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Abstract: This paper conducted the free vibration analysis of a sandwich annular thin plate with whirl
motion. The upper and lower faces of the annular plate are made of uniform solid metal, while its core
is porous foamed metal reinforced by graphene nanoplatelets (GPLs). Both uniform and non-uniform
distributions of GPLs and porosity along the direction of plate thickness which leads to a functionally
graded (FG) core are taken into account. The effective material properties including Young’s modulus,
Poisson’s ratio and mass density are calculated by employing the Halpin–Tsai model and the rule
of mixture, respectively. Based on the Kirchhoff plate theory, the differential equations of motion
are derived by applying the Lagrange’s equation. Then, the assumed mode method is utilized to
obtain free vibration behaviors of the sandwich annular plate. The finite element method is adopted
to verify the present model and vibration analysis. The effects of porosity coefficient, porosity
distribution, graphene nanoplatelet (GPL) distribution, graphene nanoplatelet (GPL) weight fraction,
graphene nanoplatelet length-to-thickness ratio (GPL-LTR), graphene nanoplatelet length-to-width
ratio (GPL-LWR), spinning speed, outer radius-to-thickness ratio and inner radius-to-thickness ratio
of the plate, are examined in detail.

Keywords: sandwich annular plate; graphene nanoplatelets; porosity; spinning; free vibration

1. Introduction

Spinning disks are widely applied in a rotor machinery, such as aero engines, gas
turbines, and so on. The thick disk is commonly adopted in the traditional rotor structures
to achieve great structural stiffness and it can be considered as a rigid body in the vibration
analysis. To meet the requirements of high spinning speed and light weight, however,
thin disks are increasingly used in practical engineering applications. In such cases, the
flexibility and the deformation of the disk can no longer be ignored. Theoretically, the thin
disk can be modeled as an elastic annular thin plate, whose vibration behaviors have been
extensively investigated [1–5].

By employing the finite element method, Pan et al. [6] studied the vibration of ro-
tor bearing-disk system subjected to three forces. Yang et al. [7] developed a thermal
stress stiffening method to investigate the vibration behavior of spinning flexible disks.
Maretic et al. [8] proposed vibrations of spinning annular plate with two different materials.
By adopting the experimental method, Kang et al. [9] studied the vibration characteristics
of spinning disk in an air-filled enclosure. The Ritz method is used by Kang et al. [10] to
study the free vibration of spinning annular plates with variable thickness. Rao et al. [11]
concerned with free vibration behaviors of an annular plate resting on Winkler foundation.
Based on Mindlin plate theory, Chen et al. [12] studied the high-frequency vibration perfor-
mance of an annular plate. Tan et al. [13] deal with the forced and free vibration of a thin
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annular plate with variable stiffness. Amin et al. [14] investigated the nonlinear vibration
behaviors of an FG annular plate. Wang et al. [15] studied the free vibration of an annular
plate with different edges.

Due to the spinning effect, the disk is always subjected to aerodynamic loading on
its faces. To enhance structural stiffness and reduce weight, a sandwich annular plate
structure could be designed in which the upper and lower faces are made of uniform solid
metal and the core is porous foamed metal. Because the pores can weaken the structural
stiffness, some reinforcements need to be added. GPLs, owing to their superior mechanical
properties, are well suited to be the reinforcements. Recently, the vibration behavior of
GPL reinforced structures for better mechanical performance has been a topic of extensive
research efforts [16–20]. Yang and Zhao et al. [21–24] carried out extensive research on
the free vibration of rotor structures reinforced by GPLs. Based on the modified couple
stress theory, Adab et al. [25] studied the free vibration of a spinning sandwich micro-shell.
Saidi et al. [26] investigated vibrations of an FG porous GPL reinforced plate subjected to
aerodynamical loading. Li et al. [27] studied nonlinear vibrations of a sandwich FG porous
GPL reinforced plate resting on Winker–Pasternak elastic foundation. Zhou et al. [28]
investigated vibrations of a GPL reinforced porous cylindrical panel under supersonic flow.
Gao et al. [29] conducted nonlinear free vibration analysis of a porous plate reinforced
with GPLs. Baghlani et al. [30] studied uncertainty propagation in free vibration of an FG
porous shell with GPL reinforcement. Anamagh et al. [31] developed a spectral-Chebyshev
approach to study vibrations of an FG porous plate reinforced with GPLs. Based on a
trigonometric shear deformation theory, Anirudh et al. [32] discussed the vibration behavior
of a GPL reinforced FG porous beam.

