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Abstract: Analytical solutions for the nonlinear vibration of imperfect functionally graded 

nanocomposite (FG-CNTRC) double curved shallow shells on elastic foundations subjected to 

mechanical load in thermal environments are introduced in this paper. The double curved shallow shells  

are  reinforced  by  single-walled  carbon  nanotubes  (SWCNTs)  which  are assumed to be graded 

through  the  thickness  direction according to the different types of linear functions. Motion and 

compatibility equations are derived using Reddy’s higher order shear deformation shell theory and taking 

into account the effects of initial geometrical imperfection and temperature – dependent properties. The 

deflection – time curve and the natural frequency are determined by using Galerkin method and fourth – 

order Runge – Kutta method. The effects geometrical parameters, elastic foundations, initial imperfection, 

temperature increment, mechanical loads and nanotube volume fraction on the nonlinear thermal 

vibration of the nanocomposite double curved shallow shells are discussed in numerical results. The 
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accuracy of present approach and theoretical results is verified by some comparisons with the known data 

in the literature. 

Keywords: Nonlinear thermal dynamic and vibration; imperfect nanocomposite FG-CNTRC double 

curved shallow shell; Galerkin method.  

1. Introduction 

Advanced materials are generally characterized by unusually high strength fibres 

with unusually high stiffness, or modulus of elasticity characteristics, compared to other 

materials, while bound together by weaker matrices. Besides normal advanced materials 

like ceramic materials, polymers, functionally graded materials (FGM), etc the discovery 

of carbon nanotubes (CNT) in 1991 opened up a new era in materials science. A CNT is a 

tube-shaped material, made of carbon, having a diameter measuring on the nanometer 

scale. Because of the high strength, low weight and high electrical conductivity, CNT 

open an incredible range of applications in materials science, electronics, chemical 

processing, energy management, and many other fields. Therefore, the mechanical 

behaviors of carbon nanotube reinforced structures have attracted much attention of 

scientists around the world. Patano (Pantano, 2017) investigated the effects of mechanical 

deformation on electronic transport through multiwall carbon nanotubes. Lv et al. (Lv et 

al., 2017) implemented molecular dynamics simulations to investigate the effect of single 

adatom and stone-wales defects on the longitudinal elastic properties of unidirectional 

carbon nanotube /polypropylene composites. Shen (Shen, 2009) presented an 

investigation on the nonlinear bending of simply supported, functionally graded  

nanocomposite plates reinforced by single-walled carbon nanotubes subjected to a 

transverse uniform or sinusoidal load in thermal environments. Dobrzańska-Danikiewicz 

et al. (Dobrzańska-Danikiewicz et al., 2017) described  the  morphology  of  carbon-

metal  nanocomposites  consisting  of  nanostructured  rhenium  permanently  attached  to  

carbon  nanomaterials,  in  the  form  of  single-walled,  double-walled  or  multi-walled  
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carbon  nanotubes. Li et al. (Li et al., 2017) studied self nitrogen-doped carbon nanotubes 

as anode materials for high capacity and cycling stability lithium-ion batteries. 

Fontananova et al. (Fontananova et al., 2017) focused on effect of  functional  groups  on  

the  properties  of  multi-walled  carbon nanotubes/polyvinylidenefluoride composite 

membranes. Shen and He (Shen and He, 2017) investigated a large amplitude vibration 

analysis of nanocomposite doubly curved panels resting on elastic foundations in thermal 

environments. Duc et al. (Duc et al., 2017) analyzed the thermal and mechanical stability 

of a functionally graded composite truncated conical shell reinforced by carbon nanotube 

fibers and surrounded by the elastic foundations. Liu et al. (Liu et al., 2017) prepared 

antistatic silk fabrics through sericin swelling-fixing treatment with aminated carbon 

nanotubes. Zghal et al. (Zghal et al., 2017) dealt with linear static analysis of functionally 

graded carbon nanotube-reinforced composite structures.  

