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Abstract. A new continuous element (CE) formulation has been presented in this paper
for the vibration analysis of cross-ply composite joined conical-cylindrical-conical shells
containing fluid. Governing equations are obtained using thick shell theory of Midlin,
taking into account the shear deflection effects. The velocity potential, Bernoulli’s equa-
tion and impermeability condition have been applied to the shell-fluid interface to ob-
tain an explicit expression for fluid pressure. The dynamic stiffness matrix has been built
from which natural frequencies have been calculated. The appropriate expressions among
stress resultants and deformations are extracted as continuity conditions at the joining sec-
tion. A matlab program is written using the CE formulation in order to validate our model.
Numerical results on natural frequencies are compared to those obtained by the Finite El-
ement Method and validated with the available results in other investigations. This paper
emphasizes advantages of CE model, the effects of the fluid filling and shell geometries
on the natural frequencies of joined composite conical-cylindrical-conical shells contain-
ing fluid.

Keywords: Free vibration, cross-ply composite joined conical-cylindricall-conical shells,
dynamics stiffness matrix, continuous element method.

1. INTRODUCTION

The joined shells filled with fluid of revolution have many applications in vari-
ous branches of engineering such as mechanical, aeronautical, marine, civil and power
engineering. Hence, the comprehension of dynamic behaviours of such structures is of
great important in order to design and fabric safer and more economic composite shell
structures.

There are many computational methods available for the free vibration of the cylin-
drical and conical and joined cylindrical-conical shells, such as the exact wave solution,
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Ritz method, Gelerkin method, differential quadrature method, state space method, fi-
nite difference method, Finite Element Method (FEM) and Continuous Element Method
(CEM) or Dynamic Stiffness Method (DSM). Sivadas and Ganesan [1] investigated the
effects of thickness variation on natural frequencies of laminated conical shells by a semi-
analytical finite element method. Xi, Yam and Leung [2, 3] analyzed the free vibration of
a laminated composite circular cylindrical shell partially filled with fluid using a semi-
analytical finite element technique based on the Reissner-Mindlin theory and compress-
ible fluid equations. Katsutoshi et al. [4] analyzed the free vibrations of a laminated com-
posite circular cylindrical shell partially filled with liquid. Toorani and Lakis [5] stud-
ied the effect of shear deformation in the dynamic behaviour of anisotropic laminated
open cylindrical shells filled with fluid. Kochupillai, Ganesan and Padmanabhan [6] per-
formed a dynamic analysis of composite shells conveying fluid based on semi-analytical
coupled finite element formulation Larbi et al. [7] presented the theoretical and finite ele-
ment formulations of piezoelectric composite shells of revolution filled with compressible
fluid A semi-analytical approach has been utilized by Toorani and Lakis [8] to determine
the swelling effect on the dynamic behaviour of composite cylindrical shells conveying
fluid. Tong [9,10] proposed the power series expansion approach to study the free vibra-
tion of orthotropic composite laminated conical shells. Shu [11] has employed the dif-
ferential quadrature method to study the vibration of conical shells. The investigations
of vibration analysis for composite cylindrical shells are carried out by using different
approaches such as 2D finite element model based on classical thin shell theory [12], 2D
analytical method using the cubic spline functions [13], analytical method based on the
first-order shear deformation theory (FSDT) [14]. Senthil and Ganesan [15] performed
a dynamic analysis of composite conical shells filled with fluid. Kerboua, Lakis and
Hmila [16] using a combination of finite element method and classical shell theory to
determine the natural frequencies of anisotropic truncated conical shells in interaction
with fluid.