For a disk with high spinning speed, sandwich structure with a functionally graded
graphene nanoplatelet reinforced porous core and stiff faces is an ideal option due to its
light weight yet great structural stiffness. To the best of the authors’ knowledge, however,
none of the existing studies, including those mentioned above, has discussed the dynamic
behaviors of such a spinning disk. This paper aims to fill in this research gap by studying
the free vibration of a spinning sandwich annular plate with FG-GPL reinforced porous core.
Considering the whirl motion, the annular plate is modeled by the Kirchhoff plate theory.
The differential equations of motion and free vibration results are obtained by employing
the Lagrange’s equation and assumed mode method, respectively. A comprehensive study
is proposed to examine the effects of the material and structural parameters on the natural
frequencies of the spinning annular plate. The presented conclusions can effectively aid the
design of spinning annular plates with GPL reinforced porous core.

2. Theoretical Formulations
2.1. Modeling

Figure 1 plots the spinning annular plate model with GPL reinforced porous core
and solid faces. The inner radius and outer radius of the annular plate are Ra and Rb,
respectively. The thickness of the annular plate, the core and the face are h, hc and hf,
respectively. To describe the motion and deformation of the spinning annular plate, both
the fixed coordinate system (O-xyz) and polar coordinate system O-rθz1 are established.
The annular plate rotates at a constant speed Ω along z1-axis direction.

2.2. Material Properties

As given in Figure 2, three porosity distributions of the core are considered. Figure 2a
plots the positive trigonometric porosity distribution XP, where more pores are set around
the surfaces of the annular plate and less pores are in the middle plane. Based on the
open-cell scheme [33], the effective material properties are

Porosity Pattern XP


Ec(z1) = Ec0[1− ec0 cos(πz1/hc)]
ρc(z1) = ρc0[1− ecm cos(πz1/hc)]

µc(z1) = µc0

(1)
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Figure 2. Porosity distribution patterns for the core of the annular plate. (a) Pattern XP; (b) Pattern
UP; (c) Pattern OP.

Figure 2c shows the negative trigonometric porosity distribution OP, where fewer
pores are arranged around the surfaces of the annular plate and more pores are in the
middle plane. The expressions of material properties are

Porosity Pattern OP


Ec(z1) = Ec0[1− e∗c0(1− cos(πz1/hc))]
ρc(z1) = ρc0[1− e∗cm(1− cos(πz1/hc))]

µc(z1) = µc0

(2)

Besides, Figure 2b shows the uniform porosity distribution UP. The material properties
are obtained as

Porosity Pattern UP


Ec(z1) = Ec0αc
ρc(z1) = ρc0α′c

µc(z1) = µc0

(3)

where Ec, ρc and µc are the Young’s modulus, mass density and Poisson’s ratio of the core,
respectively, while Ec0, ρc0 and µc0 are the corresponding parameters of the core without
pores, respectively; (ec0, ecm) are the porosity coefficient and mass density coefficient of
Pattern XP, while (e*

c0, e*
cm) and (αc, α’c) are the corresponding parameters of Pattern OP

and UP, respectively.
Due to the typical mechanical property, the mass density coefficients and porosity

coefficients are related by
1− ecm cos(πz1/hc) =

√
1− ec0 cos(πz1/hc)

1− e∗cm(1− cos(πz1/hc)) =
√

1− e∗c0(1− cos(πz1/hc))

α′c =
√

αc

(4)
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According to the principle of equal mass, the mass density coefficients of different
porosity distribution are determined by{ ∫ hc/2

0

√
1− e∗c0(1− cos(πz1/hc))dz1 =

∫ hc/2
0

√
1− ec0 cos(πz1/hc)dz1∫ hc/2

0
√

αcdx0 =
∫ hc/2

0

√
1− ec0 cos(πz1/hc)dz1

(5)

Based on the Halpin–Tsai model [34], Ec0 can be given by

Ec0(z1) = EM

[
3
8

(
1 + ξlcηlcVGPL

1− ηlcVGPL

)
+

5
8

(
1 + ξwcηBcVGPL

1− ηBcVGPL

)]
(6)

ηlc =
EGPL/EM − 1

EGPL/EM + ξlc
, ηBc =

EGPL/EM − 1
EGPL/EM + ξwc

(7)

ξlc = 2lc/tc, ξwc = 2wc/tc (8)

in which EM and EGPL are Young’s modulus of the foam metal matrix and GPLs, respec-
tively; lc, wc and tc are the length, width and thickness of GPLs, respectively.