Double curved shells can transfer forces very efficiently. Because the thickness to 

span ratio is very small, very economical and flexible design are easily made and widely 

used in energy saving constructions such as emergency shelter, cupola of an observatory, 

roof of a building or an inner courtyard, the shell of a large multi-story building, a sports 

hall and factory building. Recently, static and dynamic stability, buckling, postbuckling 

and vibration of double curved shells under different types of loads are important for 

practical applications and have received considerable interest. Kateryna and Nataliia 

(Kateryna and Nataliia, 2015) considered stress-deformable state of isotropic double 

curved shell with internal cracks and a circular hole. Ghosh and Bhattacharya (Ghosh and 

Bhattacharya, 2015) tried to delve into the modeling of energy transmission through a 

double-wall curved panel using Green's theorem. Jakomin et al. (Jakomin et al., 2010) 

discussed stress, deformation and stability conditions for thin double curved shallow 

bimetallic translation shells. Cortsen et al. (Cortsen et al., 2014) presented research and 

development results that have lead to a fully automated fabrication cell with two robots, 

that in one integrated step can produce unique double curved steel reinforcement 
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structures with sizes up to 2 times 2 meters. Asnafi studied (Asnafi, 2001) theoretically 

and experimentally the spring back of double curved autobody panels. The static dent 

resistance performance of the aluminum alloy double-curved panel formed using viscous 

pressure forming by finite element analysis, which mainly considers the forming process 

conditions was studied in work of Li and Wang (Li and Wang, 2009). In 2014, Bich et al. 

(Huy Bich et al., 2014) introduced an analytical approach to investigate the nonlinear 

dynamic response and vibration of imperfect eccentrically stiffened FGM thick double 

curved shallow shells on elastic foundation using both the first order shear deformation 

theory and stress function with full motion equations. Weickgenannt et al. (Weickgenannt 

et al., 2013) presented a method for optimal sensor placement on shell structures such 

that the state of oscillation of the system can be reconstructed and model-based methods 

for active vibration damping can be applied.  

Thermal load is defined as the temperature that causes the effect on structures and 

buildings, such as outdoor air temperature, solar radiation, underground temperature, 

indoor air temperature and the heat source equipment inside the building. The studies in 

vibration of structures subjected to thermal load are particularly important in 

computational mechanics. Dong and Li (Dong and Li, 2017) presented a unified 

nonlinear analytical solution of bending, buckling and vibration for the temperature-

dependent functionally graded rectangular plates subjected to thermal load. Liu et al. (Liu 

et al., 2013) developed an analytical methodology combining averaging technique of 

composites and an shape memory alloy constitutive model to determine the 

transformation properties of the functionally graded – shape memory alloy composite. 

Bouras and Vrcelj (Bouras and Vrcelj, 2017) performed non-linear elastic pre-buckling 

and in-plane buckling analysis for a circular shallow concrete arch subjected to a 

uniformly distributed load and time-varying uniform temperature field. Sha and Wang 

(Sha and Wang, 2017) implemented thermal-acoustic excitation test and corresponding 

simulation analysis for clamped metallic thin-walled plate for large deflection strongly 

nonlinear response problem of thin-walled structure to thermal-acoustic load. To  
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increase  the  thermal  resistance  of  various  structural  components  in  high temperature 

environments, Anh et al. (Anh et al., 2015) dealt with nonlinear stability analysis of thin 

annular spherical shells made of functionally graded materials on elastic foundations 

under  external  pressure  and  temperature.  Xu et al. (Xu et al., 2017) studied core-shell 

cylindrical systems under thermal loads, with the aim to describe possible wrinkling 

modes, bifurcation diagrams and dimensionless parameters influencing the response of 

the system.  Sheng and Wang (Sheng and Wang, 2017) researched a method to predict 

the nonlinear dynamic behavior of the fluid-conveying functionally graded cylindrical 

shell. Han et al. (Han et al., 2017)  investigated the free vibration and buckling behaviors 

of foam-filled composite corrugated sandwich plates under thermal loading. Thai et al. 

(Thai et al., 2017) used the isogeometric analysis to investigate the post-buckling 

behavior of functionally graded microplates subjected to mechanical and thermal loads. 

Up to date, there are very little researches on mechanical behaviors of 

nanocomposite FG-CNTRC plates and shells using Reddy’s higher order shear 

deformation theory based on analytical approach because of difficulties in calculations. 

Therefore, new contribution of the paper is that this is the investigation successfully 

establish modeling and analytical formulations for the nonlinear dynamic response and 

vibration of an imperfect shear deformable nanocomposite (FG-CNTRC) double curved 

shallow shell. The shells are assumed to be resting on elastic foundations and are 

subjected to the combined action of mechanical, thermal and damping loads. Material 

properties of nanocomposite double curved shallow shells are assumed to be temperature 

dependent and graded in the thickness direction according to variety of linear functions. 