Irie et al. [17] used the transfer matrix approach to study the free vibration of joined
isotropic conical-cyclindrical shells. Patel et al. [18] presented some vibrational results
for laminated composite joined conical-cyclindrical shell with first order shear deforma-
tion theory using finite element method (FEM). Recently, Caresta and Kessissoglou [19]
analyzed the free vibrations of joined truncated conical-cyclindrical shells. The displace-
ments of the conical sections were solved using a power series solution, while a wave
solution was used to describe the displacements of the cylindrical sections. Both Donnell-
Mushtari and Flugge equations of motion were used. Kouchakazadeh and Shakouri [20]
studied the vibrational behaviour of two joined cross-ply laminated conical shells, joined
cylindrical-conical shells. Governing equations are obtained using thin-walled shallow
shell theory of Donnell type and Hamilton’s principle. The appropriate expressions
among stress resultants and deformations are extracted as continuity condition at the
joining section of the cones.
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In those studies, low natural frequencies are generally investigated. The known
disadvantage of traditional methods like FEM is the discretization operation of the do-
main which causes errors in dynamic analysis, especially in medium and high frequen-
cies. For medium and high frequency range, the CEM can be applied with many ad-
vantages: high precision, rapid calculating speed, reduction of the model size and of the
computing time. Numerous Continuous Elements have been established for metal and
composite beams [21, 22] and plates [23]. Nguyen Manh Cuong and Casimir [24] have
succeeded in building the DSM for thick isotropic plate and shells of revolution. The
CE models for composite cylindrical shells and conical shells presented in works of Tran
Ich Thinh and Nguyen Manh Cuong [25,26] imposed a considerable advancement of the
study on CEM for metal and composite structures. Recently, the new research for thick
laminated composite joined cylindrical-conical shells by Tran Ich Thinh, Nguyen Manh
Cuong and Vu Quoc Hien [27] has emphasized the strong capacity of CEM in assembling
complex structure.

The main objective of this paper is to present a detailed study on free vibrations of
a composite conical-cylindrical-conical shells containing an incompressible and inviscid
liquid. Illustrative examples are provided to demonstrate the accuracy and efficiency of
the developed numerical procedure.

2. FORMULATION OF JOINED CROSS-PLY COMPOSITE
CONICAL-CYLINDRICAL-CONICAL SHELLS CONTAINING FLUID

Let’s investigate the joined conical-cylindrical-conical shells containing fluid in
Fig. 1. R1 is the radius of the cylinder,R2 is the radius of the larger end of the cone. L1
and L2 are lengths of the cylinder and cone respectively. Conical shell theory using the
Reissner-Mindlin assumption will be used to mobilize both conical and cylindrical shells.

u3 

w3 

u1 

w1 

u2 

w2 

L
1
 

L2 

L2

R2 

R2

R1 

α 

α H



Fig. 1. Geometry of joined composite conical-cylindrical-conical shells containing fluid
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2.1. Composite conical shell containing fluid formulation
2.1.1. Constitutive relations

Consider a laminated composite shell of total thickness h composed by N orthotropic
layers. The plane stress-reduced stiffness are calculated as

Q11 =
E1

1− υ12υ21
, Q12 =

υ12E2

1− υ12υ21
,

Q22 =
E2

1− υ12υ21
, Q66 = G12, Q44 = G23, Q55 = G13,

(1)

where Ei, Gij, υ12, υ21: elastic constants of the kth layer and the laminate stiffness coeffi-
cients (Aij, Bij, Dij, Fij) are defined by

Aij =
N

∑
k=1

Q̄k
ij(zk+1 − zk), Bij =

1
2

N

∑
k=1

Q̄k
ij(z

2
k+1 − z2

k), Dij =
1
3

N

∑
k=1

Q̄k
ij(z

3
k+1 − z3

k)(i, j = 1, 2, 6)

Fij =
N

∑
k=1

Qk
ij(z
−
k+1zk)(i, j = 4, 5)

(2)
where zk−1 and zk are the boundaries of the kth layer.

2.1.2. Strains, stress and internal forces resultant
Following the Reissner-Mindlin assumption, the displacement components are as-

sumed to be

u (x, θ, z, t) = u0 (x, θ, t) + zϕx (x, θ, t) , v (x, θ, z, t) = v0 (x, θ, t) + zϕθ (x, θ, t) ,

w (x, θ, z, t) = w0 (x, θ, t) ,
(3)

a) The strain-displacement relations of conical shell are (with R(x) = R1 + x.sinα):

εx =
∂u0

∂x
, kx =

∂ϕx

∂x
, εθ =

1
R

(
u0 sin α +

∂v0

∂θ
+ w0 cos α

)
, kθ =

1
R

(
ϕx sin α +

∂ϕθ

∂θ

)
,

εSθ =
∂v0

∂s
+

1
R

∂u0

∂θ
− sin α

R
v0 , kxθ =

1
R

∂ϕx

∂θ
+

∂ϕθ

∂x
− sin α

R
ϕθ , γθZ =

− cos α

R
υ0+

1
R

∂w0

∂θ
+ϕθ ,

(4)
b) Force resultants–displacement relationships:

The force and moment resultants are expressed in terms of deformations for cross-
ply axis-symmetric shell as follows N

M
Q

 =

 A B 0
B D 0
0 0 F

 ε
k
γ

 . (5)
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Substituting Eqs. (2) and (4) in Eqs. (5), the forces-displacements expressions for
laminated composite conical shell are written as follows

Nx = A11
∂u0

∂x
+

A12

R

(
u0 sin α +

∂v0

∂θ
+ w0 cos α

)
+ B11

∂ϕx

∂x
+

B12

R

(
ϕx sin α +

∂ϕθ

∂θ

)
,

Nθ = A12
∂u0

∂x
+

A22

R

(
u0 sin α +

∂v0

∂θ
+ w0 cos α

)
+ B12

∂ϕx

∂x
+

B22

R

(
ϕx sin α +

∂ϕθ

∂θ

)
,

Nxθ = A66

(
∂v0

∂x
+

1
R

∂u0

∂θ
− sin α

R
v0

)
+ B66

(
1
R

∂ϕx

∂θ
+

∂ϕθ

∂x
− sin α

R
ϕθ

)
,

Mx = B11
∂u0

∂x
+

B12

R

(
u0 sin α +

∂v0

∂θ
+

w0 cos α

R

)
+ D11

∂ϕx

∂x
+

D12

R

(
ϕx sin α +

∂ϕθ

∂θ

)
,

Mθ = B12
∂u0

∂x
+

B22

R

(
u0 sin α +

∂v0

∂θ
+ w0 cos α

)
+ D12

∂ϕx

∂x
+

D22

R

(
ϕx sin α +

∂ϕθ

∂θ

)
,

Mxθ = B66

(
∂v0

∂x
+

∂u0

R∂θ
− sin α

R
υ0

)
+ D66

(
1
R

∂ϕx

∂θ
+

∂ϕθ

∂x
− sin α

R
ϕθ

)
,

Qx = kF55

(
∂w0

∂x
+ ϕx

)
, Qθ = kF44

(
− cos α

R
υ0 +

1
R

∂w0

∂θ
+ ϕθ

)
,

(6)
where k is the shear correction factor (k = 5/6)

2.1.3. Equations of motion
The equations of motion using the FSDT for laminated composite conical shell con-

taining fluid are

∂Nx

∂x
+

sin α

R
(Nx − Nθ) +

1
R

∂Nxθ

∂θ
= I0ü0 + I1 ϕ̈x ,

∂Nxθ

∂x
+

2 sin α

R
Nxθ +

1
R

∂Nθ

∂θ
+

cos α

R
Qθ = I0v̈0 + I1 ϕ̈θ ,

∂Mx

∂x
+

sin α

R
(Mx −Mθ) +

1
R

∂Mxθ

∂θ
−Qx = I1 ü0 + I2 ϕ̈x ,

∂Mxθ

∂x
+

2 sin α

R
Mxθ +

1
R

∂Mθ

∂θ
−Qθ = I1 v̈0 + I2 ϕ̈θ ,

∂Qx

∂x
+

1
R

∂Qθ

∂θ
+

sin α

R
Qx −

cos α

R
Nθ − P cos α = I0ẅ0 ,

(7)

where u0, v0, w0: displacement, ϕx, ϕθ : rotation of tangents along the x and θ. And

Ii =
N
∑

k=1

zk+1∫
zk

ρ(k)zidz, (i = 0, 1, 2), where ρ(k) is the material mass density of the kth layer.