In accordance with the rule of mixture, it can be obtained as{
ρc0(z1) = VGPLρGPL + (1−VGPL)ρM
µc0(z1) = VGPLµGPL + (1−VGPL)µM

(9)

where ρGPL and µGPL are the mass density and Poisson’s ratio of GPLs, respectively, while
theρM and µM are the corresponding parameters of the foam metal matrix, respectively.

As shown in Figure 3, three GPL distribution patterns of the core are taken into
consideration. Figure 3a illustrates the positive trigonometric GPL distribution XG, where
more GPLs are adding around the surfaces of the core and less GPLs are in the middle
plane, while Figure 3c gives the opposite GPL distribution OG and Figure 3b indicate the
uniform GPL distribution UG.
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The expression VGPL of volume fraction of GPLs corresponding to the above three
GPL distributions can be expressed as

VGPL(z1) =


λ1

[
1− cos

(
πz1
hc

)]
Pattern XG

λ2 µ Pattern UG

λ3 cos
(
πz1
hc

)
Pattern OG

(10)

in which (λ1, λ2, λ3) is the volume fraction index. They can be determined by the GPL
weight fraction WGPL in the form of

WGPL =
∫ hc

2

− hc
2

[
ρc

ρGPLVGPL
ρGPLVGPL + ρM(1−VGPL)

]
dz1/

∫ hc
2

− hc
2

ρcdz1 (11)
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Thus, the material properties of the annular plate are

E(z1) =


E f

kh
2 < z1 ≤ h

2
Ec(z1) − kh

2 ≤ z1 ≤ kh
2

E f − h
2 ≤ z1 < − kh

2

(12)

µ(z1) =


µ f

kh
2 < z1 ≤ h

2
µc(z1) − kh

2 ≤ z1 ≤ kh
2

µ f − h
2 ≤ z1 < − kh

2

(13)

ρ(z1) =


ρ f

kh
2 < z1 ≤ h

2
ρc(z1) − kh

2 ≤ z1 ≤ kh
2

ρ f − h
2 ≤ z1 < − kh

2

(14)

where k = hc/h is the ratio of the core thickness to annular plate thickness; Ef, µf and ρf are
Young’s modulus, Poisson’s ratio and mass density of the face sheet, respectively.

2.3. Energy Functions

To obtain the equation of motion of the spinning sandwich annular plate, the energy
method is applied.

The displacements of the annular plate (rx, ry, rz) are
rx = r cos θ cos(Ωt)− r sin θ sin(Ωt)− r cos θ
ry = r cos θ sin(Ωt) + r sin θ cos(Ωt)− r sin θ

rz = w(r, θ)
(15)

in which w is the deflection displacement.
The velocities of the annular plate are

vx = −Ωr cos θ sin(Ωt)−Ωr sin θ cos(Ωt)
vy = Ωr cos θ cos(Ωt)−Ωr sin θ sin(Ωt)

vz =
.

w(r, θ)
(16)

Thus, its kinetic energy can be obtained as

T = 1
2

∫
V ρ
(
vx

2 + vy
2 + vz

2)dV

= π
4 Ω2

∫ h
2
− h

2
ρdz1

(
Rb

4 − Ra
4)+ 1

2

∫ h
2
− h

2
ρdz1

∫ Rb
Ra

∫ 2π
0

.
w2rdrdθ

(17)

Based on the Kirchhoff plate theory, the strain and displacement can be related by
εrr = −z1

∂2w
∂r2

εθθ = −z1

(
1
r

∂w
∂r + 1

r2
∂2w
∂θ2

)
εrθ = −2z1

(
1
r

∂2w
∂r∂θ −

1
r2

∂w
∂θ

) (18)

