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A new structural dynamic model for the free vibration characteristic analysis of rotating pretwisted functionally graded (FG)
sandwich blades is developed. The sandwich blade is made up of two functionally graded skins and a homogeneous material
core. The thick shell theory is applied to derive the basic equations of motion of the rotating FG sandwich blade by considering
the effects of centrifugal and Coriolis forces. The mode shapes are expanded in terms of two-dimensional algebraic polynomials
in the Rayleigh–Ritz method, and the static and dynamic natural frequencies of the blade are obtained. The convergence
analysis is studied, and the accuracy of the proposed model is verified by comparing with the literature results and ANSYS data.
The effects of frequency parameters such as the twist angle, the thickness ratio, the aspect ratio, the layer thickness ratio, the
scalar parameter of volume fraction, the stagger angle, and the rotation velocity on the vibration characteristics for pretwist FG
sandwich blade are investigated in detail. In addition, the phenomena of frequency locus veering and mode shape exchanging
occur in the static and dynamic states. Frequency locus veering is essentially caused by the coupling between different modes.

1. Introduction

The aero gas turbine engine is the key technology of the air-
craft; blade is one of the most important parts of the system.
Vibration, especially resonance of the blade, will produce
larger stress, which will lead to fatigue failure. Thus, the
dynamic behavior of rotating blades has been studied by
numerous researchers.

Some simplified blade models such as beams, plates, and
shells are used to investigate the vibration characteristics of
the blades in the published literatures. Leissa and Jacob [1]
investigated the free vibration of pretwisted, cantilevered
beams and plates by using the Ritz method. The work was
the first three-dimensional study of the problem. Yoo et al.
[2] derived the equations of motion with a concentrated mass
by using a modeling method with hybrid deformation vari-
ables and investigated the effects of the nondimensional
parameters on the vibration characteristics of the pretwisted
rotating blade through numerical analysis. Chandiramani
et al. [3] simplified the pretwisted rotating blade as a

laminated composite, hollow uniform box-beam model,
which considers the centrifugal and Coriolis effects, trans-
verse shear flexibility, and restrained warping, and studied
the free and forced vibration by using HSDT and Galerkin
method. Carrera et al. [4] used the Carrera unified formula-
tion and FEM to study the free vibration analysis of rotating
blades; the Coriolis and centrifugal force fields were included
in their work.

The beam models are quite suitable for blades with large
aspect ratio and low width thickness ratio. However, flexible
rotating structures such as blades with low aspect ratios are
also widely used in actual engineering applications. There-
fore, more and more literatures were found to study the
vibration of blade with plate and shell models.

Qatu andLeissa [5]were thefirst to study the effect of plate
parameters such as twist angle, stacking sequence, and lami-
nation angle on the natural frequency and mode shapes of
laminated composite pretwisted cantilever plates by using
the shallow shell theory and Ritz method. Nabi and Ganesan
[6] analyzed the vibration characteristics of metal matrix
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composite pretwisted blades by using beam and plate theories,
respectively, and summed up the quantitative comparison of
natural frequency. Yoo and Chung [7] developed a linear
dynamic modeling method for plates by using two in-plane
stretch variables and analyzed and studied the transient char-
acteristics of rotating plates. Hu et al. [8] proposed a numeri-
cal procedure for the free vibration analysis of pretwisted thin
plates based on the thin shell theory and studied the vibration
characteristics considering different twist rates and aspect
ratios. Hashemi et al. [9] used the Mindlin plate theory and
Kane dynamic method to develop a finite element formula-
tion for vibration analysis of rotating thick plates. The cou-
pling between in-plane and out-of-plane deformations and
Coriolis effect was considered in the study. Sinha and Turner
[10] derived the governing partial differential equation of
motion for the rotating pretwisted plate by using the thin shell
theory and studied the free vibration of a turbomachinery
cantilevered airfoil blade with the Rayleigh–Ritz technique
by considering the centrifugal force filed as a quasi-static load.
Sun et al. [11] presented a dynamic model based on CLPT,
investigated the vibration behavior of a rotating blade by using
Hamilton’s principle, and studied the point and distribution
forced response using a proportional damping model.

Rao and Gupta [12] studied the vibration of natural fre-
quencies with various parameters of a rotating pretwisted
blade with a small aspect ratio by using the classical bending
theory of thin shells. Sun et al. [13] developed a novel
dynamic model for pretwisted rotating compressor blades
by using the general shell theory and studied the eigenfre-
quencies and damping properties of the pretwisted rotating
blade. Sinha and Zylka [14] derived the governing partial dif-
ferential equation of motion based on the thin shell theory
and formulated the free vibration of a turbomachinery canti-
levered airfoil by considering it as an anisotropic shell in a
centrifugal force field. Kielb et al. [15] gave the complete the-
oretical and experimental results of a joint research study on
the vibration characteristics of pretwisted cantilever plates.

Claassen and Thorne [16] were the first to find out and
discuss the curve veering in the plate vibration based on
CLPT. Afolabi and Mehmed [17] studied the curve veering
and flutter of rotating blades based on the theory of algebraic
curves and catastrophe theory. They found that the frequency
loci of undamped rotating blades do not cross, butmust either
repel each other or attract each other. Yoo and Pierre [18, 19]
studied the vibration characteristics of rotating cantilever
rectangular plates and composite plates, respectively, and
found out and discussed the natural frequency locus veering,
crossing, and associated mode shape variations in detail.

Most of the early studies were focused on homogeneous
materials, and in recent years, some researchers have
extended the range to composite materials because of their
excellent properties. The structure was developed from single
layer to multilayer and composite layer, and more and more
literature has been published.

Oh et al. [20] studied the vibration of turbomachinery
rotating blades made up of functionally graded materials
and investigated the influence of parameters on the fre-
quency of rotating blades. A refined dynamic theory involv-
ing the coupling between flapping, lagging, and transverse

shear was used in their work. Ramesh and Rao [21] studied
the natural frequencies of a pretwisted rotating FG cantilever
beam by using Lagrange’s equation and the Rayleigh–Ritz
method. The influences of different parameters and coupling
between chordwise and flapwise bending modes on the natu-
ral frequency were investigated. Oh and Yoo [22] presented a
new structural dynamic model to study the vibration charac-
teristics of rotating blades. The blade was modeled as a func-
tionally graded material pretwisted beam by using the
Rayleigh–Ritz and Kane method. Mantari and Granados
[23] studied the free vibration of FG plates by using a new
novel FSDT with 4 unknowns. Li and Zhang [24] developed
a dynamic model for FG plates undergoing large overall
motions, studied the free vibration of rotating cantilever
FGM rectangular plates, and found frequency locus veering
and associated mode shift phenomena. Sun et al. [25] devel-
oped a novel dynamic model for multilayer blades by using
the quadratic layerwise theory and studied the structural
dynamics, particularly the damping properties of the rotating
blade. Frequency locus veering with rotation speed was also
found. Cao et al. [26] developed a rotating cantilever pre-
twisted sandwich plate model with a prestagger angle and
investigated the vibrational behavior of a turbine blade with
thermal barrier coating layers by using FSDT, von Karman
plate theory, and Chebyshev–Ritz method.