Substituting α = 0 in Eqs. (6) and (7), the forces-displacements relations and the
equations of motion for laminated composite cylindrical shell containing fluid can be
obtained [27].
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2.1.4. Fluid equations
The potential function Φ(r, θ, x, t) satisfies the Laplace equation in cylindrical co-

ordinates (r, θ, x)
∂2Φ
∂r2 +

1
r

∂Φ
∂r

+
1
r2

∂2Φ
∂θ2 +

∂2Φ
∂x2 = 0. (8)

Then, the Bernoulli equation is written by
∂Φ
∂t

+
P
ρ f

= 0. (9)

By linearizing this expression, the pressures on the internal regions are

P= −ρ
∂Φ
∂t

∣∣∣∣
Σ

, (10)

where Σ is the portion of the structure’s surface in contact with fluid.
The condition of impermeability of the surface of shell in contact with fluid can be

expressed as

v f =
∂Φ
∂r

∣∣∣∣
Σ
=

∂w0

∂t

∣∣∣∣
Σ

, (11)

where w0 is the normal displacement of the shell, v f is the velocity of fluid.
The hydrodynamic pressure acting on the cylindrical shell is then defined by [27]

P = −ρ f
1

m + knRIm+1 (knR) /Im (knR)
∂2w0

∂t2 = m∗
∂2w0

∂t2 . (12)

This value will be introduced in (7) in order to establish the Dynamic Stiffness
Matrix for the studied structure.

2.1.5. Continuity conditions
The continuity conditions at the conical-cylindrical shell joint can be obtained from

Caresta and Kessissoglou [19] as follows

u1 = u2 cos α− w2 sin α, v1 = v2, w1 = u2 sin α + w2 cos α,
∂w1

∂x1
=

∂w2

∂x2
,

Nx1 = Nx2 cos α−Qx2 sin α, Qx1=Nx2 sin α + Qx2 cos α, Mxθ1=Mxθ2, Mx1=Mx2 .
(13)

3. CONTINUOUS ELEMENT FORMULATION FOR THICK LAMINATED
COMPOSITE JOINED CONICAL-CYLINDRICAL-CONICAL SHELLS

CONTAINING FLUID

3.1. Strong formulation

Here, the same state-vector y = {u0, v0, w0, ϕx, ϕθ , Nx, Nxθ,Qx, Mx, Mxθ}T. Next, the
Lévy series expansion for state variables is written as
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{u0(x, θ, t), w0(x, θ, t), ϕθ(x, θ, t), Nx(x, θ, t), Qx(x, θ, t), Mx(x, θ, t)}T =

=
∞

∑
m=1
{um(x), wm(x), ϕθm(x), Nxm(x), Qxm(x), Mxm(x)}T cos mθeiωt,

{v0(x, θ, t), ϕx(x, θ, t), Nxθ(x, θ, t), Mxθ(x, θ, t)}T =

=
∞

∑
m=1
{vm(x), ϕxm(x), Nxθm(x), Mxθm(x)}T sin mθeiωt,

(14)

where m is the number of circumferential wave.
Substituting (14) in Eqs. (6) and (7), a system of ordinary differential equations in

the x-coordinate for the mth mode can be expressed in the matrix form for each circum-
ferential mode m as [25–28]
dum

dx
= c4 sin α.um + mc4vm + c4 cos α.wm + c5 sin α.ϕxm + mc5ϕθm +

D11

c1
Nxm −

B11

c1
Mxm ,

dvm

dx
=

m
R

um −
sin α

R
vm −

D66

c10
Nxθm +

B66

c10
Mxθm,

dwm

dx
= −ϕxm +

1
kF55

Qxm ,

dϕxm

dx
= c2 sin α.um + mc2vm + c2 cos α.wm + c3 sin α.ϕxm + mc3ϕθm −

B11

c1
Nxm +

A11

c1
Mxm ,

dϕθm

dx
=

m
R

ϕxm −
sin α

R
ϕθm +

B66

c10
Nxθm −

A66

c10
Mxθm ,

dNxm

dx
=
(
c6 sin2 α− I0v2) um + mc6 sin α.vm + c6 sin α cos α.wm +

(
c7 sin2 α− I1ω2) ϕxm+

+ mc7 sin α.ϕθm − sin α

(
c4 +

1
R

)
Nxm −

m
R

Nxθm − c2 sin α.Mxm ,

dNxθm

dx
= mc6 sin α.um +

(
m2c6 +

kF44 cos2 α

R2 − I0ω2
)