According to the generalized Hooke law, one can obtain that
σrr =

E
1−µ2 (εrr + µεθθ)

σθθ = E
1−µ2 (εθθ + µεrr)

σrθ = E
2(1+µ)

εrθ

(19)

Due to the deformation, the potential energy of the annular plate can be derived as
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V1 = 1
2

∫ 2π
0

∫ Rb
Ra

∫ h
2
− h

2
[σrrεrr + εθθσθθ + εrθσrθ ]rdz1drdθ

= 1
2

∫ 2π
0

∫ Rb
Ra

∫ h
2
− h

2

Ez1
2

(1−µ2)


(

∂2w
∂r2 + ∂w

r∂r +
∂2w

r2∂θ2

)2
+ 2(1− µ)

[
∂
∂r

(
1
r

∂w
∂θ

)]2

−2(1− µ) ∂2w
∂r2

(
1
r

∂w
∂r + 1

r2
∂2w
∂θ2

)
rdz1drdθ

(20)

Because of the rotation effect, the plane strain can be given by

εrr
0 =

∂u0

∂r
, εθθ

0 =
u0

r
(21)

where u0 is the plane displacement.
On the basis of the generalized Hooke law, the plane stress is σrr

0 = E
1−µ2

(
εrr

0 + µεθθ
0) = E

1−µ2

(
∂u0

∂r + µ u0

r

)
σθθ

0 = E
1−µ2

(
εθθ

0 + µεrr
0) = E

1−µ2

(
u0

r + µ ∂u0

∂r

) (22)

In terms of equilibrium condition and boundary conditions

∂σrr
0

∂r
+

σrr
0 − σθθ

0

r
+ ρΩ2r = 0 (23)

u0
∣∣∣
r=Ra

= 0, σrr
0
∣∣∣
r=Rb

= 0 (24)

the plane displacement u0 can be obtained as

u0 = −1− µ2

8E
ρΩ2

[
r3 +

κ1r
1 + µ

+
κ2

(1− µ)r

]
(25)

where κ1 and κ2 are given in the Appendix A.
Due to the rotation effect, the potential energy of the annular plate is

V2 = 1
2

∫ 2π
0

∫ Rb
Ra

∫ h
2
− h

2

[
σrr

0εrr
0 + σθθ

0εθθ
0 + σrr

0
(

∂w
∂r

)2
+ σθθ

0
(

1
r

∂w
∂θ

)2
]

rdz1drdθ

= 1
128 ρ2Ω4 1−µ2

E
∫ 2π

0

∫ Rb
Ra

∫ h
2
− h

2



+(1 + 3µ)r6 + (9 + 3µ)r5 + 3κ1r3 + κ1r4

− 3+µ
1−µ κ2r + 1+3µ

1−µ κ2r2 + 2
1−µ2 κ1κ2

− 2
1−µ2 κ1κ2

1
r −

9+3µ
1+µ κ1κ2r3

+r 1+3µ
1+µ κ1κ2r4 + 1

1+µ κ1
2r + 1

1+µ κ1
2r2

+ 1
1−µ κ2

2 1
r3 +

1
1−µ κ2

2 1
r2


dz1drdθ

− 1
16 ρΩ2

∫ 2π
0

∫ Rb
Ra

∫ h
2
− h

2


[
(3 + µ)r3 + κ1r− κ2

1
r

](
∂w
∂r

)2

+
[
(1 + 3µ)r + κ1

1
r + κ2

1
r3

](
∂w
∂θ

)2

dz1drdθ

(26)

Finally, the total potential energy of the annular plate is

V = V1 + V2 (27)

2.4. Equations of Motion

The assumed modes method is employed in this paper. The displacement of the
annular plate is assumed as

w(r, θ, t) = cos θΦ(r)P(t)T (28)
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in which P(t) is the generalized coordinate vector in the form of

P(t) =
[

p1(t) p2(t) · · · pn(t)
]

(29)

and Φ(r) is the mode function vector, expressed as

Φ(r) =
[

R1(r) R2(r) · · · Rn(r)
]

(30)

where n is the mode number.
The mode function Rn(r) can be given by

Rn(r) = An J1(βnr/Rb) + BnN1(βnr/Rb) + Cn I1(βnr/Rb) + DnK1(βnr/Rb) (31)

in which J1 and I1 are first kind Bessel function and the modified one, respectively; N1 and
K1 are second kind Bessel function and the modified one, respectively; An, Bn, Cn, Dn and
βn can be determined by the boundary conditions of the annular plate.

