4] to analyse the vibration of plates of variable thickness and
shells. A novel vibrational numerical method was used by
Ansari et al. [5] to investigate the free vibration of composite
conical shells. 2D-FGM truncated conical shell resting on
Winkler–Pasternak foundations was studied by Asanjarani
et al. [6] using the differential quadrature method for dif-
ferent boundary conditions. Domain decomposition
method was used by Wu et al. [7] to analyse the free vi-
bration of laminated conical shells resting on Pasternak
foundation. Fluid loaded ring-stiffened conical shells of
variable thickness were analysed for their free vibration
using the transfer matrix method by Liu et al. [8]. Nejad et al.
[9] investigated truncated conical shells having functionally
graded materials with axially varying properties under
nonuniform pressure. Singular convolution method was
used to analyse the vibration of composite conical shells
under shear deformation theory [10]. Analytical and ex-
perimental study for the free vibration of joined conical
shells was carried out by Shakouri and Kouchakzadeh [11].
Galerkin method was used by Sofiyev and Kuruoglu [12] to
find the solution of buckling of conical shells. Spline method
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was used to analyse the free vibration of symmetric and
antisymmetric angle-ply conical shells [13–15]. Moreover,
Javed et al. [16, 17] investigated conical shells and plates
using the spline method.1e Haar wavelet method was used
by Xie et al. [18] to investigate the free vibration of conical
shells and annular plates. Ma et al. [19] studied the free and
forced vibration of coupled conical-cylindrical shells using
the Fourier–Ritz method. Furthermore, Fourier–Ritz
method was used to analyse the vibrations of composite
laminated circular panels and shells of revolution by Wang
et al. [20]. Su et al. [21] analysed the 3D vibration of conical
shells, cylindrical shells, and annular plates. Transfer matrix
method was used to study the structural and acoustic re-
sponse of conical shells by Wang et al. [22]. Composite
laminated shells were studied using unified formulation
including shear deformation by Qu et al. [23]. Wu and Lee
[24] studied conical shells of variable thickness using dif-
ferential quadrature method and Sivadas and Ganesan [25]
used finite element method to analyse cones of variable
thickness. Moreover, variable thickness of loudspeaker cone
significantly affects the performance of the loud speaker [26].
In addition, variable thickness also affects the performance
and efficiency of radome and ballistic missile [27, 28].

1e displacement and rotational functions are approx-
imated using cubic spline and collocation procedure is
applied to obtain a set of field equations. 1e field equations
along with the equations of boundary conditions yield a
system of homogeneous simultaneous algebraic equations
on the assumed spline coefficients, resulting in generalized
eigenvalue problem.1is eigenvalue problem is solved using
eigensolution technique to get many eigenfrequencies as we
required [29]. 1e effects of frequency parameters with
respect to the coefficient of thickness variations, cone angle,
aspect ratio, circumferential node number, boundary con-
ditions, and three types of layered materials with three- and
five-layered conical shells are presented and discussed.

2. Formulation of the Problem

Laminated conical shell frusta of variable thickness along
axial direction having arbitrary number of layers, which are
perfectly bonded together, are shown in Figure 1. 1e or-
thogonal coordinate system (x, θ, z) is fixed at its reference
surface, which is taken to be at themiddle surface.1e radius
of the cone at any point along its length is r � x sin α. 1e
radius at the small end of the cone is ra � a sin α and the
other end is rb � b sin α. α is the semivertical angle and ℓ is
the length of the cone along its generator [30].

1e displacement components are assumed to be of the
form in [31]:

u(r, θ, z, t) � u0(r, θ, t) + zψx(r, θ, t),

v(r, θ, z, t) � v0(r, θ, t) + zψθ(r, θ, t),

w(r, θ, z, t) � w0(r, θ, t),

(1)

where u, v, andw are the displacement functions in x, θ, and
z directions, respectively, u0, v0, and w0 are the displace-
ments of the middle surface of the cone, and ψx and ψθ are

shear rotations of any point on the middle surface of the
cone.