vm + m cos α

(
c6 +

kF44

R2

)
wm+

+ mc7 sin α.ϕxm +

(
m2c7 −

kF44 cos α

R
− I1ω2

)
ϕθm −mc4Nxm −

2 sin α

R
Nxθm −mc2Mxm ,

dQxm

dx
= c6 sin α cos α.um+m cos α

(
c6+

kF44

R2

)
vm+

(
c6 cos2 α+

m2kF44

R2 − I0ω2−m∗ω2
)

wm+

+c7 sin α cos α.ϕxm+

(
mc7 cos α−mkF44

R

)
ϕθm−c4 cos α.Nxm−

sin α

R
Qxm−c2 cos α.Mxm ,

dMxm

dx
=
(
2c8 sin2 α− I1ω2)um+2mc8 sin α.vm+2c8 sin α cos α.wm+

(
2c9 sin2 α− I2ω2)ϕxm+

+ 2mc9 sin α.ϕθm − 2c5 sin α.Nxm + Qx −
[

2 sin α

(
c3 +

1
R

)]
Mxm −

m
R

Mxθm ,

dMxθm

dx
= mc8 sin α.um +

(
m2c8 −

kF44 cos α

R
− I1ω2

)
vm + m

(
c8 cos α− kF44

R

)
wm+

+ mc9 sin α.ϕxm +
(
m2c9 + kF44 − I2ω2) ϕθm −mc5.Nxm −mc3Mxm −

2 sin α

R
.Mxθm ,

(15)
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with

c1 = A11D11 - B2
11, c2 = (A12B11 − A11B12) /Rc1, c3 = (B11B12 − A11D12) /Rc1 ,

c4 = (B11B12 − A12D11) /Rc1, c5 = (B11D12 − B12D11) /Rc1 ,

c6 = (A12c4 + B12c2 + A22/R) /R, c7 = (A12c5 + B12c3 + B22/R) /R ,

c8 = (B12c4 + D12c2 + B22/R) /R, c9 = (B12c5 + D12c3 + D22/R) /R ,

c10 = B2
66 − A66D66.

Eq. (15) can be expressed in the matrix form for each circumferential mode m

dym

dx
= Amym , (16)

with Am is a 10× 10 matrix (see Appendix).

3.2. Dynamic transfer matrix, dynamic stiffness matrix K(ω)

The dynamic transfer matrix [T]m is given by: Tm (ω) = e

L∫
0

Am(x,ω)dx
.

Then [T]m is separated into four blocks

[T]m =

[
T11 T12
T21 T22

]
. (17)

Finally, the dynamic stiffness matrix [K(ω)]m for conical shell containing fluid is
determined by

[K(ω)]m =

[
T−1

12 T11 −T−1
12

T21 − T22T−1
12 T11 T22T−1

12

]
m

. (18)

Similarly, we can obtain the dynamic stiffness matrix [K(ω)]m for cylindrical shell
containing fluid [27].

The assembly procedure of the finite element method is used to construct the Dy-
namic Stiffness Matrix for combined conical-cylindrical-conical shells containing fluid.

   Kcyl+fluid 

   Kcon+fluid 

K()m  = 

Kcon+fluid 

Natural frequencies will be extracted from the harmonic responses of the structure
by using the procedure detailed in [25–28].
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4. NUMERICAL RESULTS AND DISCUSSION

4.1. Modal analysis
A computer program based on Matlab is developed using DSM to solve a number

of numerical examples on free vibration of composite joined conical-cylindrical-conical
shells containing fluid with different fluid level and geometries shell. Fundamental fre-
quencies will be validated with respect to those of literature and to the results obtained
by FEM.

First, natural frequencies are validated for a Free-clamped cross-ply laminated
composite cylindrical shells containing fluid having the following dimensions and ma-
terial: E1 = 206.9 GPa; E2 = 18.62 GPa; ν12 = 0.28, G12 = 4.48 GPa; G13 = 4.48 GPa;
G23 = 2.24 GPa; ρ = 2048 kg/m3, layers [00/900/00/900]; h = 9.525 mm; R = 0.1905m;
L = 0.381m, ρ f = 1000 kg/m3. Our results comparing to FEM-ANSYS and Xi et al.
values [2] are illustrated in Tab. 1.