The numerical results are obtained by using Galerkin method and fourth-order Runge-

Kutta method. The novelty feature of this study is that achieved results for dynamic 

response and natural frequency of the shell are presented in the analytical forms. Thus, 

this study provides fundamental scientific foundations for FG-CNTRC designers, 

manufacturers and for building projects using FG-CNTRC to select the elements in FG-



6 

 

CNTRC as well as the parameters of shell structure and foundations to create preeminent 

loads, thermal resistant capabilities of materials. 

2. Modeling 

Consider a nanocomposite FG-CNTRC double curved shallow shell of radii of 

curvature 
x

R ,
y

R , length of edges a , b  and uniform thickness h  resting on elastic 

foundations in thermal environments. A coordinate system ( , , )x y z
 

is established in 

which ( , )x y  plane on the middle surface of the shell and z  on thickness direction 

( / 2 / 2)h z h    as shown in Fig. 1.  

 

Fig. 1. Geometry and coordinate system of nanocomposite FG-CNTRC double curved 

shallow shells on elastic foundations. 

In this study, the nanocomposite material FG-CNTRC is made of Poly (methyl 

methacrylate), referred to as PMMA, reinforced by (10,10) SWCNTs. The effective 

Young’s and shear modulus of the FG-CNTRC material are determined are given as 

(Shen, 2009) 
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where 
11 22 12, ,CNT CNT CNT

E E G  are Young’s and shear modulus of the CNT; 
,m mE G  are 

mechanical properties of the matrix. 
CNTV  and 

mV  are the volume fractions of the CNT 

and the matrix, respectively and ( 1,3)i i   are the CNT efficiency parameters. 

The volume fractions of the CNT and the matrix in nanocomposite are assumed to 

change according to the variety of linear functions of the shell thickness. Five types of 

FG-CNTRCs, i.e. UD, FG-O, FG-X, FG-V, and FG-A, are considered and the volume 

fractions of the three distribution types are expressed specifically as following equations 

(Shen, 2009) 
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in which CNTw  is the mass fraction of CNTs, and CNT  and m  are the densities of CNT 

and matrix, respectively. 

Except Poisson’s ratio, the material properties of the matrix are assumed to 

express as linear functions of temperature (Shen, 2009) 
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with 
0 ,T T T   T  is the temperature increment in the environment containing the 

material and 
0 300T K  (room temperature). 

 The Young’s modulus, shear modulus and thermal expansion coefficient of 

SWCNTs of (10,10) SWCNTs are highly dependent to temperature as
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and the Poisson’s ratio of SWCNTs is chosen to be constant 
12 0.175.CNT 

 

The  CNT efficiency parameters ( 1,3)i i   are  obtained by the extended rule of 

mixture to molecular simulation results (Duc et al., 2017; Zghal et al., 2017). For three 

different volume fraction of CNTs, these parameters are: 1 2 30.137, 1.022, 0.715    

for the case of * 0.12 (12%)CNTV  ; 1 20.142, 1.626,    3 1.138   for the case of 

* 0.17 (17%)CNTV   and 1 2 30.141, 1.585, 1.109     for the case of * 0.28 (28%)CNTV  . 

The effective Poisson’s ratio of nanocomposite FG-CNTRC depends weakly on 

temperature change and position as (Shen, 2009) 

*

12 12 ,  CNT

CNT m m
V v V  (6) 

where 12

CNT  and m  are Poisson’s ratio of the CNT and the matrix, respectively.  

The thermal expansion coefficients in the longitudinal and transverse directions of 

the CNTRCs are given by (Shen, 2009) 
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with 
11 22,CNT CNT   and 

m  are the thermal expansion coefficients of the CNT and the 

matrix, respectively.  

3. Basic equations 

In this study, the Reddy’s higher order shear deformation shell theory (Brush and 

Almroth, 1975; Reddy, 2004) is used to establish governing equations and to determine 

the nonlinear vibration and dynamic response of imperfect FG-CNTRC thick double 

curved shallow shells in thermal environments. 

The relationship of strains and displacements taking into account the von Karman 

nonlinear terms are (Brush and Almroth, 1975; Reddy, 2004) 
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4

3
c

h
 ; , ,wu v  are displacement components corresponding to the coordinates 

 , ,x y z , ,
x y
   are the slopes of the transverse normal about the x  and y  axes at 0z  .  