In the present paper, a new structural dynamic model is
developed to study the free vibration characteristics of pre-
twisted rotating FG sandwich blades. The thick shell theory
is applied to derive the basic equations of motion by consid-
ering the effects of centrifugal and Coriolis forces. The accu-
racy of the proposed model is verified by comparing with the
literature and ANSYS. The effects of frequency parameters
such as the twist angle, the thickness ratio, the aspect ratio,
the layer thickness ratio, the scalar parameter of volume frac-
tion, the stagger angle, and the rotation velocity on the vibra-
tion characteristics are investigated in detail. Furthermore,
frequency locus veering and mode shape exchanging phe-
nomena are found both in both static and dynamic states.

2. Theoretical Analysis

2.1. Basic Equations. As shown in Figure 1, the functionally
graded sandwich blade is modeled as a cantilever pretwisted
thick plate with the twist angle θ at the free end, which is
clamped to the rigid diskwith a radiusR, mountedwith a stag-
ger angle φ. The geometric parameters of the blade are the
span (length) dimension L, the chord (width) dimension b,
the total thickness h, and the angular rotating velocity about
the rigid disk axis Ω.

In this paper, three coordinate systems are established for
dynamic modeling. One is the XYZ-coordinate system (with
unit vectors (iX , iY , iZ)), where the x-axis is along the
spanwise direction of the blade, Y is the rotation axis, and
the Z-axis is perpendicular to the XY-plane following the
right-hand rule. The other is the xyz-coordinate system (with
unit vectors (ix , iy, iz)), where the origin lies in the root of
the mid-surface of the blade and the x-axis is parallel to
the X-axis; the y-axis can be obtained by rotating around
the x-axis with the stagger angle φ starting from the Y-axis
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direction. Figure 2 shows the last xη coordinate, a dynamic
surface coordinate where the η-axis is perpendicular to the
x-axis and equal to the y-axis at x = 0, rotating at a uniform
twist rate k = θ/L. Thus, the rotating angle at x can be
expressed as

θ′ x = kx, x ∈ 0, L 1

The position vector r 0
0 x, η of a typical point on the

mid-surface of the pretwisted blade in the xη-coordinate
can be written as

r 0
0 x, η =

x

η cos θ′

η sin θ′

T ix
iy
iz

2

Based on the Frenet–Serret formula [28], the corre-
sponding unit base vectors can be expressed as

e0x
e0η
e0ζ

= 1
A

1 −kη sin θ′ kη cos θ′

0 A cos θ′ A sin θ′

−kη −sin θ′ cos θ′

ix
iy
iz

,

3

where A is the Lame parameter of the middle surface in the
x-direction, given by

A = 1 + k2η2 4

Then, an arbitrary point of the blade before deformation
can be expressed by a position vector r 0 as

r 0 = r 0
0 + ζe0ζ =

x − kη
ζ

A

η cos θ′ − ζ sin θ′
A

η sin θ′ + ζ cos θ′
A

T

ix
iy
iz

5

As illustrated in Figure 3, the core of the blade
(h1 ≤ ζ ≤ h2) is fully metal (isotropic) and two skins are com-
posed of functionally graded material (FGM) in the thick-
ness direction. The top skin varies from ceramic-rich
surface (ζ = h3) to metal-rich surface (ζ = h2), while the
bottom skin varies from ceramic-rich surface (ζ = h0) to
metal-rich surface (ζ = h1). There are no interfaces between
the core and skins of the functionally graded sandwich
blade, and two skins are symmetrical about the middle
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Figure 1: A typical pretwisted rotating blade model.
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Figure 2: The dynamic coordinate system of the pretwisted rotating blade.
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surface in this paper. The volume fraction of the metal phase
is obtained as [27]

Vm ζ =

h + 2ζ
h − hm

n

ζ ∈ h0, h1 ,

1 ζ ∈ h1, h2 ,
h − 2ζ
h − hm

n

ζ ∈ h2, h3

6

As shown in Figure 4, n is the scalar parameter that
allows users to define the gradation of material properties
in the thickness direction. The n = 0 case corresponds to a
fully metal blade. The volume fraction for the ceramic phase
is given as

Vc ζ = 1 −Vm ζ 7

In the present work, the homogenization procedure and
the law of mixtures are used. The variation of the parame-
ters in the thickness direction is given by

P ζ = PmVm ζ + PcVc ζ , 8

where P ζ is the physical parameter, which refers to den-
sity ρ, elastic modulus E, and Poisson’s ratio μ. In this

paper, Pm and Pc are the physical parameters of metal and
ceramic phase.

2.2. The Strain Energy. According to the first-order shear
deformation theory, the displacements can be written as

u x, η, ζ = u0 x, η + ζϕx x, η ,

v x, η, ζ = v0 x, η + ζϕη x, η ,

w x, η, ζ =w0 x, η ,

9

where ϕx and ϕη are mid-surface rotations and u0, v0, and w0
are mid-surface displacements of the blade along the x, η,
and ζ directions.

