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Abstract. This paper deals with the free vibration of Timoshenko columns
with attached masses having rotary inertia. The support of the model is elastically
restrained against rotation. The concept of fixity factor is used to define the stiffness
of the elastic connection relative to that of the column. The governing equation
of the column elements is solved by applying the separation of variables method
in the transfer matrix method (TMM) algorithm. The same problems are solved,
also, by finite element method (FEM) algorithm in which the matrices in equation
of motion are obtained for Timoshenko column, and the results are compared with
the ones of TMM. The comparison graphs are presented in numerical analysis to
show the effectiveness of the considered methods, and it is resulted that FEM gives
closer results to TMM.
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1. Introduction

Bapat and Bapat investigated the natural frequencies of an Euler beam with concentrated
masses, and modelled all supports by elastic springs against rotation and translation (Bapat &
Bapat 1987). Karami et al (2003) proposed a differential quadrature element method for free
vibration analysis of non-uniform Timoshenko beams with elastic support and attachments.
Lin and Chang (2005) studied free vibration analysis of multi-span Timoshenko beam with
an arbitrary number of flexible constraints by TMM. Posiadala (1997) considered the trans-
verse free vibration of Timoshenko beams having rotation and translation springs, concen-
trated mass with moment of inertia, linear undamped oscillators and additional supports, and
obtained the frequency equation by Lagrange multiplier formalism. TMM is used with Holzer
method for torsional vibration of systems with concentrated masses (Hurty & Rubinstein
1964), and with Myklestad—Thomson method for flexural vibrations of discrete systems with
concentrated masses (Thomson 1981). Esmailzadeh and Ohadi (2000) made vibration and sta-
bility analysis of non-uniform Timoshenko beams under axial and distributed tangential loads.
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Figure 1. Model of an elastically-supported
Timoshenko column with attached masses.

Gokdag and Kopmaz (2005) studied the coupled flexural-torsional free and forced vibrations
of a Timoshenko beam with tip and/or in-span attachments. Ozkaya (2002) obtained the non-
linear equations of motion for transverse vibrations of a simply supported beam carrying con-
centrated masses. Wu and Chiang (2004) studied about natural frequencies and mode shapes
of the double-tapered wedge beams carrying multiple point masses. Wu (2006) investigated
free vibration characteristics of a beam carrying multiple two-dof spring-mass systems. Wu
and Chen (2001) studied free vibration analysis of a Timoshenko beam carrying multiple
spring-mass systems by using the numerical assembly technique. Rao et al (2006) examined
large amplitude free vibration behaviour of uniform Timoshenko beams with central point
concentrated masses. Ruta applied Chebyshev series approximation to solve vibration prob-
lem of non-prismatic Timoshenko beam resting a two-parameter elastic foundation (Ruta
2006). Lee et al (2004) formulated spectral element model for axially moving Timoshenko
beam under a uniform axial tension. Salarieh and Ghorashi (2006) analysed free vibration of
a cantilever Timoshenko beam with a rigid tip mass. Ferreira and Fasshuer (2006) presented
a study of free vibration of Timoshenko beams and Mindlin plates by RBF-pseudospectral
method.

The mathematical model of n uniform Timoshenko columns with n attached masses given
in figure 1 is used in this study for multistory frames. Elastic support is modelled by rotation
spring. In order to reflect the relative stiffness of the column and the rotational spring, an end
fixity factor is defined. Thus, the fixity factor is defined in (1) from the rotational stiffness



Vibration of Timoshenko column with elastic support and attachment 59

so that it takes as limits: null (0) value for a theoretically pinned joint and unity (1) for a
theoretically rigid one (Cabrero & Bayo 2005).
1

= 3EI
1+ XL

f O=f=D, (D

where E[ and L are flexural rigidity and length of the Timoshenko column, Ky is the rotational
spring constant. The governing equation of free vibration is derived by including bending
and shear deformations with rotary inertia of the columns. The rotary inertia of the attached
masses is also included in the analysis. A TMM approach considering the continuity relations
of displacement, slope, moment and shear at the interface of adjacent columns is performed
to determine eigenfrequencies of the model. Considering the compatibility conditions at the
interface of adjacent columns the relations between two adjacent spans is obtained; thus,
exact values of eigenfrequencies of the entire system are determined for different number
of masses by using TMM algorithm. Another method, finite element method (FEM), is also
used to obtain the frequencies of the model. Stiffness and mass matrices of the Timoshenko
column are obtained to solve the matrix equation of motion; thus, the eigenvalues being the
frequencies are calculated using FEM algorithm.