Hooke law for a nanocomposite FG-CNTRC double curved shallow shell 

including temperature effect is defined as (Duc et al., 2017; Zghal et al., 2017; Quan and 

Duc, 2017) 
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and we use an assumption that 
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23 12
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The force and moment resultants of FG-CNTRC double curved shallow shells are 

given by 
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Introduction of Eqs. (8) and (9) into Eq. (10) and the results into Eq. (12) give the 

constitutive relations as  
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From the constitutive relations in Eq. (13), one can write  
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Based on the higher order shear deformation theory, the nonlinear motion 

equations of an imperfect FG-CNTRC double curved shallow shells are defined by 

(Reddy, 2004) 



13 

 

22 3

1 2 32 2 2
,


 

    
   

xyx x
NN

x y

u w
I I I

t t t x
 (17a) 

22 3
* * *

1 2 32 2 2
,

 


 

   
   

xy y yN N

x y

v w
I I I

t t t y  
(17b) 

2 22 2

2 2 2

32 2 2 3
2

1 2 1 1 3 52 2 2 2

33 4
* * 2

3 5 1 72 2 2

1 13 2

2 2




       
               

      


            
       

   
     

y y y y yx x x x

x

x y

x

xy y

y

Q R P P NQ R P N

x y x y x y R Rx y

w
c c q N

x

w w w w u
N N k w k w I I I I

x y ty t t x t x

v w
I I c I

t y t y t x

4

2 2 2
,

 
 
 


 

w

t y

 

(17c) 

22 3

1 1 2 4 52 2 2
3 ,

   
         

   
   

xy xyx x x

x x

M PM P
Q c R c

x y x y

u w
I I I

t t t x
(17d) 

22 3
* * *

1 1 2 4 52 2 2
3 ,

    
         

   
   

xy y xy y y

y y

M M P P
Q c R c

x y x y

v w
I I I

t t t y  
(17e) 

in which 1
k  is the Winkler foundation modulus, 2

k  is the shear layer foundation stiffness 

of  the Pasternak model, q  is an external pressure uniformly distributed on the surface of 

the panel,   is the viscous damping coefficient and 
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The Airy stress function  , ,f x y t  is defined as 
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Substituting Eq. (19) into Eqs. (17a) and (17b) gives 
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Inserting Eqs. (20a) and (20b) into Eqs. (17c), (17d) and (17e) yields  
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in which 
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Replacing Eqs. (15) and (19) into Eq. (13) and then into Eqs. (21), we have 
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with and the detail of coefficients 1 2 3( 1,12), ( 1,8), ( 1,8)
i j k

X i X j X k  
 

are given in 

Appendix A. 

The initial imperfection of the nanocomposite (FG-CNTRC) double curved 

shallow shells can be seen as a small deviation of middle surface of the shell from the 

perfect shape, also seen as an initial deflection which is very small compared with the 

shell dimensions, but may be compared with the shell wall thickness. Let  * ,w x y  

denote a known small imperfection, Eq. (23) can be rewritten as the following form 

             * * * *
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x xxx xyy

y xxy yyy

H w X w X w X w V X w X w

w f f w w f w

H w X w X w X w

H w X w X w X w

P f
 (26) 

The geometrical compatibility equation for an imperfect nanocomposite (FG-

CNTRC) double curved shallow shell may be derived as (Quan and Duc, 2017; Duc and 

Quan, 2015; Duc, 213) 

, ,0 0 0 2 * * *

, , , , , , , , , , , ,2 .          yy xx

x yy y xx xy xy xy xx yy xy xy xx yy yy xx

x y

w w
w w w w w w w w w

R R
(27) 

Setiing Eqs. (15) and (19) into the Eq. (27) gives 
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c D w c D w c D c D c D w

w w
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, , , , , , , ,2 .    yy xx
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x y

w w
w w w w w w w

R R

 

(28) 

Eqs. (25) and (28) are nonlinear equations in terms of variables , ,
x y

w    and ,f  

and are used to investigate the nonlinear vibration and dynamic response of the imperfect 

FG-CNTRC thick double curved shallow shells using the higher order shear deformation 

shell theory. 
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4. Nonlinear vibration analysis 

4.1.  Boundary conditions and solutions 

The imperfect FG-CNTRC double curved shallow shell is subjected to uniformly 

distributed pressure of intensity q   (Pascals) and simultaneously exposed to temperature 

environments. Four edges of the shell are assumed to be simply supported and 

immovable. The boundary conditions are defined as  

0

0

0, 0, ,

= 0, 0, ,





      

     
y x x x x

x y y y y

w u M P N N at x a

w v M P N N at y b
 (29) 

with 
0x

N , 
0y

N  are fictitious compressive loads at  immovable edges.  