According to the thick shell theory [29] and the improved
version of the Novozhilov nonlinear shell theory [30], the
strains at any point in the blade can be written as

εx

εη

γxη

=

ε 0
x

ε 0
η

γ 0
xη

+ 2
Rxη

0
0
w0

+ ζ

κ 1
x

κ 1
η

κ 1
xη

, 10a

γxζ

γηζ
=

γ
0
xζ

γ
0
ηζ

−
1
Rxη

v0

u0
, 10b

𝜁
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h0 = −h/2
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h2 = hm/2

h1 = −hm/2

Figure 3: The section of the FG sandwich blade.
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Figure 4: Effect of the scalar parameter of volume fraction in the FG sandwich blade.
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where

ε 0
x

ε 0
η

γ 0
xη

=

1
A
∂u0
∂x

+ v0
A
∂A
∂η

+ 1
2

1
A
∂w0
∂x

2

∂v0
∂η

+ 1
2

∂w0
∂η

2

∂u0
∂η

+ 1
A
∂v0
∂x

−
u0
A
∂A
∂η

+ 1
A
∂w0
∂x

∂w0
∂η

, 11a

κ 1
x

κ 1
η

κ 1
xη

=

1
A
∂ϕx
∂x

+
ϕη
A
∂A
∂η

∂ϕη
∂η

∂ϕx
∂η

+ 1
A

∂ϕη
∂x

−
ϕx
A
∂A
∂η

, 11b

γ
0
xζ

γ
0
ηζ

=

1
A
∂w0
∂x

+ ϕx

∂w0
∂η

+ ϕη

, 11c

where Rxη is the radius of the twist, which can be derived
as [31]

1
Rxη

= −
k

A2 12

The nonlinear parts, which are underlined in (11), will
be ignored in the free vibration analysis of the blade.

The stress–strain equations can be written as

σx

ση

σxζ

σηζ

σxη

=

Q11 ζ Q12 ζ 0 0 0
Q21 ζ Q22 ζ 0 0 0

0 0 Q44 ζ 0 0
0 0 0 Q55 ζ 0
0 0 0 0 Q66 ζ

εx

εη

γxζ

γηζ

γxη

,

13

where the elastic constantsQij ζ are functions of thickness ζ,
which is defined as

Q11 ζ =Q22 ζ = E ζ

1 − μ2 ζ
, 14a

Q12 ζ =Q21 ζ = μ ζ E ζ

1 − μ2 ζ
, 14b

Q44 ζ =Q55 ζ = KsE ζ

2 1 + μ ζ
, 14c

Q66 ζ = E ζ

2 1 + μ ζ
, 14d

where Ks is the shear correction coefficient. Since the shear
correction coefficient depends on the blade material proper-
ties and boundary conditions, it is difficult to obtain the exact
value. In this paper, the shear correction coefficient Ks will be
selected uniformly as 5/6 [32].

The strain energy of the blade is defined as

US =
1
2

L

0

b/2

−b/2

h/2

−h/2
σxεx + σηεη + σxζγxζ + σηζγηζ + σxηγxη Adζdηdx

=
L

0

b/2

−b/2

1
2 D11κ

1
x

2 +D22κ
1
η

2 +D66κ
1
xη

2 + 2D12κ
1
x κ 1

η

+ B11ε
0
x κ 1

x + B22ε
0
η κ 1

η + B66γ
0
xη κ

1
xη + B12ε

0
x κ 1

η + B21ε
0
η κ 1

x

+ 1
2 A11ε

0
x

2 + A22ε
0
η

2 + A66γ
0
xη

2 + 2A12ε
0
x ε 0

η + A44γ
0
xζ

2

+ A55γ
0
ηζ

2
+ B′

66w0γ
0
xη + B′

44v0γ
0
xζ + B′

55u0γ
0
ηζ + A′

66w
2
0

+ A′
44v

2
0 + A′

55u
2
0 Adηdx,

15

whereAij, Bij, andDij are the extensional, bending-extensional

coupling, and bending stiffness [32],Aij′ and Bij′ are the stiffness
due to the initial twist of the blade. They are defined as

Aij

Bij

Dij

=
h/2

−h/2
Qij ζ

1

ζ

ζ2

dζ

= 〠
3

m=1

hm

hm−1

Qij ζ

1

ζ

ζ2

dζ  i, j = 1, 2, 6 ,

16a

0

A′66/A66
A′44/A44

0.0

0.5

1.0

1.5

Th
e n

on
di

m
en

sio
na

l s
tiff

ne
ss

 co
effi

ci
en

t

2.0

2.5

3.0

3.5

4.0

5 10 15 20 25 30
Twist angle (°)

35 40 45 50 55 60

Figure 5: Variations of nondimensional stiffness coefficients with
the initial twist angle (η = 0).
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Aij =
h/2

−h/2
Qij ζ dζ

= 〠
3

m=1

hm

hm−1

Qij ζ dζ  i, j = 4, 5 ,
16b

Bij′ =
−

1
Rxη

Bij i = j = 4, 5 ,

2
Rxη

Bij i = j = 6 ,
16c

Aij′ =

1
2R2

xη

Aij i = j = 4, 5 ,

2
R2
xη

Aij i = j = 6

16d

It should be noted that the stiffness Bij and Bij′ will be zero
while the structure is symmetrical about the middle surface in
the thickness direction. Figure 5 shows the variations of the

Table 1: Convergence of nondimensional frequency parameters for the first six modes of the homogeneous material blade (l = 3, h = 20,
and θ = 15°).

Mode ANSYS
5× 5× 5 5× 6× 6 5× 7× 7 5× 8× 8 5× 9× 9

Value Error Value Error Value Error Value Error Value Error

1st 3.4225 3.4217 −0.02% 3.4102 −0.36% 3.4077 −0.43% 3.4194 −0.09% 3.4124 −0.30%
2nd 20.7177 20.7606 0.21% 20.7156 −0.01% 20.7222 0.02% 20.7540 0.18% 20.7270 0.04%

3rd 21.9608 22.2650 1.39% 21.9718 0.05% 22.1278 0.76% 22.0861 0.57% 22.0340 0.33%

4th 58.8524 59.6322 1.33% 54.3477 −7.65% 58.1334 −1.22% 58.1917 −1.12% 58.0295 −1.40%
5th 64.5829 66.5017 2.97% 64.0481 −0.83% 65.6567 1.66% 65.4872 1.40% 65.6406 1.64%

6th 68.0114 68.9640 1.40% 68.1982 0.27% 68.6168 0.89% 68.4144 0.59% 68.3678 0.52%

Table 2: Convergence of nondimensional frequency parameters for the first six modes of the FG sandwich blade (l = 3, h = 20, n = 2, hl = 1/2,
and θ = 15°).

Mode ANSYS
5× 5× 5 5× 6× 6 5× 7× 7 5× 8× 8 5× 9× 9

Value Error Value Error Value Error Value Error Value Error

1st 4.5272 4.5320 0.11% 4.5209 −0.14% 4.5228 −0.10% 4.5211 −0.13% 4.5215 −0.13%
2nd 27.3966 27.5019 0.38% 27.4741 0.28% 27.4639 0.25% 27.4684 0.26% 27.4665 0.26%

3rd 29.0406 29.5393 1.72% 29.3030 0.90% 29.3432 1.04% 29.2158 0.60% 29.1542 0.39%

4th 76.2376 75.8763 −0.47% 70.8471 −7.07% 74.8356 −1.84% 74.8922 −1.76% 75.0109 −1.61%
5th 80.3331 84.3843 5.04% 78.8139 −1.89% 82.1073 2.21% 82.2715 2.41% 82.2392 2.37%

6th 89.9847 91.5581 1.75% 90.9359 1.06% 91.0424 1.18% 90.7128 0.81% 90.5917 0.67%

Table 3: Comparison of nondimensional frequency parameters for the first six modes of homogeneous material blade (h = 20, μ = 0 3).