2. Analysis by TMM

2.1 Determining eigenfunction

Differential equation of motion for the ith Timoshenko column is

9%u; m;k; mirl-2 9%u; m?rizki 9%u; m; 0%u;
- =0, (2)

_|___
ax AG;  EI ) ax*}3t>  ELAG; or*  EI o1?

where u;(x;,t), m;, ri, ki, EI; and AG;, are displacement at x; (0 < x; < L;), distributed
mass, radius of gyration, effective shear area factor due to cross-section geometry, flexural and
shear rigidities, respectively, of the ith column. Applying the separation of variables method
to (2) in the form of (3) for T(¢) # 0 and re-arranging with the dimensionless parameters
gives the eigenfunction X (x;) of the ith storey column as in (4).

ui(xi, 1) = X;(x;))T(t) = X;(x;)[A sin(wt) + B cos(wt)] 3)
Xi(x;) = Cy; sinh(A ;) + Co; cosh(Ay;x;) + Cs; sin(Agix;) + Caj c08(Aoix;),
4
where ay; = mikiw?/AGi; g = mi* | Elj; a3 = ani+ayir?s A = (@ — agir?)* +4a;

niy = (—az; ++/A))/2; ny = (—azi — /A))/2; Mi = /niis A = /|nail; Cri ... Cy; are
integration constants. Moment, shear, slope functions of the ith Timoshenko column are as
follows (Tuma & Cheng 1983).
M;(x;,t) = —ELu!(x;, 1) — ELaju;(x;, t) (5.1)
Vixi,t) = [—EL/(1 — ayr)ul (xi, 1) + aziud (x;, 1)] (5.2)

0; (xi, 1) = uj(x;, t) — Vi(x;, ki /AG; (5.3)
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2.2 Boundary conditions

Boundary conditions at the interface of the adjacent (i — 1)th and ith columns (figure 2)
are written as in (6) using the continuity of displacement and slope and the equilibrium of
moment and shear (Demirdag 2005).

ui—1(xji—1 =Li_1,t) =ui(x; =0,1) (6.1)
Oi—1(xi—1 = Li—1,1) = 0;(x; =0,1) (6.2)
Miy(xi1 = Li—1, 1) — Ji16;_1(xi—1 = Li—1, 1) = M;(x; = 0,1) (6.3)
Vici(xi—y = Li—1, 1) + Myt (xi—y = Li—y, 1) = Vi(x; = 0, 1), (6.4)

where M; and J; are ith attached mass and its rotary inertia, L; is length of the ith column.
Since continuity of displacement and slope is not valid for the support and the nth attached
mass, one gets 4(n — 1) relations from (6). However, four more relations are needed for the
entire system, two given in (7) from the elastic support in figure 3 and two given in (8) from
the nth attached mass in figure 4 where K is rotational spring constant (Demirdag 2005).

ui(x; =0,1)=0
Mi(x; =0,t) = —Kp0;(x; =0, 1)}

(7
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2.3 Obtaining transfer matrix

The relation between Cy; ... Cy; and Cy;_1 ... Cy4_1 is written from (6) in matrix form as

Cyi Ciiz T Tz Tz Tia Ciizi
Cy; Cai1 Ty Tip Tiz T4 Cr1 | .
= [T = - 1= 2, 3, R ] 9
Cs; [7i] Csi_i Tiz1 Tizp Tizz Tizg Csi_g ( ) O
Cyi Cai—i Tis1 Tip Tz Tisa Cii—i
where

Tin = aggicgi—1chi—1 + azzionai—1;  Tinp = aasioi—15hi—1 + ata7i15i—1;
Ti13 = axi010i—1Ci—1 + 27it16i—1;  Tilg = —C26i010i—18i—1 + 027; Q17 —1;

Tin1 = aziishi—1 — azoionii—1; Tioo = aziichi—1 — 30,020 —1;

Tinz = a31;8i—1 — 030i023i—1;  Tina = Q31;Ci—1 — Q30,0241
Tiz1 = aggictgi—1chi—1 — azgiotiai—1;  Tizp = ctogio;—18hi—1 — 0tp0;t15i—1;
Ti33 = 008 0010i—1Ci—1 — Q29;X16i—15  1j34 = —Q28;X10i—15i—1 — Q29; X171}

Tis1 = azgishi—y +azoionri—1; Tigz = azzichi—y + 030,002 —1;

Tisz = a32i8i—1 + o30i023i—1;  Tiaa = @32iCi—1 + 030,024 15

Q3 = Q40305 Q31 = 50305 o30; = 1/(aa +as); oo = oo /a5
Qo8 = o2 /05y Co7 = @o;/Qasi; Qe = O13;/00s;;