According to the Lagrange equation

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
= 0, L = T −V (32)

the equations of motion of the spinning annular plate can be derived as

M
..
q(t) + Kq(t) = 0 (33)

where M and K are given in the Appendix A.
Setting

q(t) = ψeiωt, i =
√
−1 (34)

gives the eigenvalue equation (
K−ω2M

)
ψ = 0 (35)

where vector ψ is composed of unknown constants An, Bn, Cn, Dn (n = 1, . . . ). The natural
frequency ω can be obtained by solving the eigenvalue problem from Equation (35).

3. Results and Discussions

In this part, the effects of material parameters on the free vibration behaviors of the
spinning annular plate with porous core reinforced by GPLs are examined in detailed.
Unless otherwise stated, the structural and material parameters [34] are given in Table 1.
In addition, porosity distribution pattern XP and GPL distribution pattern XG are taken as
an example in the subsequent analysis.

Table 1. The structural and material parameters.

Parameters Value

Ra 0.5 m
Rb 1 m
h 0.02 m
k 0.8

EGPL 1010 GPa
ρGPL 1062.5 kg/m3

µGPL 0.186
EM 68.3 GPa
Ef 68.3 GPa
ρM 2689.8 kg/m3

ρf 2689.8 kg/m3

µM 0.34
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Table 1. Cont.

Parameters Value

µf 0.34
WGPL 0.67%
lc/tc 100

Lc/wc 2
ec0 0.1

3.1. Convergence and Comparison Study

Before parametric analysis, the convergence and comparison analysis have to be
conducted first. Table 2 lists the variations of the first four natural frequencies with mode
number by theoretical method (MATLAB), which shows that convergent frequencies can
be obtained at n = 6.

Table 2. First four natural frequencies (rad/s) of the spinning annular plate with different mode
numbers (Ω = 500 rad/s).

Frequency (rad/s) n = 4 n = 5 n = 6 n = 7

First 892.13 892.06 892.02 892.01
Second 3518.88 3518.56 3518.44 3518.36
Third 8955.60 8954.89 8954.70 8954.58

Fourth 17,039.40 17,035.83 17,035.43 17,035.32

The finite element method is used to validate the present analysis by using commercial
software ABAQUS. The functionally graded material core is divided into ten layers and the
material properties of each layer are calculated by the equations in Section 2.2. The annular
plate is clamped at the inner edge, free at its outer edge, and is discretized by 4-node
doubly curved general-purpose shell elements with 6 degrees of freedom. To examine the
convergence of the finite element analysis, Table 3 gives the first four natural frequencies at
Ω = 500 rad/s with different total numbers of elements Ne = (1440, 4000, 5760, 7840) and
nodes (1536, 4160, 5952, 8064). Figure 4 displays the corresponding mesh graphs. It is clear
that the free vibration results come to be converged at element number Ne = 7840.

Table 3. First four natural frequencies (rad/s) of the spinning annular plate with different element
numbers by finite element (FE) method (Ω = 500 rad/s).

Frequency (Hz) Ne = 1440 Ne = 4000 Ne = 5760 Ne = 7840

First 140.96 140.82 140.80 140.79
Second 555.15 551.85 551.29 550.95
Third 1421.00 1395.70 1391.50 1388.90

Fourth 2728.30 2630.20 2613.90 2604.10

Table 4 and Figure 5 give the comparison of first four natural frequencies and vibra-
tion modes by theoretical method (MATLAB) and finite element (ABAQUS) method at
Ω = 500 rad/s, respectively. It is obvious that the frequencies and vibration modes are in
agreement, which shows that the present analysis is accurate.

Table 4. Comparison of first four natural frequencies of the spinning annular plate by theory method
and finite element (FE) method (Ω = 500 rad/s).