1e thickness variation of the k-th layer of the shell is
assumed to be of the form

hk(x) � h0kg(x), (2)

where h0k is a constant thickness, and

g(x) � Cs sin π
x − a

ℓ
( ), (3)

where Cs are the coefficients of sinusoidal variation.
1e thickness of the shell becomes uniform when

g(x) � 1.
Since the thickness is assumed to be varying along the

axial direction, one can define the elastic coefficients Aij, Bij,
and Dij (extensional, bending-extensional coupling, and
bending stiffnesses) corresponding to layers of uniform
thickness with superscript “c” as

Aij � A
c
ijg(x),

Bij � B
c
ijg(x),

Dij � D
c
ijg(x),

Acij �∑
k

Q
(k)

ij zk − zk− 1( ),

Bcij �
1

2
∑
k

Q
(k)

ij z2k − z
2
k− 1( ),

Dc
ij �

1

3
∑
k

Q
(k)

ij z3k − z
3
k− 1( ), for i, j � 1, 2, 6,

Acij � K∑
k

Q
(k)

ij zk − zk− 1( ), for i, j � 4, 5.

(4)

Here K is the shear correction factor, zk− 1 and zk are the
boundaries of the k-th layer, and the quantities Q

(k)

ij are
defined in [32]. In the case of symmetric angle-ply lami-
nation, the laminate stiffnessesA16, A26, D16, D26, A45 and all
Bij are identically zero.

1e governing differential equations characterising the
vibration of conical shell frusta of variable thickness in-
cluding first-order shear deformation theory are derived in
terms of displacement functions u0(x, θ, t), v0(x, θ, t), and
w0(x, θ, t) and shear rotational functions ψx(x, θ, t) and
ψθ(x, θ, t) using stress-strain and strain-displacement rela-
tions of the conical shell.

1e displacement components u0, v0, and w and shear
rotations ψx and ψθ are assumed in separable form given as

u0(x, θ, t) � U(x)cos nθe
iωt,

v0(x, θ, t) � V(x)sin nθe
iωt,

w(x, θ, t) �W(x)cos nθeiωt,

ψx(x, θ, t) � Ψx(x)cos nθeiωt,
ψθ(x, θ, t) � Ψθ(x)sin nθeiωt,

(5)
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where ω is the angular frequency of vibration, t is the time,
and n is the circumferential node number.

Incorporating (5) into the governing differential equa-
tions, the resulting equation becomes in the matrix form as

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55





U

V

W

ψX

ψΘ




�

0

0

0

0

0




, (6)

where Lij are the differential operators and they depend on
the variable x only and are given in [14].

1e nondimensional parameters are introduced to
modify the above equations as follows:

X �
x − a

l
, a≤x≤ b, X ∈ [0, 1], (7)

λ � ℓλ′, (8)

where λ is a frequency parameter, and

c �
h0
ra
,

c′ � h0
a
,

(9)

where c are ratios of thickness to radius and to a length, and

β �
a

b
, (10)

where β is a length ratio.

δk �
hk
h
, (11)

where δ is the relative layer thickness of the k-th layer.
1e new set of differential equations is obtained and

given in the new set of matrix form as

L∗11 L
∗
12 L
∗
13 L
∗
14 L
∗
15

L∗21 L
∗
22 L
∗
23 L
∗
24 L
∗
25

L∗31 L
∗
32 L
∗
33 L
∗
34 L
∗
35

L∗41 L
∗
42 L
∗
43 L
∗
44 L
∗
45

L∗51 L
∗
52 L
∗
53 L
∗
54 L
∗
55





U

V

W

ℓΨX
ℓΨθ




�

0

0

0

0

0




. (12)

1e differential operators L∗ij of the matrix are given in
[14].

1e following range of thickness coefficient is
considered:

− 0.5≤Cs ≤ 0.5. (13)

2.1. Spline Collocation Procedure. 1e displacement func-
tions U, V, andW and rotational functions ΨX and ΨΘ are
approximated by cubic spline functions in the range of
X ∈ [0, 1] as given in [30].

U∗(X) �∑2
i�0

aiX
i
+ ∑N− 1

j�0

bj X − Xj( )3H X − Xj( ),

V∗(X) �∑2
i�0

ciX
i
+ ∑N− 1

j�0

dj X − Xj( )3H X − Xj( ),

W(X) �∑2
i�0

eiX
i
+ ∑N− 1

j�0

fj X − Xj( )3H X − Xj( ),

Ψ∗X(X) �∑
2

i�0

giX
i
+ ∑N− 1

j�0

pj X − Xj( )3H X − Xj( ),

Ψ∗Θ(X) �∑
2

i�0

liX
i
+ ∑N− 1

j�0

qj X − Xj( )3H X − Xj( ).