0s5; = O9;13; + 012i10i;  O4i = Q5;C; — Q20;Si;

Q3 = O5i8; + 000 Ci; oo = o1o;Sh; — agichy;

az1; = anoich; — agishi;  apo = aggitioi;  ®oi = Q1g;0o;;
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a8 = Jiw2; o7, = 0)3;8; — O11;Ci5  Ole = —®13;C; — O]1;5i;
ais; = appish; —aqchy; oy = apich; —apshy;  agz = agiag;;
ani = agasi; o = Miw®; a0 = Ay + asiosiki/AG;
agr = Ay — agiariki JAG;  ag = (A3 —as); az = A (A 4 as);
ag = —EL/(1 —ayr?);  asi = ELQS; — ay,);
ay = EL(A; + 1) sh; =sinh(h;L;);  ch; = cosh(hy;L;);
si =sin(Ay L;); ¢ = cos(AyL;).

Applying (9) consecutively for n storey gives

Cin Cu Cui
Cop Cyi Cyy

=T, — T[T ] .. [T , 10
Cs, [T;] Cy (T AT—1]. .. [T3][T2] Cy (10)
Can Cy Cy

where [7T;] is the transfer matrix of the entire system. Substituting (10) into (8) gives two more
equation related to Cy; . . . C41, therefore, there exists 4 homogeneous equations together with
(7) that characterize free vibration of the entire system as

Ciy 0

C21 - 0

FIY el t=101: (1
0

Cy

where [F] is coefficient matrix. Equating the determinant of [F] to zero gives frequency
equation of the entire system, and every root of this frequency equation is the eigenfrequency
of the model. These frequencies are computed by a program written by the authors considering
the secant method (Low 1991).

3. Analysis by FEM

3.1 Element matrices

Prezemieniecki (1968) obtained the stiffness and mass matrices for two-dimensional problems
of a uniform Timoshenko beam-column including shear deformation and rotary inertia effects
together with bending deformation, respectively as

12 6L -12 6L
EI 6L 4L% + ¢L? —6L  2L*—¢L?
[Kel= 57—~ (12)
LX(1+¢) | —12 —6L 12 —6L

6L 2L — pL? —6L  4L*+¢L?
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[ my + Z—im7 my + Z—szg ms — £—2m7 —my + Z—szg l
mL my + Z—zzms ms + Z—zzm9 my — z—zzms —me + Z—szlo
M= s " ; : i
m3 — zmy My — Mg my + zmy —my — zMmg
| —mg + Z—szx —me + Z_szlo —my — Z—zzms ms + 2_22m9 |
(13)
where ¢ = 12EI/kAGL?, 1> =1/A,
13 7¢ ¢ 11L 11¢p ¢
= — e -, = — _— _ L’
M=ttt 3 ™20 T \0 T
9 3¢ ¢ 13L 3p ¢
= — —_— —_—, = — —_— —_— L,
M=t e ™T o t\a0

LZ d) ¢2 5 L2 ¢ ¢2 5
= +(Z 4+ )12 = 4+ (Z 4+ )2
"5 =05t (60 + 120) Mo =Ta0 t (60 + 120)

2
m7=§, m,;:(i—f)L, m9=<3+£+¢—>L2,

5 10 2 576" 3
-1 ¢  ¢*\ ,,
Y L L2,
o (30 6+6)

and E1I, k, AG, L are the parameters defined for the ith column above. It is clear that if the
shear deformations and rotatory inertia effects are neglected that is, ¢ = 0 and r = 0, (12)
and (13) will be the stiffness and mass matrices of a Bernoulli-Euler model.

The stiffness and mass matrices are obtained for each element using (12) and (13), and
they are added appropriately to obtain the system stiffness ([K]) and mass ([M]) matrices
by a method of assembling the system stiffness and mass matrices called the direct method
(Paz 1997). In addition, the concentrated masses (M;) and their rotary inertia (J;) values
are added in the system mass matrix directly to the mass coefficient m;;, and the rotational
spring constant value is added in the system stiffness matrix to the stiffness coefficient k;.
The equations of motion as functions of the nodal coordinates may then be established by
imposing conditions of dynamic equilibrium between the inertial [ F;(¢)] and elastic [ Fs(t)]
forces, that is,

{Fi0} +{Fs(} = [MI{u} + [K{u} = 0. (14)
If it assumed that u; () = a; sin(wt), u; and a; being the displacement and the amplitude at
the ith concentrated mass, then (14) becomes an eigenvalue problem as

1 1
bm—jmym=Mehm—7mFa (15)
w w

where [D] = [K]~![M] is the dynamic matrix (Catal 2005), [/] is the unit matrix. The
non-trivial solution of (15) is obtained for {a} # 0, thus, the solution of (15) will give the
eigenvalues being the frequencies of the system.
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Table 1. Error rates of the FEM frequency values according to TMM.