θ Mode l = 3 l = 1
1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

0°
Present 3.4205 20.8483 21.3316 59.6783 62.2910 65.4353 3.4757 8.3462 20.9625 26.6650 30.1067 43.5409

ANSYS 3.4223 20.8230 21.3590 59.8793 62.2508 65.3690 3.4814 8.3793 21.0993 26.7267 30.2352 43.5819

Ref [15] 3.4140 21.2200 21.3600 60.1200 61.8200 66.6800 3.4620 8.4870 21.2900 27.4700 30.9800 43.5200

15°
Present 3.4194 20.7540 22.0861 58.1917 65.4872 68.4144 3.4479 10.4233 20.4526 26.6975 31.5336 44.6423

ANSYS 3.4225 20.7177 21.9608 58.8524 64.5829 68.0114 3.4540 10.3394 20.3668 26.6264 31.3218 44.4679

Ref [15] 3.4150 20.6700 22.2800 58.1500 65.2900 69.3200 3.4450 10.4000 20.5700 27.3500 32.1100 44.5800

30°
Present 3.4035 19.2320 25.4184 54.4781 70.6496 76.3746 3.4030 14.8939 18.9948 27.1437 35.2177 46.9877

ANSYS 3.4153 18.9950 25.0621 55.7643 71.6994 75.9291 3.3794 14.3509 18.4374 26.7434 34.0572 45.9808

Ref [15] 3.4170 19.0000 25.1500 55.9500 71.4000 76.5700 3.3970 14.3300 18.6900 27.3900 34.9000 46.5200

45°
Present 3.4163 17.4172 29.7580 54.0239 80.8963 87.6963 3.3387 20.0628 17.1876 28.2967 40.1453 48.6332

ANSYS 3.4176 16.9599 29.4234 53.3063 79.0586 87.0233 3.2668 18.4291 16.0421 27.1718 37.3254 46.1459

Ref [15] 3.4200 16.9900 29.2000 53.5800 78.8200 87.0500 3.3230 18.3200 16.3900 27.7100 38.1700 47.3000
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nondimensional stiffness coefficients (A′
44/A44 and A′

66/A66 at
η = 0) with the initial twist angle. It can be found that both
the nondimensional stiffness coefficients increase with
increase in the initial twist angle.

2.3. The Potential Energy of Centrifugal Force. The coordinate
system transformation relationship between the xyz-coordi-
nate and XYZ-coordinate is given by

ix
iy
iz

=
1 0 0
0 cos φ sin φ

0 −sin φ cos φ

iX
iY
iZ

17

Then, the angular velocity ω in the xyz-coordinate of the
pretwisted plate is expressed as

ω =
0

Ω cos φ
−Ω sin φ

T ix
iy
iz

18

The centrifugal force FC per unit volume in the blade is
given by

FC = ρω × r 0 + Rix × ω

= ρΩ2

R + x − kη
ζ

A

η sin Φ sin φ + ζ cos Φ sin φ

A

η sin Φ cos φ + ζ cos Φ cos φ

A

T

ix
iy
iz

,

19

whereΦ is the sum of the stagger angle and the twist angle of
the point, given by

Φ = φ + θ′ 20

The rotation of the blade about the turbine axial direction
produces a significant amount of membrane stresses, which
are essentially acting in the radial direction (the spanwise
and chordwise directions of the blade). The component of
centrifugal force along the spanwise direction σcs and the
chordwise direction σcc can be written as [10, 14]

σcs =
L

X
FC ⋅ e0xAdx = ρΩ2 R −

1
2Akηζ L − x

+ 1
2 L2 − x2 + 14 η

2 cos 2Φ − cos 2Θ

+ 1
4A ηζ sin 2Φ − sin 2Θ ,

21a

σcc =
0

b/2
FC ⋅ e0ηdη

= ρΩ2 1
2k ζ sin 2Φ sinh−1 1

2 kb −
1
8 b

2 sin2Φ ,

21b

where Θ is the sum of the stagger angle and the total twist
angle, given by

Θ = φ + θ 22

The centrifugal potential energy can be derived as

UCF =
1
2

L

0

b/2

−b/2

h/2

−h/2
σcsεcs + σccεcc Adζdηdx 23

According to [26], εcs and εcc are given by

εcs =
∂v0
∂x

2
+ ∂w0

∂x

2
,

εcc =
∂u0
∂η

2
+ ∂w0

∂η

2
24

Substituting (21) and (24) into (23), the potential energy
can be written as

UCF =
L

0

b/2

−b/2

I1
8 b sin 2Φ −

I0
16 b

2 sin22Φ

∂u0
∂η

2
+ ∂w0

∂η

2

+ I1
η

8A sin 2Φ − sin 2Θ −
kη L − x

4A
∂v0
∂x

2
+ ∂w0

∂x

2

+ I0
1
2R L − x + 1

4 L2 − x2 + η2

8 cos 2Φ − cos 2Θ

∂v0
∂x

2
+ ∂w0

∂x

2
Adηdx

25

The total potential energy can be written as

U =US +UCF 26

Table 4: The materials and properties of the FG sandwich blade.