Table 1. Comparison of natural frequencies of laminated composite cylindrical shells partially
filled with fluid by FEM and by CEM in comparison with results of Xi et al. [2]

Fluid Mode Xi [2] FEM CEM Error (%) % Reduction

levers (n, m) (1) (60× 19× 10) (2) (1)-(2) with H/L = 0

H/L = 0
1 (1,2) 419,54 454,15 460,3 1,35 -

2 (1,3) 517,2 561,02 566,2 0,92 -

3 (1,1) 645,24 677,56 679,12 0,23 -

H/L = 0.5
1(1,2) 377,2 401,12 402,52 0,35 12,55

2(1,3) 440,64 483,49 482,42 -0,22 14,80

3(1,1) 581,98 606,03 614,61 1,42 9,50

H/L = 1
1(1,2) 206,41 236,06 235,6 -0,19 48,80

2(1,3) 280,09 303,28 297,7 -1,84 47,42

3(1,1) 314,85 355,67 372,36 4,69 45,17

The next step of our research on composite axis-symmetric joined shell is obvi-
ously to validate the presented formulation for this type of structure. Consider the free-
clamped (F-C) joined cross-ply laminated conical-cylindrical shells having the following
dimensions and material: L/R1 = 1; h/R1 = 0.01; h = 2 mm; Li = L, E1 = 135 Gpa;
α = 00, 300, 600; E2 = 8.8 Gpa; G12 = 4.47 Gpa; υ12 = 0.33; ρ = 1600 kg/m3. Our results
comparing to FEM-ANSYS values with different meshes and with analytical solutions of
Kouchakzadeh [20] are illustrated in Tab. 2.

The agreement between FEM, CEM and Xi results, Kouchakzadeh results is very
good in Tab. 1 and Tab 2.
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Table 2. The lowest fundamental frequency parameter Ω1 = ωR1 [ρh/A11]
1/2 and corresponding

circumferential wave numbers (m) for various types lamination sequences of joined cross-ply
laminated conical-cylindrical shells (FC boundary condition)

No
Cone

Layers
Kouchakzadeh [20] Ansys Ansys CEM Errors (%)

angles (1) 40× 10 80× 20 (2) (2)-(1)
1

α = 00

[0/90] 0.0455(4) 0.0454 0.0454 0.0458 0.66
2 [90/0] 0.0455(4) 0.0453 0.0453 0.0457 0.44
3 [0/0/0] 0.0288(5) 0.0286 0.0286 0.0289 0.35
4 [0/90/0] 0.0365(5) 0.0362 0.0362 0.0366 0.27
5 [0/0/90] 0.0403(4) 0.0401 0.0401 0.0405 0.49
6 [0/90/90] 0.0567(4) 0.0565 0.0565 0.0570 0.53
7 [90/90/0] 0.0577(4) 0.0576 0.0576 0.0578 0.17
8 [90/90/90] 0.1183(3) 0.1187 0.1188 0.1183 0.00
9 [0/90]2 0.0533(4) 0.0531 0.0532 0.0535 0.37

10 [0/90]S 0.0442(4) 0.0438 0.0440 0.0443 0.23
11 [90/0]2 0.0533(4) 0.0531 0.0532 0.0535 0.37
12 [90/0]S 0.0593(3) 0.0591 0.0592 0.0595 0.34
1

α = 300

[0/90] 0.0366(4) 0.0363 0.0363 0.0367 0.27
2 [90/0] 0.0367(4) 0.0364 0.0364 0.0367 0.00
3 [0/0/0] 0.0238(4) 0.0236 0.0236 0.0239 0.42
4 [0/90/0] 0.0309(4) 0.0306 0.0306 0.0310 0.32
5 [0/0/90] 0.0313(4) 0.0310 0.0310 0.0313 0.00
6 [0/90/90] 0.0492(4) 0.0489 0.0489 0.0494 0.40
7 [90/90/0] 0.0500(4) 0.0498 0.0498 0.0502 0.40
8 [90/90/90] 0.1389(3) 0.1394 0.1395 0.1392 0.22
9 [0/90]2 0.0468(4) 0.0466 0.0466 0.0470 0.43

10 [0/90]S 0.0384(4) 0.0381 0.0381 0.0385 0.26
11 [90/0]2 0.0469(4) 0.0467 0.0467 0.0471 0.42
12 [90/0]S 0.0530(3) 0.0528 0.0528 0.0532 0.38
1