(14)

Here, H(X − Xj) is the Heaviside step functions. 1e range
of X is divided into N subintervals at the points X � Xs,
s � 1, 2, 3, . . . , N − 1. 1e width of each subinterval is 1/N
and Xs � s/N (s � 0, 1, 2, . . . , N), since the knots Xs are
chosen to be equally spaced.

1e assumed spline functions given in (14) are ap-
proximated at the nodes (coincide with the knots) and these
splines satisfy the differential equations given in (12) at all
Xs, resulting in the homogeneous system of (5N + 5)
equations in the (5N + 15) unknown spline coefficients. To
get 10 more equations, the following boundary conditions
are considered in this problem:

(i) Clamped-free (C-F) (one end is clamped and the
other is free)

(ii) Simply supported (S-S) (both ends are simply
supported)

Combining these 10 equations with the earlier (5N + 5)
equations, one can get (5N + 15) homogeneous equations,
so the number of equations coincides with the number of
unknowns.1us, we get a generalized eigenvalue problem in
the form

W

V
Z
k

Z1
Z0

Z
k–1

(Zk–1)a

(Zk)a

XReference

surface

rb
ra(Z0)aα

0

Z
x

b

a

l

δX

Axis of

revolution

Figure 1: Layered conical shell of variable thickness: geometry.
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[M] q{ } � λ2[P] q{ }, (15)

where [M] and [P] are the square matrices, q{ } is the
column matrix of the spline coefficients, and λ is the
eigenfrequency parameter.

3. Results and Discussions

A convergence study was carried out for frequency pa-
rameter λ. 1e number of knots N of the spline function was
set at 14 after a number of convergence trials.

In the present work, frequency of symmetric angle-ply
conical shells is analysed with respect to the circumferential
node number, length ratio, cone angle, sinusoidal thickness
variation and different number of lay ups, material com-
binations, and ply angles for C-F and S-S boundary con-
ditions. 1ree materials, AS4/3501-6 graphite/epoxy (GE),
E-glass/epoxy (EGE), and Kevlar-49/epoxy (KE), are con-
sidered to analyse the problem.

Table 1 shows the effect of circumferential node number
n on the fundamental frequency parameter λ of three- and
five-layered shells having ply angles of 45°/0°/45° (KE/EGE/
KE) and 45°/60°/0°/60°/45° (KE/EGE/GE/EGE/KE) for C-F
and S-S boundary conditions, respectively. 1e parameters
β � 0.5, c � 0.05, α � 30°, and Cs � 0.5 are fixed. It can be
seen from the results that three-layered shells show higher
frequency than five-layered shells. Moreover, the funda-
mental frequency value is lower for C-F boundary condi-
tions than for S-S boundary conditions.

1e effect of circumferential node number n on the
fundamental frequency parameter λ of three- and five-lay-
ered shells having ply angles of 45°/30°/0°/30°/45° for S-S
boundary conditions is shown in Table 2. 1e parameters
β � 0.5, c � 0.05, α � 30°, and Cs � 0.5 are fixed. Different
combinations of materials are used and, from the results, it
can be seen that three-layered shells consisting of GE/EGE/
GE show highest frequency followed by KE/EGE/KE and
GE/KE/GE material combinations. Moreover, five-layered
shells consisting of GE/EGE/KE/EGE/GE show highest
frequency followed by KE/EGE/GE/EGE/KE and EGE/GE/
KE/GE/EGE material combinations.

1e effect of sinusoidal thickness variation Cs on the
fundamental frequency parameter λ is depicted in Table 3 for
three- and five-layered shells having ply angles of 45°/0°/
45°and 45°/60°/0°/60°/45° for C-F and S-S boundary condi-
tions. 1e parameters β � 0.5, c � 0.05, α � 30°, and n � 4
are fixed. 1e results concluded that the value of the fre-
quency parameter decreases with the increase of number of
layers. Moreover, there is a marginal difference in the values
of the frequency parameter with the increase of sinusoidal
thickness variation.