Materials Material properties

Metal
(alloy C-276)

Em = 2 08 × 1011Pa, μm = 0 32, ρm = 8900 kg/m3

Ceramic
(Al2O3)

Ec = 3 50 × 1011Pa, μc = 0 26, ρc = 3970 kg/m3
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2.4. The Kinetic Energy. The displacement vector u can be
written as

u = u v w

e0x
e0η
e0ζ

= 1
A

u − kηw

Av cos θ′ − kηu +w sin θ′

Av sin θ′ + kηu +w cos θ′

T ix
iy
iz

27

An arbitrary point of the blade after deformation can be
expressed by the position vector r as

r = r 0 + u

= 1
A

u + Ax − kη w + ζ

A v + η cos θ′ − kηu +w + ζ sin θ′

A v + η sin θ′ + kηu +w + ζ cos θ′

T ix
iy
iz

28

The velocity Vr of the point due to the rotation can be
derived as

Vr = ω × r + Rix

= Ω
A

A v + η sin Φ + kηu +w + ζ cos Φ

kη w + ζ − A R + x − u sin φ

kη w + ζ − A R + x − u cos φ

T ix
iy
iz

29

The kinetic energy reads

T = 1
2

L

0

b/2

−b/2

h/2

−h/2
ρ u +Vr ⋅ e0x 2 + v +Vr ⋅ e0η

2

+ w +Vr ⋅ e0ζ
2 Adζdηdx = Tin + Tgy + Tro,

30a

where

Tin =
L

0

b/2

−b/2

1
2 I2 ϕ

2
x + ϕ

2
η + I1 u0ϕx + v0ϕη

+ 1
2 I0 u20 + v20 +w2

0 Adηdx,
30b

Tgy =Ω
L

0

b/2

−b/2
ϕη sin Φ + A cos Φ I2ϕx + I1u0

+ kη − ϕx I2ϕη + I1v0 sin Φ + η + v0 sin Φ

+ Aw0 − kη R + x cos Φ I1ϕx + I0u0

+ kηw0 − AR − Ax − u0 I1ϕη + I0v0 sin Φ

− I0 kη2 + kηv0 sin Φ + Au0 + R + x cos Φ w0

− I1 Aφx cos Φ + kηφη sin Φ w0 dηdx,

30c

Tro =Ω2
L

0

b/2

−b/2

1
2 I2 + I0 ϕη sin Φ + 1

A
1 + kηϕx cos Φ

2

+ 1
2A2 I2 ϕx − kη 2 + 1

2 I0 R + x + 1
A
u0 −

1
A
kηw0

2

+ I1 η + v0 sin Φ + 1
A

w0 + kηu0 cos Φ

ϕη sin Φ + 1
A

1 + kηϕx cos Φ

+ 1
A2 I1 A R + x + u0 − kηw0 ϕx − kη Adηdx,

30d

where “·” is the first-order derivation of time; I0, I1, and
I2 in (25) and (30) are defined in terms of the density
ρ ζ as

Table 5: Comparisons of nondimensional frequency parameters for the first six modes of the FG sandwich blade (l = 3, h = 20, n = 2,
and hl = 1/2).

Mode
0° 15° 30°

Present ANSYS Error Mode shape Present ANSYS Error Mode shape Present ANSYS Error Mode shape

1st 4.5233 4.5270 −0.08% 1B 4.5206 4.5272 −0.15% 1B 4.4729 4.5290 −1.24% 1B

2nd 27.9633 27.7729 0.69% 1T 27.4621 27.3966 0.24% 2B 25.4167 25.0992 1.26% 2B

3rd 28.3106 28.2605 0.18% 2B 29.1565 29.0406 0.40% 1T 33.0633 32.5549 1.56% 1T

4th 75.9386 75.8281 0.15% 1 EB 74.8841 76.2376 −1.78% 3B 73.0937 72.9145 0.25% 3B

5th 79.3035 79.1454 0.20% 3B 82.0284 80.3331 2.11% 1EB 89.2792 88.7755 0.57% 1EB

6th 87.5852 87.0515 0.61% 2T 90.5827 89.9847 0.66% 2T 99.5237 98.9166 0.61% 2T
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I0

I1

I2

=
h/2

−h/2
ρ ζ

1
ζ

ζ2

dζ = 〠
3

m=1

hm

hm−1

ρ ζ

1
ζ

ζ2

dζ

31

3. Frequency Solving

The Rayleigh–Ritz method is used to solve the natural fre-
quency of the blade; the expressions of the displacements
and rotations are assumed

u0 x, η, t = 〠
∞

N=1
UN x, η eiωN t , 32a

v0 x, η, t = 〠
∞

N=1
VN x, η eiωN t , 32b

w0 x, η, t = 〠
∞

N=1
WN x, η eiωN t , 32c

ϕx x, η, t = 〠
∞

N=1
ΦxN x, η eiωN t , 32d

ϕη x, η, t = 〠
∞

N=1
ΦηN x, η eiωN t 32e

The functions UN x, η , VN x, η , WN x, η , ΦxN x, η ,
and ΦηN x, η represent the N order mode shape, and ωN is
the corresponding circular frequency. The algebraic polyno-
mials can form a mathematically complete set of functions,
which guarantees convergence to the exact solution as the

number of terms taken increases [5]. Thus, in this paper,
the mode shapes are expanded in terms of two-dimensional
algebraic polynomials in terms of the nondimensional coor-
dinates χ and ξ as

UN χ, ξ = 〠
I

i=1
〠
J

j=0
Uijχ

iξj, 33a
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Figure 7: Variations of nondimensional frequency parameters with
the thickness ratio (l = 3, n = 2, hl = 1/2, and θ = 30°).
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Figure 6: Variations of nondimensional frequency parameters with the twist angle (l = 3, h = 20, n = 2, and hl = 1/2).
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VN χ, ξ = 〠
K

k=1
〠
L

l=0
Vklχ

kξl, 33b

WN χ, ξ = 〠
M

m=2
〠
N

n=0
Wmnχ

mξn, 33c

ΦxN χ, ξ = 〠
I

i=1
〠
J

j=0
Φxijχ

iξj, 33d

ΦηN χ, ξ = 〠
K

k=1
〠
L

l=0
Φηklχ

kξl, 33e

where χ = x/L and ξ = 2η/b. Uij, Vkl , Wmn, Φxij, and Φηkl are
undetermined coefficients. The Rayleigh–Ritz method
imposes a necessary condition that trial functions must
satisfy the geometric boundary conditions arbitrarily. The
cantilever blade is clamped at χ = 0 (u = v =w = dw/dx = 0)
along the spanwise direction and is completely free at χ = 1,
ξ = −1, and ξ = 1. The indices i, k, and m in (33), (46), and
(47) begin with i = 1, k = 1, and m = 2; it can be ensured that
all terms of polynomials satisfied the geometric boundary
conditions.