Frequency Present (Hz) FE (Hz) Error

First 141.97 140.79 0.84%
Second 559.98 550.95 1.64%
Third 1425.18 1388.90 2.61%

Fourth 2711.27 2604.10 4.12%



Materials 2022, 15, 1328 9 of 18

Materials 2022, 15, x FOR PEER REVIEW 10 of 20 
 

 

Table 2. First four natural frequencies (rad/s) of the spinning annular plate with different mode 

numbers (Ω = 500 rad/s). 

Frequency (rad/s) n = 4 n = 5 n = 6 n = 7 

First 892.13 892.06 892.02 892.01 

Second 3518.88 3518.56 3518.44 3518.36 

Third 8955.60 8954.89 8954.70 8954.58 

Fourth 17,039.40 17,035.83 17,035.43 17,035.32 

The finite element method is used to validate the present analysis by using commer-

cial software ABAQUS. The functionally graded material core is divided into ten layers 

and the material properties of each layer are calculated by the equations in Section 2.2. 

The annular plate is clamped at the inner edge, free at its outer edge, and is discretized by 

4-node doubly curved general-purpose shell elements with 6 degrees of freedom. To ex-

amine the convergence of the finite element analysis, Table 3 gives the first four natural 

frequencies at Ω = 500 rad/s with different total numbers of elements Ne = (1440, 4000, 

5760, 7840) and nodes (1536, 4160, 5952, 8064). Figure 4 displays the corresponding mesh 

graphs. It is clear that the free vibration results come to be converged at element number 
Ne = 7840. 

Table 3. First four natural frequencies (rad/s) of the spinning annular plate with different element 

numbers by finite element (FE) method (Ω = 500 rad/s). 

Frequency (Hz) Ne = 1440 Ne = 4000 Ne = 5760 Ne = 7840 

First 140.96 140.82 140.80 140.79 

Second 555.15 551.85 551.29 550.95 

Third 1421.00 1395.70 1391.50 1388.90 

Fourth 2728.30 2630.20 2613.90 2604.10 

 

 
 

(a) (b) 

Materials 2022, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
 

(c) (d) 

 

Figure 4. Mesh graph of different mesh element numbers. (a) Ne = 1440 (b) Ne = 4000, (c) Ne = 5760 (d) 

Ne = 7840. 

Table 4 and Figure 5 give the comparison of first four natural frequencies and vibra-

tion modes by theoretical method (MATLAB) and finite element (ABAQUS) method at Ω 

= 500 rad/s, respectively. It is obvious that the frequencies and vibration modes are in 

agreement, which shows that the present analysis is accurate. 

Table 4. Comparison of first four natural frequencies of the spinning annular plate by theory 

method and finite element (FE) method (Ω = 500 rad/s). 

Frequency Present (Hz) FE (Hz) Error 

First 141.97  140.79  0.84% 

Second 559.98  550.95 1.64% 

Third 1425.18  1388.90 2.61% 

Fourth 2711.27  2604.10 4.12% 

 

  
(a) (e) 

Figure 4. Mesh graph of different mesh element numbers. (a) Ne = 1440 (b) Ne = 4000, (c) Ne = 5760
(d) Ne = 7840.

In addition, the theoretical results are also compared with the experimental results [35]
in Table 5, where the parameters are given in Table 6. One can see that the theoretical
calculation results are in good agreement with the experimental results, which tells that the
present analysis is accurate.

Table 5. Comparison of first two natural frequencies of a spinning annular plate between theory
method and experiment method [35] (Ω = 0 rad/s).

Frequency Present (Hz) Experiment (Hz) Error

First 38.95 37.19 ± 0.29 4.73%
Second 265.35 262.38 ± 1.42 1.01%
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Table 6. The structural and material parameters in the literature [35].

Parameter Value

Ra 178 mm
Rb 53.35 mm
h 0.775 mm
E 200 GPa
ρ 7840 kg/m3

µ 0.3

3.2. Parametric Analysis

In this section, both the graphic form and tabular form are utilized to conduct the
parametric analysis on the free vibration results of the spinning FG annular plate with
porous core reinforced by GPLs.