Model With Mode MAE ARE (%)
One 1 9.2 0-81
Attached 2 173-62 3.62
Mass 3 105-74 1-42
Five 1 12-93 15-47
Attached 2 78-81 17-92
Masses 3 183.74 19-69
Ten 1 4.53 19-28
Attached 2 29.88 19-32
Masses 3 77-95 20-33

4. Numerical analysis

Natural frequencies for the first three modes of an elastically supported Timoshenko column
with 1, 5 and 10 attached masses are computed by both TMM and FEM approaches for param-
etersof f = 0-1—0-25—0-5—0-75—0-99—-0-999, M; = 0-1-0-5—1-2-5—-5-7-5—10, J; =
01 —05—1—-5—10.m; = 032kNs’>/m?, L; = 1m, EI = 1353870kNm*, AG =
3240000Kn, k = 2-426, S, = 0-00743m>, A = 0-04m?, I = 0-006447 m* are the char-
acteristics of the IPB profile column used for the numerical analysis. In FEM the two-node
beam elements are used, the attached masses being at those nodes, thus, since each node has
two degrees of freedom (dof) the total dof with the support node for the models with five
and ten masses are 2(5 + 1) = 12 and 2(10 + 1) = 22, respectively, that give close enough
results. The model with one mass, however, is subdivided into ten equal beam elements to
obtain more sensitive results, thus, the total dof for the entire column is 2(10 + 1) = 22.

According to (1), the relationship between the connection stiffness (Kg¢L/EI) and the
fixity factor (f) is approximately linear when the fixity factor values are between 0-0 and
0-5 and non-linear from 0-5 to unity as shown in figure 5. It can be seen from the graph that
as the fixity factor approaches unity the curve increases asymptotically to infinity since the
fixity factor of unity is used for theoretically ideal fixed support.

The frequency values of the elastically supported Timoshenko column with 1, 5 and 10
attached masses are computed by TMM and FEM. The comparison graphs of the frequency
values obtained for the models with 1, 5 and 10 attached masses are presented, respectively, in

(K, L/EI)
50 -

40
30 4

20 4

Figure 5. Relationship between the con-
0 ‘ ‘ ‘ ‘ T nection stiffness (Ky L/ EI) and the fixity
0 0,2 0,4 0,6 0,8 1 factor (f).
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Figure 6. Frequency values of TMM and FEM for the model with 1 attached mass.

figures 6, 7 and 8 for the first, second and third modes. The mean absolute error  MAE = TMM
value-FEM value) and average relative error (ARE = [MAE/TMM value] * 100) rates of the
FEM models are presented in table 1.

5. Conclusions

In this study, elastically-supported Timoshenko column with attached masses is under consid-
eration to obtain its free vibration natural frequencies using two different algorithm; transfer
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Figure 7. Frequency values of TMM and FEM for the model with 5 attached masses.

matrix method and finite element method. The comparison of the results of two methods is
presented in the graphs and the errors of the FEM according to TMM are in a table. Accord-
ing to table 1, FEM gives the best results for the model with one attached mass because of the
lowest ARE values since it is subdivided into 10 finite elements; however, the models with
5 and 10 masses are subdivided into 5 and 10 elements, respectively, therefore, ARE values
between 15 and 20 % are reached.

For one or two span models it is easy to obtain the frequency equation in explicit form
by equating the determinant of coefficient matrix written according to boundary conditions



Vibration of Timoshenko column with elastic support and attachment 67

o (r/s)
80 7 —6— tmm
—— fem
60 -

40

0 ‘ ‘ ‘ alalelaalalalalald #of data

0 30 60 90 120 150 180 210
(a) 1.mode
o (r/s)
400 A —o— tmm

0 T T T T T T 1 # Of data
0 30 60 90 120 150 180 210
(b) 2.mode
o (r/s)
1000 A

—o— tmm

# of data

0 30 60 90 120 150 180 210
(c) 3.mode

Figure 8. Frequency values of TMM and FEM for the model with 10 attached masses.

of the entire system to zero, however, for large number of spans frequency equation will be
extremely complex, therefore, the TMM will be more computationally efficient for these kind
of models. In FEM, however, as the number of spans and the attached masses is increased
the number of finite beam elements also increases. Thus, the dimension of the matrices for-
mulating the equation of motion will become larger so that the computational effort and time
increases.
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