To solve the free frequency of the blade, (32) and (33) are
substituted into (26) and (30) in order to obtain the maxi-
mum strain energy (Umax) and kinetic energy (Tmax) by
setting t = 0. The Rayleigh–Ritz method requires the minimi-
zation of the function = Tmax −Umax, which can be
achieved by taking the derivatives

∂
Uij

= 0,

∂
Φxij

= 0  i = 1, 2,… , I ; j = 0, 1,… , J ,
34a

∂
Vkl

= 0, 34b

∂
Φηkl

= 0  k = 1, 2,… , K , l = 0, 1,… , L ,

∂
Wmn

= 0  m = 2, 3,… ,M, n = 0, 1,… ,N
34c

There are a total of 2 × I × J + 1 + 2 × K × L + 1 +
M − 1 × N + 1 equations, which can be described by

K − ω2
NM Δ = 0, 35

where K and M are the stiffness and mass matrices,
respectively; Δ is the vector of undetermined coefficients,
given by

Δ = Uij Vkl Wmn Φxij
Φηkl

T 36

The generalized eigenvalues (natural frequency) can
be obtained by setting the coefficient matrix of (35) equal
to zero, and the corresponding mode shape can be deter-
mined by substituting the eigenvector Δ back into (33).
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Figure 8: Variations of nondimensional frequency parameters with the aspect ratio (h = 20, n = 2, hl = 1/2, θ = 30°).
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4. Numerical Results and Analyses

4.1. Convergence Analysis.A typical example of pretwisted blade
with chord length b = 0 254m, aspect ratio l = L/b from 1 to 5,

thickness ratio h = b/h from 10 to 100, twist angle θ from 0° to
60°, layer thickness ratio hl = h − hm /2hm from 0.25 to 4, sca-
lar parameter of volume fraction of FGM n from 0.1 to 10, stag-
ger angle φ from 0° to 90°, and disk radius ratio r = R/b is used.
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Figure 9: Mode shapes of the FG sandwich blade. (A1) 1st mode shape by Matlab; (B1) 2nd mode shape by Matlab; (C1) 3rd mode shape by
Matlab; (D1) 4th mode shape by Matlab; (E1) 5th mode shape by Matlab; (F1) 6th mode shape by Matlab; (A2) 1st mode shape by ANSYS;
(B2) 2nd mode shape by ANSYS; (C2) 3rd mode shape by ANSYS; (D2) 4th mode shape by ANSYS; (E2) 5th mode shape by ANSYS; (F2) 6th
mode shape by ANSYS.
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All the numerical results are presented in the form of the
nondimensional frequency parameter ω = ωNL

2 ρh/D =
ωNL

2/h 12ρ 1 − μ2 /E for the homogeneous material blade,
where D = Eh3/12 1 − μ2 is the blade flexural rigidity per
unit length and ω = ωNL

2/h 12ρm 1 − μ2m /Em for the func-
tionally graded sandwich blade in the following section, and
the nondimensional rotation velocity is Ω =Ω/ω1, where ω1
is the first static circular frequency (Ω = 0) of the functionally
graded sandwich blade.

According to [5], the number of terms chosen for each
component of the displacements is the same. The results of
the homogeneous material blade and functionally graded
sandwich blade are given in Tables 1 and 2. The maximum
difference between the 5 × 9 × 9 = 405 term and the 5 × 8 ×
8 = 320 term solutions for the first six modes of the homoge-
neous material blade is no more than 0.28%, and 0.21% for
the FG sandwich blade. But the time spent in computing
has multiplied. Moreover, the eigenvalues are more likely to
be ill-conditioned with the increase in the size of the matrix
in numerical calculation. Therefore, it has been decided to
use 5 × 8 × 8 = 320 terms in the subsequent analysis.

The data used for comparison below “ANSYS” in all
tables are computed by the finite element model in ANSYS
Workbench (version 17.2). The middle surface model of the
blade is established, and the finite element analysis is per-
formed by using the SHELL181 linear quadrilateral element
type. The layered section object in ANSYS mechanical is used
to define the layered section of composite modeling. In order
to get accurate results as much as possible, 20 layers in each
skin (total of 41 layers in the thickness direction) are defined
to simulate the cross section of the functionally graded
sandwich blade.

4.2. Comparative Studies. The homogeneous material blade is
used first to demonstrate the numerical accuracy of the ana-
lytical model in this paper, and the first six nondimensional
frequency parameters are compared with ANSYS and refer-
ence data [15] in Table 3. The results are in good agreement
when the twist angle θ = 0° to 45° in the case of the aspect
ratio l = 3. The results match well also when the twist angle
θ = 0° to 30° in the case of the aspect ratio l = 1, but the max-
imum error (occurring at the 2nd order) is about 8.86% when
θ increases to 45°. The reason is that the Lame parameter A is
approximated to 1 in order to improve the calculation speed
in the process of numerical calculation. The error is smaller

in the case of a larger aspect ratio and smaller twist angle,
but the error becomes larger as the aspect ratio decreases
and the twist angle increases. Thus, the aspect ratio l = 3 is
used to obtain more accurate results.

The functionally graded sandwich blade is composed of
metal and ceramic materials; their properties are given in
Table 4. In Table 5, the first six nondimensional frequency
parameters ω of the FG sandwich blade are compared with
results in ANSYS Workbench, both showing good agree-
ments, respectively.

The mode shapes corresponding to the first six orders of
frequencies are also listed in Table 5. It should be noted that
spanwise bending modes are divided into flapwise bending
modes (whose displacements are predominantly in the direc-
tion normal to the middle surface) and edgewise bending
modes (whose displacements are predominantly in the direc-
tion tangent to the surface) [15] in this paper. The modes 1B
and 2B represent the first and second flapwise bending
modes, respectively, and 1EB represents the first edgewise
bending mode. The modes 1T and 2T represent the first
and second torsional modes, respectively. The chordwise
bending modes (CB, having two or more nodal lines approx-
imately parallel to the pretwisted blade axis) are also found in
the successive research. The curves such as 1B, 1T, and 2B
and so on in Figures 6–8 are all obtained by using ANSYS
Workbench. The curves such as 1st, 2nd, and 3rd are all
obtained through numerical calculation.

The first six mode shapes of the FG sandwich blade with
l = 3, h = 20, n = 2, hl = 1/2, and θ = 30∘ are given in Figure 9.
It can be seen that the results obtained by the two methods
are in good agreement. The results in Table 5 show that that
the 1st modes are both of 1B mode shape when θ = 0°, 15°,
and 30°, but the 2nd mode is of 1T mode shape when θ = 0°
and 2B mode shape when θ = 15° and 30°. The same happens
with the 1EBmode shape. The reason for this phenomenon is
that the stiffness of the FG sandwich blade is changed due to
the initial twist in (15).