α = 600

[0/90] 0.0250(3) 0.0248 0.0248 0.0253 1.19
2 [90/0] 0.0249(3) 0.0247 0.0247 0.0252 1.19
3 [0/0/0] 0.0181(4) 0.0178 0.0178 0.0182 0.55
4 [0/90/0] 0.0241(4) 0.0238 0.0238 0.0243 0.82
5 [0/0/90] 0.0223(3) 0.0222 0.0222 0.0226 1.33
6 [0/90/90] 0.0315(3) 0.0313 0.0313 0.0318 0.94
7 [90/90/0] 0.0320(3) 0.0318 0.0318 0.0323 0.93
8 [90/90/90] 0.0963(3) 0.0967 0.0968 0.0979 1.63
9 [0/90]2 0.0302(3) 0.0300 0.0300 0.0305 0.98

10 [0/90]S 0.0285(3) 0.0281 0.0282 0.0287 0.70
11 [90/0]2 0.0302(3) 0.0300 0.0300 0.0304 0.66
12 [90/0]S 0.0342(3) 0.0348 0.0248 0.0344 0.58
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Table 3. The fundamental frequency ω (Hz) corresponding to circumferential wave
numbers (m) for various fluid level of joined cross-ply laminated

conical-cylindrical-conical shells containing fluid, n = 1

Fluid Ansys % Reduction
Level

m 60× 19× 10 CEM Errors (%)
with H/L = 0(1) (2) (2)-(1)

H = 0

1 85.47 85.70 0.27 -
2 28.59 28.70 0.38 -
3 23.27 23.40 0.56 -
4 41.58 41.70 0.29 -
5 67.05 67.20 0.22 -

H = 0.5H1

1 80.23 80.80 0.70 5.72
2 28.00 28.00 0 2.44
3 23.12 23.20 0.34 0.85
4 41.72 41.60 0.29 0.24
5 65.18 65.00 0.28 3.27

H = H1

1 75.25 75.50 0.33 11.9
2 27.36 27.30 0.22 4.88
3 23.00 23.00 0 1.71
4 41.30 41.40 0.24 0.72
5 56.18 56.30 0.21 16.22

H = H1 + 0.5H2

1 28.67 28.90 0.80 66.28
2 9.79 10.30 4.95 64.11
3 9.95 10.30 3.40 55.98
4 18.25 18.30 0.27 56.12
5 21.36 21.20 0.75 68.45

H = H1 + H2

1 21.66 22.20 2.43 74.10
2 9.47 8.80 7.61 69.34
3 10.18 9.40 8.30 59.89
4 17.92 17.10 4.80 58.99
5 21.22 20.20 5.05 69.94

H = H1 + H2 + 0.5H3

1 20.10 20.10 0 76.55
2 6.60 6.80 2.94 76.31
3 5.71 6.00 4.83 74.36
4 11.10 11.40 2.63 72.66
5 18.97 18.70 1.44 72.17

H = H1 + H2 + H3 (full fluid)

1 18.46 18.40 0.33 78.53
2 5.52 5.90 6.44 79.44
3 5.23 5.20 0.58 77.78
4 10.61 10.10 5.05 75.78
5 18.60 17.40 6.90 74.11
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4.2. Effects of fluid level
Natural frequencies are computed for a Free-clamped joined cross-ply laminated

composite conical-cylindrical-conical shells containing fluid having the following dimen-
sions and material: L1/R1 = 2; R1 = 0.285; h = 2 mm; L1 = 2L2, E1 = 10.58 GPa;
α = 90; E2 = 2.64 GPa; G13 = G12 = 1.02 GPa; υ12 = 0.17; ρ = 1600 kg/m3, ρ f = 1000
kg/m3, layers [00/900/00/900]. Our results comparing to FEM values are illustrated in
Tab. 3.

CEM results give a good agreement with FEM solutions. The exactness of FEM
depends on the choice of mesh but three continuous elements of CEM are enough to give
exact results for all range of frequencies including medium and high frequencies. It is
seen from Tab. 3 that the present model for joined cross-ply laminated conical-cylindrical-
conical shells containing fluid with free-clamped boundary conditions is validated. Er-
rors when comparing with results of FEM varies from 0 to 8.30 percents which are very
small and therefore the accuracy of our developed continuous element is confirmed.