The following approximate solution is chosen to satisfy the boundary conditions  

   
   
   

, , t sin sin ,

, , t cos sin ,

, , t sin cos ,

 

  

  



 

 
x x

y y

w x y W t x y

x y t x y

x y t x y

(30) 

where /m a  , / ;n b   ,m n  are odd natural numbers representing the number of 

half waves in the x  and y  directions, respectively; and ( ), ,
x y

W t    are the time 

dependent amplitudes.  

The initial imperfection of the FG-CNTRC double curved shallow shell is assumed 

to have the form like the shell deflection, i.e.  

 *

0, sin sin . w x y W x y  (31) 

The Airy stress function is obtained by putting Eqs. (30) and (31) into Eq. (28) as 
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H c D c D c D c D c D
R R

 

(34) 

4.2. Nonlinear dynamic response  

Subsequently, replacing Eqs. (30) - (32) into Eqs. (25) and then applying Galerkin 

method to the resulting equations yields  
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2 2
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y

x y

W
J W J t J t n W W n W W W I I

t t
 (35c) 

where the details of coefficients 1 2 3( 1,5), ( 1,3), ( 1,3 , ( 1, )) 9   
i j k q

J i J n qj J k   may be 

found in Appendix B. 

These are basic equations to determine the nonlinear dynamic response and natural 

frequency of imperfect thick nanocomposite FG-CNTRC double curved shallow shell in 

thermal environments. 

The in-plane condition on immovability at all edges of nanocomposite double 

curved shallow shell, ie. 0u   at 0,x a  and 0v   at 0,y b ,  is fulfilled in an average 

sense as 

0 0 0 0

0, 0.
 

 
    

b a a b
u v

dxdy dydx
x y

   (36) 

We can give the following expression from Eqs. (9) and (15) in which initial 

imperfection of the shell and Eq. (19) are taken into account 
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Putting the Eqs. (30) – (32) into the Eq. (37), then the results into Eq. (36) leads to 

 
 

0 1 2 3 4 0 5

* * * * *

0 1 2 3 4 0 5

2 ,

2 ,

        

        

x x y

y x y

N mW m m m W W W m T

N m W m m m W W W m T
 (38) 

where 
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q m m q q m m qq m m q
m m m   

and  * *, ( )1,5 1,2, , 
i i j j

q jm qim
 
are given in Appendix C. 

Introduction of Eqs. (38) into Eq. (35), yields 
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(41) 

The above system equations are basic equations which are used to investigate the 
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nonlinear dynamic response and vibration of the imperfect nanocomposite double curved 

shallow shells on the elastic foundations with immovable edges subjected to uniformly 

distributed pressure, thermal and damping loads.  These equations could be solved by 

using the fourth – order  Runge – Kutta method with the initial conditions are chosen as 

 0 0, (0) 0, (0) 0
x y

W       and  0 0, (0) 0, (0) 0.
yx

dddW

dt dt dt


    

4.3.  Natural frequency 

In the case of free and linear vibration, the natural frequencies of the perfect 

nanocomposite double curved shallow shell are the smallest values of the axial, 

circumferential and radial directions which can be determined by solving the following 

determinant 

2 2 * 2

11 1 1 1 12 5 14 5

2 2

21 6 5 22 3 23

* 2 * 2

31 8 5 32 33 3

0.

    

  

  

    

   

  

L n r I L I L I

J n I J I J

J n I J J I

 (42) 

5. Numerical results and discussion 

5.1. Validation 

To validate the accuracy of the present approach, the results of the fundamental 

frequency for the square plates and the nonlinear dynamic response of the double curved 

shallow shells are compared with other studies.  

 Firstly, Table 1 shows the comparison of the fundamental natural parameter 

2( / ) /
m m

b h E   for CNTRC double curved shell ( / 1, / 1, / 1/ 2,
x y

a b a R b R    

/ 10, 1 , 0b h h mm T    ) in this paper with the results in (Shen and He, 2017) based 

on the higher order deformation shell theory with different values of volume fraction 

CNT *

CNT
V , modes ,m n  and types of FG-CNTRC. It is easy to see a very good agreement 

in this comparison study. 
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Table 1. Comparison of the fundamental natural parameter 2( / ) /
c c

b h E   for 

CNTRC double curved shells ( / 1, / 1, / 1/ 2, / 10, 1
x y

a b a R b R b h h mm     ). 