Figure 2 describes the variation of angular frequencies ω
with respect to the length ratio β of five-layered conical shells
having material sequence as KE/EGE/GE/EGE/KE with ply
angles of (a) 45°/30°/0°/30°/45°, (b) 45°/60°/0°/60°/45°, and (c)
30°/60°/0°/60°/30° for S-S boundary conditions. 1e pa-
rameters cone angle α � 50°, ratio of thickness to radius
c � 0.05, sinusoidal thickness variation Cs � 0.3, and cir-
cumferential node number n � 4 are fixed. Figures 2(a)–2(c)

relate to the sinusoidal thickness variation. It is seen from the
figures that the frequencies monotonically increase with
increase in β, that is, with decreasing cone length. Since the
frequency increases, it shows that the rigidity of the structure
increases. 1e increase of ωm (m � 1, 2, 3) is gradual and
steady up to 0.1≤ β≤ 0.6, and there is a rapid increase af-
terwards. For very short shells (β> 0.8), frequencies are very
high.

1e variation of angular frequency ωm (m � 1, 2, 3) with
length ratio β for three-layered conical shell under S-S
boundary conditions is shown in Figures 3(a) as 30°/0°/30°,
3(b) as 45°/0°/45°, and 3(c) as 60°/0°/60° with material
combination as GE/EGE/GE. 1e fixed parameters and
curvature of the curves are the same as seen in Figure 2 but
the angular frequency differs with layup and lamination
angle.

Figure 4 represents the variation of frequency parameter
λm (m � 1, 2, 3) with respect to the cone angle α for three-
layered shells with angles of 30°/0°/30°, 45°/0°/45°, and 60°/0°/
60° using GE/EGE/GE materials for S-S boundary condi-
tions. 1e other parameters β, c′, n, and Cs are fixed. 1e
value of frequency parameter decreases as the cone angle
increases; the decrease is strict within 10° ≤ α≤ 30° and
steady afterwards. 1e value of λm (m � 1, 2, 3) increases
with the increase of lamination angle.

Five-layered conical shells are considered in Figure 5 to
see the effect of cone angle on the value of frequency pa-
rameter under S-S boundary condition. It is seen that there is
a significant decrease in frequency value for 10° ≤ α≤ 30° and
the value decreases almost linearly within 30° ≤ α≤ 90°.

1ree-layered conical shells with three different material
combinations are considered in Figure 6 to analyse the effect
of different cone angles on the frequency parameter. It is
seen that frequency parameter value increases with the in-
crease of ply angle. 1e difference in the frequency value for
three different ply angles is more within 10° ≤ α≤ 30° and the
difference becomes lesser within 30° ≤ α≤ 90°. Moreover, the
frequency parameter value differs for different lamination
material schemes.

Effect of cone angle on the fundamental frequency pa-
rameter value of five-layered shells with different material
combinations and ply orientations is shown in Figure 7 for
S-S boundary conditions. It can be seen from Figures 7(a)
and 7(c) that ply orientation of 45°/60°/0°/60°/45° depicts
highest fundamental frequency parameter value followed by
45°/30°/0°/30°/45° and 30°/60°/0°/60°/30°. Meanwhile, in
Figure 7(b), ply orientation of 45°/60°/0°/60°/45° depicts
highest fundamental frequency parameter value followed by
30°/60°/0°/60°/30° and 45°/30°/0°/30°/45°. In addition to this
material combination, EGE/GE/KE/GE/EGE shows highest
frequency followed by GE/EGE/KE/EGE/GE and KE/EGE/
GE/EGE/KE material combinations.

Figure 8 shows the effect of length ratio on the funda-
mental angular frequency value under S-S boundary con-
dition of three-layered shells with different materials and ply
orientations. It can be seen that, with the increase of length
ratio, the angular frequency increases. Moreover, it can be
seen from Figures 8(a)–8(c) that there is little difference in
the angular frequency value for three different ply
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orientations and the angular frequency value differs for
different material combinations.