4.3. Free Vibrations of the FG Sandwich Blade. The effect of
the twist angle on the vibration characteristics for the pre-
twist FG sandwich blade with geometric parameters as l = 3,
h = 20, n = 2, and hl = 1/2 is studied. Table 6 gives the first
six nondimensional frequency parameters ω of the FG sand-
wich blade with varying twist angles (θ from 0° to 60°), and
the relationship between the nondimensional frequency
parameters and twist angles for the FG sandwich blade is

Table 6: Nondimensional frequency parameters for the first six modes of FG sandwich blade with varying twist angle (l = 3, h = 20, n = 2, and
hl = 1/2).

Mode 0° 5° 10° 15° 20° 25° 30° 45° 50° 60°

1st 4.5233 4.5342 4.5342 4.5206 4.5041 4.4935 4.4743 4.4020 4.3605 4.3245

2nd 27.9633 28.0799 27.9178 27.4621 26.8716 26.1715 25.4167 22.9643 22.1860 20.7649

3rd 28.3106 28.2050 28.5154 29.1565 29.9955 31.3439 33.0633 38.0040 39.9970 44.6692

4th 75.9386 75.7447 75.3807 74.8841 74.5120 73.8517 73.0937 70.8379 70.1630 68.9817

5th 79.3035 79.7009 80.7576 82.0284 84.0329 86.7774 89.2792 98.6081 101.9785 107.9219

6th 87.5852 87.9114 88.9680 90.5827 92.8839 95.9725 99.5237 112.9271 118.0741 130.0957
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shown in Figure 6. It can be seen that the resulting curves are
very close to the curves obtained by ANSYS in Figure 6(a).
The first mode corresponds to the 1B vibration mode for all
twist angles. The 2nd and 3rd nondimensional frequency
parameter curves represent the 1T and 2Bmode shapes when
θ = 0°, and they come close to each other and separate grad-
ually with the twist angle increasing. The two curves are up to
the nearest when the twist angle θ is about 5°; the two modes
exchange with each other, and the variation tendencies of
nondimensional frequency parameters are also interchanged.
The variations for 4th to 6th can be found in Figure 6(b).

It should be noted that the FG sandwich blade designed
by the geometric parameters corresponding to the frequency
turning points will be prone to internal resonance.

The effect of the thickness ratio on the vibration charac-
teristics for the pretwist FG sandwich blade is studied also.
The first six nondimensional frequency parameters ω of the
FG sandwich blade with varying thickness ratios (h from 10
to 100) is given in Table 7. Figure 7 shows the relationship
between the nondimensional frequency parameters and the

thickness ratio. It can be found that the nondimensional fre-
quency parameters of 1B, 2B, 3B, and 4B modes remain
essentially unchanged when the thickness ratio varies from
10 to 100. The nondimensional frequency parameters of 1T,
2T, and 1EBmodes tend to increase with increasing thickness
ratio. On the other side, the 3rd and 4th frequency parameter
loci have an obvious veering at h = 85, and the mode shapes
exchanged between 1T and 3B. The same situation can be
seen on the 5th and 6th modes, and higher-order frequency
parameter locus veering happens more frequently.

The nondimensional frequency parameters ω for the first
six modes of the FG sandwich blade with varying aspect
ratios (l from 1 to 5) are given in Table 8 to study the effect
of the aspect ratio on the vibration characteristics for the pre-
twist FG sandwich blade. Figure 8 shows the relationships
between the first six frequency parameters, the correspond-
ing mode shapes, and the aspect ratio. It is obvious that the
1st mode corresponds to the 1B vibration mode for all aspect
ratios, and the value of the frequency parameter varies little.
The 2nd and 3rd modes exchange with each other, and the

Table 9: Nondimensional frequency parameters for the first six modes of the FG sandwich blade with varying layer thickness ratios
(l = 3, h = 20, n = 2, and θ = 30°).

Mode 1/4 1/3 1/2 1/1 2/1 3/1 4/1

1st 4.2021 4.3068 4.4743 4.7574 4.9764 5.0854 5.1378

2nd 23.6280 24.3536 25.4167 27.0889 28.3771 28.9429 29.2352

3rd 30.4576 31.3180 33.0633 35.0677 36.7356 37.6719 38.4396

4th 68.0698 70.1619 73.0937 78.1350 81.7252 83.5669 84.7660

5th 83.1451 85.6584 89.2792 95.5154 100.6206 103.1477 104.3400

6th 92.4498 95.1984 99.5237 106.5238 111.4889 114.2924 116.4530

Table 8: Nondimensional frequency parameters for the first six modes of the FG sandwich blade with varying aspect ratio (h = 20, n = 2,
hl = 1/2, and θ = 30°).

Mode 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 4.00 5.00

1st 4.4970 4.5187 4.4946 4.4879 4.4857 4.4847 4.4762 4.4743 4.4643 4.4475

2nd 18.7284 20.8402 22.6114 24.2429 25.4037 25.4146 25.4190 25.4167 25.4069 25.3682

3rd 25.0639 25.2854 25.3453 25.3845 25.9349 27.5549 29.2911 33.0633 40.4134 48.5665

4th 35.6083 49.9937 61.8109 68.2541 70.4597 71.6661 72.3847 73.0937 73.8139 73.9446

5th 45.7901 53.9883 63.0533 69.0347 75.8721 82.0019 87.1364 89.2792 91.5483 93.0731

6th 58.3492 65.8222 76.2076 82.7443 84.4782 85.9505 88.1750 99.5237 123.1095 147.6281

Table 7: Nondimensional frequency parameters for the first six modes of the FG sandwich blade with varying thickness ratio (l = 3, n = 2,
hl = 1/2, and θ = 30°).

Mode 10 20 30 40 50 60 70 80 90 100

1st 4.4578 4.4743 4.4745 4.4759 4.4903 4.5064 4.5022 4.5115 4.5146 4.5213

2nd 24.2636 25.4167 25.5518 25.6696 25.7090 25.7337 25.7686 25.8024 25.8433 25.8342

3rd 28.2468 33.0633 38.1941 44.8357 51.5288 59.2127 67.3645 74.2099 77.6186 77.2360

4th 43.9320 73.0937 75.9033 76.1792 76.4980 76.7083 76.7618 76.3814 82.7484 91.1187

5th 76.6391 89.2792 113.8445 130.9914 147.7835 151.9612 156.271 159.8808 159.7313 159.6019

6th 87.7677 99.5237 126.202 147.8068 155.1631 169.1361 191.4968 207.7979 230.7914 250.1723
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Table 10: Nondimensional frequency parameters for the first six modes of the FG sandwich blade with varying scalar parameters of volume
fraction (l = 3, h = 20, hl = 1/2, and θ = 30°).