Fig. 2 illustrates the effects of fluid level on fundamental frequencies of free-clamped
laminated composite combined conical-cylindrical-conical shells containing fluid.

h 

9
0 

H
2

H
1

H
3

 

Fig. 2. Effect of fluid level on fundamental frequencies of combined
conical-cylindrical-conical shells containing fluid

From the figure it can be seen clearly that the reduction of the natural frequency
of composite combined conical-cylindrical-conical shells containing fluid as fluid level
increases. Filled fluid can reduce significantly the natural frequency of a laminated com-
posite conical-cylindrical-conical shells fill-fluid. From the Tab. 3 it can be seen clearly
that the reduction of the natural frequency of the shell decreases first slowly then quickly
as the fluid height increases.
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Table 4. The fundamental frequency ω (Hz) corresponding to circumferential
wave numbers (m) for various ratio L1/R1 of joined cross-ply laminated

conical-cylindrical-conical shells containing fluid, n = 1

Ratio L1/R1
Fluid

m CEM
% Reduction

Level with H = 0

1

H = 0

1 210.1 -
2 94.8 -
3 47.0 -
4 43.5 -
5 63.2 -

full fluid

1 72.2 65.64
2 27.3 71.20
3 13.1 72.13
4 12.4 71.49
5 18.5 70.73

2

H = 0

1 85.7 -
2 28.7 -
3 23.4 -
4 41.7 -
5 67.2 -

full fluid

1 21.6 74.80
2 6.3 78.05
3 5.3 77.35
4 10.2 75.54
5 17.6 73.81

6

H = 0

1 11.3 -
2 12.5 -
3 26.8 -
4 35.5 -
5 53.4 -

full fluid

1 2.0 82.30
2 2.3 81.60
3 5.2 80.60
4 7.6 78.59
5 12.6 76.40



262 Vu Quoc Hien, Tran Ich Thinh, Nguyen Manh Cuong

4.3. Effects of shell geometries
Natural frequencies are computed for a Free-clamped joined cross-ply laminated

composite conical-cylindrical-conical shells containing fluid with ratio L1/R1 = 1; 2; 6
(R1 = 0.285). Results are illustrated in Tab. 4.

Fig. 3 illustrates the effects of shell geometries on fundamental frequencies of free-
clamped laminated composite combined conical-cylindrical-conical shells containing fluid.

From the figure it can be seen clearly that natural frequency of composite joined
cross-ply laminated conical-cylindrical-conical shells containing fluid decreases as ratio
L1/R1 increases. The natural frequencies of this laminated shells decrease significantly
as mode m = 1 or 2 and n = 1.

Fig. 3. Effect of shell geometries on fundamental frequencies of combined
conical-cylindrical-conical shells containing fluid
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5. CONCLUSIONS

Based on the numerical results presented in this paper, the following conclusions
may be drawn:

+ Various test cases confirm that Continuous Element Method allows comput-
ing the natural frequencies of thick joined cross-ply laminated conical-cylindrical-conical
shells containing fluid with high accuracy for any frequency range. Using minimum
meshing for complex structures, this model accelerates the speed of computation and
economies the storage capacity of computers. The developed Continuous Element can
be used efficiently for analyzing joined cross-ply laminated conical-cylindrical-conical
shells containing fluid in medium and high frequencies where other current methods
meet difficulties.

+ The fluid filling can reduce significantly the natural frequencies of thick joined
cross-ply laminated conical-cylindrical-conical shells filled with fluid. Frequency reduc-
tion is shown to increase with liquid depth.

+ Natural frequency of composite joined cross-ply laminated conical-cylindrical-
conical shells containing fluid decreases as ratio L1/R1 increases. The reduction of natu-
ral frequencies of composite joined cross-ply laminated conical-cylindrical-conical shells
is significant as mode m = 1 or 2 and n = 1.

The present Continuous Element model can be expanded to solve the vibration
problem of joined composite conical-cylindrical-conical shell filled with fluid surrounded
by an elastic foundation.
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APPENDIX

Matrix [A (ω)]10×10

Asm =



c4 sin α mc4 c4 cos α c5 sin α
m
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0 0 0 −1
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0 0 0 m
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