Effect of length ratio on the fundamental angular fre-
quency value of five-layered shells with different material
combinations and ply orientations is shown in Figure 9 for
S-S boundary conditions. It can be seen from
Figures 9(a)–9(c) that different ply angles negligibly affect
fundamental angular frequency value. Moreover, material
combination GE/EGE/KE/EGE/GE shows highest frequency
followed by KE/EGE/GE/EGE/KE and EGE/GE/KE/GE/
EGE material combinations.

 ariation of fundamental angular frequency with respect
to length ratio for five-layered shells having different

material combination is shown in Figure 10 for S-S
boundary condition. It is observed that the angular fre-
quency value increases with the increase of length ratio.
Further, material combination GE/EGE/KE/EGE/GE shows
highest frequency and EGE/GE/KE/GE/EGE shows the
lowest frequency.

1ree-layered shells with 45°/0°/45° ply angles and three
different material combinations are studied in Figure 11 to
examine the effect of length ratio on the fundamental an-
gular frequency value under S-S boundary conditions. It is
observed that material combination GE/KE/GE shows
highest frequency followed by GE/EGE/GE and KE/EGE/
KE.

Table 1: Influence of circumferential node number on the fundamental frequency parameter of three- and five-layered conical shells with
KE/EGE/KE and KE/EGE/GE/EGE/KE material combinations.

n

C-F S-S

45°/0°/45° 45°/60°/0°/60°/45° 45°/0°/45° 45°/60°/0°/60°/45°

KE/EGE/KE KE/EGE/GE/EGE/KE KE/EGE/KE KE/EGE/GE/EGE/KE

1 0.330183 0.283127 0.400495 0.336936
2 0.333685 0.309334 0.654284 0.566468
3 0.213942 0.200907 0.560153 0.454850
4 0.165313 0.156536 0.443432 0.375673
5 0.170269 0.158292 0.431779 0.372236
6 0.202314 0.185803 0.497189 0.426926
7 0.243201 0.223443 0.600570 0.514700
8 0.285948 0.264548 0.725938 0.622380
9 0.327225 0.306138 0.867462 0.744432
10 0.363870 0.345774 1.022135 0.878158

Table 2: Influence of circumferential node number on the fundamental frequency parameter of three- and five-layered conical shells with
different material combinations.

n
45°/0°/45° 45°/30°/0°/30°/45°

KE/EGE/KE GE/KE/GE GE/EGE/GE KE/EGE/GE/EGE/KE EGE/GE/KE/GE/EGE GE/EGE/KE/EGE/GE

1 0.400495 0.373850 0.421468 0.307091 0.304765 0.36881
2 0.654284 0.597870 0.690709 0.490737 0.476702 0.59392
3 0.560153 0.520425 0.602290 0.415691 0.408492 0.51378
4 0.443432 0.422939 0.469940 0.352047 0.341499 0.42872
5 0.431779 0.412458 0.463464 0.346254 0.325831 0.43013
6 0.497189 0.472720 0.540390 0.391703 0.361600 0.49925
7 0.600570 0.569328 0.656000 0.468217 0.429708 0.60416
8 0.725938 0.686551 0.794530 0.563476 0.516727 0.73039
9 0.867462 0.818499 0.950241 0.672017 0.616703 0.87226
10 1.022135 0.962222 1.119930 0.791223 0.727056 1.02683

Table 3: Influence of sinusoidal thickness variation on the fundamental frequency parameter of three- and five-layered conical shells with
KE/EGE/KE and KE/EGE/GE/EGE/KE material combinations.

Cs

C-F S-S

45°/0°/45° 45°/60°/0°/60°/45° 45°/0°/45° 45°/60°/0°/60°/45°

KE/EGE/KE KE/EGE/GE/EGE/KE KE/EGE/KE KE/EGE/GE/EGE/KE

− 0.5 0.165313 0.156536 0.443432 0.375673
− 0.3 0.076568 0.075873 0.436273 0.380052
− 0.1 0.098835 0.095561 0.444782 0.385077
0.1 0.120564 0.115250 0.448693 0.385777
0.3 0.142597 0.135491 0.448082 0.382432
0.5 0.165313 0.156536 0.443432 0.375673
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Figure 12 depicts the fundamental angular frequency
variation with respect to length ratio for three-layered shells
under C-F boundary conditions. 1e characteristic pattern
of curve is similar to that in Figure 10, whereas the frequency
value decreases under C-F boundary condition as compared
to S-S boundary condition.