( , )m n  
*

CNT
V    UD  FG V  FG  FG X  

(1,1) 

0.12 Shen and He (2017) 12.5022 11.6320  13.2122  16.5508  

Present 12.4872 11.0238 12.8605 16.2241 

0.17 Shen and He (2017) 15.6968  14.5319  16.3159  20.6753  

Present 15.8814 14.0843 15.8927 20.1793 

0.28 Shen and He (2017) 17.6011  16.5070  19.2067  23.5531  

Present 17.2216 16.1794 18.8433 23.1640 

(1,3) 

0.12 Shen and He (2017) 27.0617 26.4172 30.5916 35.9614 

Present 26.6825 25.8692 29.8258 35.6402 

0.17 Shen and He (2017) 34.8137 34.0998 38.8197 45.7687 

Present 34.7901 33.5290 38.2176 45.6503 

0.28 Shen and He (2017) 36.8280 36.6022 43.0309 53.0948 

Present 36.4659 36.2307 42.8946 52.5474 

Next, Fig. 2 compares the nonlinear dynamic responses of the double curved 

shallow shell without elastic foundations subjected to uniformly distributed pressure and 

damping load in this paper with the results presented in (Bich et al., 2014)  using the first 

order shear deformation shell theory. The input data are chosen as: 

0, / 20, / 1,  N b h b a
 

 1 2 06 , 0, 0, 0.1, 5000sin 500 .      
x y

R R m k k W q t
 
As 

can be seen that there is a little difference between the results in this paper and those 

determined in existing publication. 
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Fig. 1. Comparison of nonlinear dynamic responses of FGM double curved shallow shell 

subjected to mechanical and damping loads.  

5.2. Natural frequency 

Table 2 shows the effects of types of FG-CNTRC and ratio /b a
 
 on the natural 

frequency of the FG-CNTRC double curved shallow shells with a/ 30,h
 

9 6

1 2/ / 1500, 10 / , 10 . , 200     
x y

R h R h k Pa m k Pa m T K . Five types of FG-CNTRC 

(FG-Ʌ, FG-O, UD, FG-X, FG-V) are considered. From the results in this table, it is 

observed that the value of the natural oscillation frequency of FG-CNTRC double curved 

shallow shells increases when the ratio /b a  increases. Moreover, the natural oscillation 

frequency of FGV-CNTRC double curved shallow shell is highest and the natural 

oscillation frequency of FGɅ -CNTRC double curved shallow shell is lowest of all. 

Furthermore, natural  oscillation frequency  of  FGX-CNTRC double curved shallow 

shell is  higher  than  that  of  UD-CNTRC  double curved shallow shell  which  is  also  

higher  than  the frequency of FGO-CNTRC double curved shallow shell. 
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Table 2. Influences of type of FG-CNTRC and ratio /b a  
on the natural frequency of 

FG-CNTRC double curved shallow shells.   

/b a  FG-A FG-O UD FG-X FG-V 

1 2732 2927.6 2929.9 2931.9 3109.8 

2 2659.3 2859.5 2863.9 2867.6 3049 

3 2616 2819.1 2824 2828.0 3011.6 

4 2576.3 2782.1 2787.3 2791.4 2977.2 

5 2537.1 2745.8 2751.2 2755.4 2943.3 

6 2497.8 2709.4 2714.9 2719.2 2909.4 

 The influences of volume fraction CNT, ratio /
x

R h , temperature increment and 

elastic foundations on the natural frequency of the FGX-CNTRC double curved shallow 

shells are indicated in Table 3 with / 30a h  and / 1b a . Obviously, an increase of ratio 

/
x

R h  leads to an increase of the natural oscillation frequency of the FGX-CNTRC 

double curved shallow shells. Next, the natural oscillation frequency of FGX-CNTRC 

double curved shallow shells increases when the volume fraction CNT increases. In other 

words, carbon nanotubes have positive effect on the natural oscillation frequency of the 