Figure 6 depicts the variations of first four natural frequencies of the annular plate with
spinning speed for different ratios of the core thickness to annular plate thickness. A con-
siderable rise in the frequencies is observed as the spinning speed increases. In addition,
the larger ratio of the core thickness to annular plate thickness leads to greater frequencies.
It indicates that thinner faces could be adopted in the present sandwich structure to achieve
better mechanical performance.
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Figure 6. Variations of first four natural frequencies (rad/s) with spinning speed for different ratio
of the core thickness to annular plate thickness. (a) first frequency (b) second frequency, (c) third
frequency (d) fourth frequency.
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Figure 7 plots the variations of first four natural frequencies of the annular plate
with spinning speed for different GPL distributions. It is seen that the GPL distribution
pattern XG provides highest frequencies, while pattern OG has the worst enhancement
effect. This implies that dispersing more GPLs around the surfaces of the core could give a
hand to enhance the structural stiffness.
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Figure 7. Variations of first four natural frequencies (rad/s) with spinning speed for different GPL
distributions. (a) first frequency (b) second frequency, (c) third frequency (d) fourth frequency.

The variations of first four natural frequencies of the annular plate with spinning
speed for different porosity distributions are presented in Figure 8. Results show that
porosity distribution pattern XP affords greatest frequencies, while the pattern OP gives the
smallest one. It is noted that setting more pores around the surfaces of the core is effective
to obtain great mechanical performance.

Since the variations of natural frequencies with spinning speed are similar, only two
typical spinning speeds, 0 rad/s and 500 rad/s, are adopted in the following analysis.

Figure 9 shows the variations of first four natural frequencies of the annular plate with
GPL weight fraction at different spinning speeds. One can see that the frequencies increase
markedly with the GPL weight fraction. It is worth noting that adding more GPLs into the
core plays a very important role in obtaining greater enhancement.
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Figure 8. Variations of first four natural frequencies (rad/s) with spinning speed for different porosity
distributions. (a) first frequency (b) second frequency, (c) third frequency (d) fourth frequency.
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Figure 9. Variations of first four natural frequencies (rad/s) with GPL weight fraction for different
spinning speeds. (a) first frequency (b) second frequency, (c) third frequency (d) fourth frequency.
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Figure 10 lists the variations of first four natural frequencies of the annular plate
with GPL length-to-thickness ratio at different spinning speeds. We can see that the
frequencies rise dramatically with the GPL length-to-thickness ratio. For the same content
of GPLs, larger GPL length-to-thickness ratio means a thinner GPL. It can be seen that
better enhancement effect occurs when thinner GPLs are added into the core.
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Figure 10. Variations of first four natural frequencies (rad/s) with GPL length-to-thickness ratio for
different spinning speeds. (a) first frequency (b) second frequency, (c) third frequency (d) fourth
frequency.

Figure 11 gives the variations of first four natural frequencies of the annular plate with
GPL length-to-width ratio at different spinning speeds, where GPL length remains constant.
It is seen that the frequencies are reduced with a rise in GPL length-to-width ratios. Here
it should be noted that a smaller GPL length-to-width ratio means each GPL with larger
surface area, which can lead to better load transfer capacity.

The variations of first four natural frequencies of the annular plate with porosity
coefficient at different spinning speeds is presented in Figure 12. One can see that the
frequencies decrease in general with the increase of porosity coefficient. Although the
larger porosity coefficient can result in light weight, it weakens the structural stiffness.
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Figure 11. Variations of first four natural frequencies (rad/s) with GPL length-to-width ratio for differ-
ent spinning speeds. (a) first frequency (b) second frequency, (c) third frequency (d) fourth frequency.
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4. Conclusions

This paper concerned with the free vibration behavior of a spinning FG annular plate
with porous core reinforced by GPLs. Based on the Kirchhoff plate theory, the equations
of motion are obtained by employing the Lagrange equation method. The model and
vibration analysis are verified by adopting the FE method. Several interesting results could
be noted as follows.

(1) thinner faces could be adopted in the present sandwich structure to achieve better
mechanical performance.

(2) setting more pores and GPLs around the surfaces of the core is effective in enhancing
the structural stiffness.

(3) adding a few GPLs into the core plays a very important role in obtaining greater
enhancement.

(4) better enhance effect occurs when thinner GPLs with larger surface areas are applied
to be added into the core.

(5) larger porosity coefficient can result in light weight and weaken the structural stiffness.
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