1e effect of different material combination of five-
layered shells on the fundamental angular frequency is

shown in Figure 13 for C-F boundary conditions. 1e
characteristic pattern of curve is similar to that in Figure 12.
1e frequency value is highest for GE/EGE/KE/EGE/GE
material combination.

1e variation of fundamental angular frequency ωm (m �

1, 2, 3)with length ratio β for three-layered conical shell under
C-F boundary conditions is shown in Figures 14(a) for GE/
EGE/GE, 14(b) for GE/KE/GE, and 14(c) for KE/EGE/KE

0

10

20

30

40

50

0.1 0.3 0.5 0.7 0.9

A
n

gu
la

r 
fr

eq
u

en
cy

 (
ω

m
)

45°/30°/0°/30°/45°

S – S

α = 50°
n = 4

γ = 0.05

Cs = 0.3

Length ratio (β)

m = 1

m = 2

m = 3

(a)

m = 1

m = 2

m = 3

A
n

gu
la

r 
fr

eq
u

en
cy

 (
ω

m
)

0

10

20

30

40

50

0.1 0.3 0.5 0.7 0.9

45°/30°/0°/30°/45°

S – S

Length ratio (β)

(b)

A
n

gu
la

r 
fr

eq
u

en
cy

 (
ω

m
)

0

10

20

30

40

50

0.1 0.3 0.5 0.7 0.9

30°/60°/0°/60°/30°

S – S

Length ratio (β)

m = 1

m = 2

m = 3

(c)

Figure 2: Influence of length ratio on the angular frequency of five-layered conical shells with KE/EGE/GE/EGE/KE material combination.
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Figure 3: Influence of length ratio on the angular frequency of three-layered conical shells with GE/EGE/GE material combination.
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material combinations. It is seen that angular frequency
value is highest for 30°/0°/30°> 45°/0°/45°> 60°/0°/60° for all
three combinations. For material combinations, the an-
gular frequency value is GE/KE/GE>GE/EGE/GE >KE/
EGE/KE.

Figure 15 shows the influence of cone angle on the
fundamental frequency parameter of five-layered shells
having different material combinations and lamination
schemes under C-F boundary conditions. It is seen that
angular frequency value is highest for EGE/GE/KE/GE/EGE
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Figure 4: Influence of cone angle on the frequency parameter of three-layered conical shells with GE/EGE/GE material combination.

F
re

q
u

en
cy

 p
ar

am
et

er
 (

λ
m

)

0

1.5

3

4.5

6

7.5

9

10 30 50 70 90

Cone angle (α)

45°/30°/0°/30°/45°

β = 0.3

n = 4

γ′ = 0.5

Cs = 0.3

S – S

m = 1

m = 2

m = 3

(a)

F
re

q
u

en
cy

 p
ar

am
et

er
 (

λ
m

)

0

1.5

3

4.5

6

7.5

9

10 30 50 70 90

Cone angle (α)

45°/60°/0°/60°/45°

S – S

m = 1

m = 2

m = 3

(b)

F
re

q
u

en
cy

 p
ar

am
et

er
 (

λ
m

)

0

1.5

3

4.5

6

7.5

9

10 30 50 70 90

Cone angle (α)

30°/60°/0°/60°/30°

S – S

m = 1

m = 2

m = 3

(c)

Figure 5: Influence of cone angle on the frequency parameter of five-layered conical shells with KE/EGE/GE/EGE/GE material
combination.
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followed by GE/EGE/KE/EGE/GE and KE/EGE/GE/EGE/
KE. 1e difference in the fundamental frequency parameter
value is very small for three different lamination schemes.

1e effect of circumferential node number n on the
frequency parameter λm of five-layered shells having material

combination KE/EGE/GE/EGE/KE for S-S boundary con-
ditions is shown in Figure 16. 1e parameters β � 0.5,
c � 0.05, α � 30°, andCs � 0.5 are fixed. Different lamination
schemes, (a) 30°/60°/0°/60°/30°, (b) 45°/30°/0°/30°/45°, and (c)
45°/60°/0°/60°/45°, are used. It is seen that there is negligible
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Figure 6: Influence of cone angle on the fundamental frequency parameter of three-layered conical shells with different material
combinations.