FGX-CNTRC double curved shallow shell. In contrast, temperature increment has 

negative effect on the natural oscillation frequency of the FGX-CNTRC double curved 

shallow shells; when the temperature increment increases, the natural oscillation 

frequency of FGX-CNTRC double curved shallow shells decrease. The effect of elastic 

foundations with coefficients 1 2,k k  of the Winkler and Pasternak foundations on the 

natural oscillation frequency of FGX-CNTRC double curved shallow shells is also 

considered in Table 3. It can be seen that the natural frequencies of FGX-CNTRC double 

curved shallow shells on elastic foundations are greater than one of FGX-CNTRC double 

curved shallow shells without elastic foundations. The effect of elastic foundations on the 

natural frequencies of FGX-CNTRC double curved shallow shells are also shown 

specifically in Table 4 with various values of modulus 1k
 
and 2k . Clearly, the natural 
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frequency of FGX-CNTRC double curved shallow shells increases when the modulus 
1k
 

and 2k
 
increase. Furthermore, the Pasternak foundation with modulus 2k

 
has stronger 

effect on the natural frequency of the shell than the Winkler foundation with modulus 1k . 

Table 3. Effect of volume fraction CNT, elastic foundations, ratio /
x

R h  and temperature 

increment T  on the natural frequency of FGX-CNTRC double curved shallow shells. 

( )T K
 

/
x

R h

 

1 20, 0k k   9 6

1 210 . , 10 / k Pa m k Pa m  

* 0.12
CNT

V 
 

* 0.17
CNT

V 
 

* 0.28
CNT

V 
 

* 0.12
CNT

V 
 

* 0.17
CNT

V 
 

* 0.28
CNT

V 
 

0  

100 1588.2 1933.7 2374.8 3319.6 3485.2 3723 

400 1261.2 1547.5 1875.7 3176.2 3286.7 3426.3 

800 1246.3 1530.1 1853 3170.4 3278.5 3413.9 

100 

100 1512.8 1887.1 2246 3295.3 3459.8 3708.6 

400 1129.6 1474.5 1763.2 3085.1 3247.2 3369.9 

800 1217.8 1476.4 1702.3 3159.5 3201.8 3350.2 

200 

100 1420.4 1797.3 2196.4 3276.2 3378.5 3682.3 

400 1076.3 1378.9 1686.4 3026.5 3186.3 3309.8 

800 1173.6 1354.8 1627 3139.2 3178.6 3267.1 

Table 4. Effect of elastic foundations on the natural frequency of FGX-CNTRC double 

curved shallow shells. 

2
( . )k GPa m  

1
( / )k GPa m  

0 0.01 0.02 0.03 0.04 0.05 

0 2.8152 3.1950 3.5343 3.8438 4.1302 4.3979 

0.1 2.8873 3.2587 3.5920 3.8969 4.1797 4.4445 

0.2 2.9576 3.3212 3.6488 3.9493 4.2286 4.4905 

0.3 3.0263 3.3826 3.7047 4.0011 4.2769 4.5361 

0.4 3.0935 3.4428 3.7598 4.0522 4.3248 4.5812 
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0.5 3.1593 3.5021 3.8141 4.1026 4.3721 4.6259 

5.3. Nonlinear dynamic responses 

In this section, we will consider the effect of geometrical parameters, temperature 

increment, elastic foundations, initial imperfection, mechanical loads, nanotube volume 

fraction and types of FG-CNTRC on the nonlinear dynamic response of imperfect 

nanocomposite double curved shallow shells. The thickness of FGX-CNTRC double 

curved shallow shells is        . 

Effect of geometrical parameters 

Figs. 3 and 4 indicate the effects of geometrical parameters /a h  and /b a  on the 

nonlinear dynamic response of imperfect FGX-CNTRC double curved shallow shells on 

elastic foundations subjected to uniformly distributed pressure in thermal environment , 

respectively. Obviously, the fluctuation amplitude of the imperfect FGX-CNTRC double 

curved shallow shells increases when increasing the ratio /a h  and the ratio /b a . 

 

Fig. 3.  Effect of ratio a/ h  on the nonlinear dynamic response of the imperfect FGX-

CNTRC double curved shallow shell in thermal environments.  
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Fig. 4.  Effect of ratio /b a  on the nonlinear dynamic response of the imperfect FGX-

CNTRC double curved shallow shell in thermal environments. 