Mode 0.0 0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0 4.0 5.0

1st 3.3606 3.5795 3.6493 3.8619 3.8665 3.9753 4.2248 4.4743 4.5659 4.6931 4.7617

2nd 19.1226 20.0849 20.7619 21.4358 21.9111 22.3903 23.8825 25.4167 26.1362 26.5972 26.8850

3rd 24.9882 26.0961 26.9426 27.6920 28.2425 28.7613 30.7357 33.0633 33.7313 34.2049 34.8816

4th 55.8597 58.2781 60.3344 62.0908 63.5612 64.7114 68.9569 73.0937 75.1927 76.5550 77.6652

5th 71.5372 73.7012 75.7393 77.3010 78.8343 80.0439 84.5755 89.2792 91.5699 93.1665 93.7638

6th 75.5421 79.2376 81.6705 84.0076 85.8903 86.6503 93.4294 99.5237 102.7955 104.0268 106.0757
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Figure 11: Variations of nondimensional frequency parameters with the scalar parameter of volume fraction (l = 3, h = 20, hl = 1/2, and θ = 30°).
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Figure 10: Variations of nondimensional frequency parameters with the layer thickness ratio (l = 3, h = 20, n = 2, and θ = 30°).
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vibration tendencies of their frequency loci also exchange
near l = 2. The change of the 4th to 6th nondimensional fre-
quency parameters is relatively complicated. The mode
shapes include 3B, 2T, 1EB, and 1CB. For example, the 4th
to 6th mode shapes are 1CB, 2T, and 1EB when l = 1; 2T,
1EB, and 1CB when l = 1 5; and 1EB, 2T, and 3B when
l = 1 75. All in all, the mode shape corresponding to the same
order frequency is very sensitive to the variation of small
aspect ratios, especially when l < 2. The tendencies of their
frequency parameters become relatively stable until l > 2 5.

Table 9 and Figure 10 show the variations of the first six
nondimensional frequency parameters of the FG sandwich
blade with the layer thickness ratio. Table 10 and Figure 11
show the relationships between the first six nondimensional
frequency parameters and the scalar parameter of the volume
fraction. It can be found that the content of ceramic increases
with increasing layer thickness ratio and scalar parameter of
the volume fraction, and the frequency parameters of all
modes increase, respectively.

Table 11 shows the first six nondimensional frequency
parameters of the FG sandwich blade for the nondimensional
rotation velocity with the range of Ω 0 to 11 (about
15,000 rpm). A typical Campbell diagram is plotted to study
the variation trend of the nondimensional frequency param-
eters for varying rotation velocities in Figure 12. Frequency
locus veering is observed as expected: the 1st and 2nd fre-
quency modes exchange between 1B and 1T around the
rotation velocity Ω = 11; the 2nd and 3rd frequency modes
exchange between 2B and 1T around Ω = 2; the 5th and 6th
frequency modes exchange between 1EB and 2T around
Ω = 3; and the 7th and 8th frequency modes exchange
between 4B and 3T around Ω = 1 and exchange between
3T and 1CB again around the rotation velocity Ω = 9. In
addition, the 8th frequency locus can be seen veering at
Ω = 4 and the mode shape is changed from 4B to 1EB. It
can be seen clearly that higher-order frequencies tend to have
multiple frequency veering with the mode shapes exchanging
and coupling.

Figure 13 shows the effects of the stagger angle for the
first six nondimensional frequency parameters with varying
rotation velocities. It can be found that the stagger angle
has a predominant influence in the 1st and 2nd modes, and
the effect is very marginal in higher modes. The effect of
the stagger angle has little influence on all frequencies when

the rotation velocity is low. The reason is that the centrifugal
force has little effect on the stiffening and softening when the
rotating speed is low, and the influence becomes more and
more obvious with the rotating speed increasing.

5. Conclusion

In this paper, a dynamic model based on the thick shell the-
ory is developed to investigate the free vibration behavior of
functionally graded sandwich pretwisted blades. The valida-
tion of the homogeneous material and FG sandwich blade
is performed by comparison to the literature and ANSYS
results, both showing good agreement.

Interesting frequency veering and the associated mode
shift phenomena are found and discussed for different twist
angles, thickness ratios, and aspect ratios in static natural fre-
quency analysis. The results show that the fundamental
mode is flapwise bending in every case. The mode shapes of
the 2nd to 6th orders are changing when different geometric
parameters are used; especially, the thickness ratio is 15–50
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Figure 12: A Campbell diagram of the FG sandwich blade (l = 3,
h = 20, n = 2, hl = 1/2, θ = 30°, r = 1, and φ = 45°).

Table 11: Nondimensional frequency parameters for the first six modes of the FG sandwich blade with varying nondimensional rotation
velocities (l = 3, h = 20, n = 2, hl = 1/2, θ = 30°, r = 1, and φ = 45°).

Mode 0 1 2 3 4 5 6 7 8 9 10 11

1st 4.4743 6.9030 11.2340 15.8419 20.5025 25.1652 29.8098 34.4146 38.9622 43.4424 47.8358 52.1334

2nd 25.4167 28.5235 34.0383 35.1206 36.4308 38.1374 40.2129 42.4223 44.6896 47.3581 50.0889 52.8240

3rd 33.0633 33.0979 35.8589 45.2978 55.2322 64.5633 72.3156 78.0880 82.3864 85.9246 89.1536 92.3135

4th 73.0937 76.2806 80.9215 84.9748 88.5518 92.9797 99.3391 108.0164 118.4814 130.0075 142.1141 154.5548

5th 89.2792 92.7844 96.5525 106.6897 114.5673 121.7465 129.8789 138.6539 147.8984 157.7082 167.8623 178.1525

6th 99.5237 100.9778 103.9269 108.5284 120.9391 137.5384 155.5090 174.2894 193.5633 213.0626 232.5021 250.6452
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Figure 13: Variations of the first six frequency parameters with the rotation velocity and stagger angles (l = 3, h = 20, n = 2, hl = 1/2, θ = 30°,
and r = 1). (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.
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and the aspect ratio is 1.0–2.5. Higher-order frequency loci
(≥4) may veer more than once between the bending and
torsional vibrations of the FG sandwich blade.

The stagger angle is considered to study the dynamic
frequency with varying rotation velocities. The results show
that the frequency modes have more complicated shapes
and stronger coupling in the rotating FG sandwich blade sys-
tem. The Campbell diagram reveals that the rotating velocity,
especially high rotating velocity, has a significant impact on
the variations of frequency loci and mode shapes.
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