F
u

n
d

am
en

ta
l f

re
q

u
en

cy
 p

ar
am

et
er

 λ

0

0.8

1.6

2.4

3.2

4

4.8

5.6

10 30 50 70 90

30/60/0/60/30

45/30/0/30/45

45/60/0/60/45

Cone angle (α)

KE/EGE/GE/EGE/KE

β = 0.3
n = 4

γ′ = 0.5
Cs = 0.3

S – S

(a)

F
u

n
d

am
en

ta
l f

re
q

u
en

cy
 p

ar
am

et
er

 λ

30/60/0/60/30

45/30/0/30/45

45/60/0/60/45

0

0.8

1.6

2.4

3.2

4

4.8

5.6

10 30 50 70 90

Cone angle (α)

EGE/GE/KE/GE/EGE

S – S

(b)

F
u

n
d

am
en

ta
l f

re
q

u
en

cy
 p

ar
am

et
er

 λ

30/60/0/60/30

45/30/0/30/45

45/60/0/60/45

0

0.8

1.6

2.4

3.2

4

4.8

5.6

10 30 50 70 90

Cone angle (α)

GE/EGE/KE/EGE/GE

S – S

(c)

Figure 7: Influence of cone angle on the fundamental frequency parameter of five-layered conical shells with different material
combinations.

8 Shock and  ibration



effect of different lamination schemes on the frequency pa-
rameter value. Moreover, the frequency parameter value for
λ1 and λ2 differs within 1< n< 5 and increases steadily af-
terwards. Meanwhile frequency parameter value for λ3 in-
creases steadily as the circumferential node number increases.

Figure 17 depicts the variation of frequency parameter
value with respect to circumferential node number for C-F
boundary condition. It is seen from Figures 16 and 17 that
the frequency parameter value decreases under C-F
boundary condition as compared to S-S boundary condition.
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Figure 9: Influence of length ratio on the fundamental angular frequency of five-layered conical shells with different material combinations.
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Figures 18(a)–18(c) exhibit the mode shapes for dis-
placement functionW of symmetric angle-ply conical shells of
material combinations EGE/GE/KE/GE/EGE and ply

orientation of 30°/60°/0°/60°/30°. Normalization is done with
respect to the maximum transverse displacement W. As ex-
pected, the transverse displacements are mostly predominant.
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Figure 14: Influence of length ratio on the fundamental angular frequency of three-layered conical shells with different material combinations.
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Figure 15: Influence of cone angle on the fundamental frequency parameter of five-layered conical shells with different material
combinations.
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Figure 16: Influence of circumferential node number on the frequency parameter of five-layered conical shells with KE/EGE/GE/EGE/KE
material combination.
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Figure 17: Influence of circumferential node number on the frequency parameter of five-layered conical shells with KE/EGE/GE/EGE/KE
material combination.
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4. Conclusion

1e free vibration of symmetric angle-ply composite conical
shells of variable thickness is analysed, including the effect of
shear deformation. 1e equations of symmetric angle-ply
conical shells of variable thickness were derived for simply
supported and clamped-free boundary conditions.

1e manners of variation of the eigenfrequencies with
respect to length ratio, ply angle, and thickness variation
under two types of edge conditions are studied. 1ree- and
five-layered shells consisting of three different materials and
plies are arranged in symmetric manner and their effects on
the frequency parameter are studied and presented.

1e frequency values tend to increase, in general, with
increase of the length ratio and circumferential node number
of the shell. 1e increase in frequency shows that the rigidity
of the structure increases. Meanwhile, frequency values tend
to decrease with the increase of cone angle. Besides, the
frequency parameter values remain almost the same with
respect to sinusoidal variation. In case of ply angle variation,
the value of frequency parameter decreases as the number of
layers increases. Further, the frequency parameter values are
higher when the support conditions are simply supported as
compared to clamped-free conditions. 1erefore, results
depict that the stiffness of the structures decreases or increases
as value of λm decreases or increases.

1e study has also brought out the elegance and use-
fulness of the spline function collocation method of solution
for boundary value problems of the type discussed.
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