Effect of temperature increment 

Fig. 5 shows the effect of temperature increment T  on the nonlinear dynamic 

response of the imperfect FGX-CNTRC double curved shallow shell in thermal 

environments with 
*/ / 30, / / 1500, 0.12, 0.1     

x y CNT
a h b h R h R h V . It can be 

seen that the temperature increment T  has negative effect on the nonlinear dynamic 

response of FGX-CNTRC double curved shallow shells. Specifically, FGX-CNTRC 

double curved shallow shell fluctuation amplitude increases when the temperature 

increment T  increases.  

Effect of exciting force amplitude 

The nonlinear dynamic response of FGX-CNTRC double curved shallow shells on 

elastic foundations subjected to mechanical load and temperature with different values of 

exciting force amplitude Q  is illustrated in Fig. 6. As can be observed, an increase of the 

amplitude of uniformly distributed pressure Q  leads to an increase of nonlinear dynamic 

response amplitude of the FGX-CNTRC double curved shallow shell.  
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Fig. 5.  Effect of temperature increment T  on the nonlinear dynamic response of the 

imperfect FGX-CNTRC double curved shallow shell in thermal environments. 

 

Fig. 6.  Effect of exciting force amplitude Q  on the nonlinear dynamic response of the 

imperfect FGX-CNTRC double curved shallow shell in thermal environments. 
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Effect of initial imperfection 

The influences of initial imperfection with amplitude 
0

W  on the nonlinear dynamic 

response of FGX-CNTRC double curved shallow shells subjected to uniformly 

distributed pressure, thermal and damping loads are shown in Fig. 7. Three values of 

amplitude of initial imperfection 
0

: 0, 0.001W m  and 0.002 m  are used. It can be seen 

that the nonlinear dynamic response amplitude of the FGX-CNTRC double curved 

shallow shell increased when the amplitude 
0

W  increased.  

 

Fig. 7. Effects of initial imperfection on the nonlinear dynamic response of the imperfect 

FGX-CNTRC double curved shallow shell in thermal environments. 

Effects of elastic foundations  

Figs. 8 and 9 indicate the effects of elastic foundations on the nonlinear dynamic 

response of the FGX-CNTRC double curved shallow shells under uniform external 

pressure in thermal environments. As expected, the nonlinear dynamic amplitude of the 

panel becomes considerably lower due to the support of elastic foundations. Furthermore, 
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the beneficial effect of the Pasternak foundation on the nonlinear dynamic response of the 

FGX-CNTRC double curved shallow shells is better than the Winkler one.  

 

Fig. 8. Effect of Winkler foundation on the nonlinear dynamic response of the imperfect 

FGX-CNTRC double curved shallow shell in thermal environments.  

 

Fig. 9. Effect of Pasternak foundation on the nonlinear dynamic response of the imperfect 

FGX-CNTRC double curved shallow shell in thermal environments.  
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Effect of carbon nanotube volume fraction 

Fig. 10 considers the nonlinear dynamic response of the imperfect FGX-CNTRC 

double curved shallow shells in thermal environments with different values of carbon 

nanotube volume fraction ( *

CNT
V ). The input data are: / 1,a b  

0
/ 30, / / 1500, 0.1, 0    

x y
b h R h R h W . As shown, the higher the carbon 

nanotube volume fraction is, the lower the amplitude of the FGX-CNTRC double curved 

shallow shells is. In other words, carbon nanotubes play an important role in increasing 

the stiffness of FGX-CNTRC double curved shallow shells. 

 

Fig. 10. Effects of CNT volume fraction on the nonlinear dynamic response of the 

imperfect FGX-CNTRC double curved shallow shells in thermal environments. 

Effect of types of FG-CNTRC 

Fig. 11 gives comparison of the nonlinear amplitude fluctuation for FG-CNTRC 

double curved shallow shells of type X, O and UD subjected to uniformly distributed 

pressure, thermal and damping loads with the same geometrical parameters. Clearly, the 

amplitude fluctuation of FGX-CNTRC double curved shallow shell is highest of all and 

the amplitude fluctuation of FGX-CNTRC double curved shallow shell is lowest of all.  
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Fig. 11. Effects of type of CNT reinforcements on the nonlinear dynamic response of the 

imperfect FG-CNTRC double curved shallow shells in thermal environments. 

6. Conclusions 

This paper used the stress method to investigate the nonlinear dynamic response 

and vibration of nanocomposite (FG-CNTRC) double curved shallow shells on elastic 

foundations subjected to combination of mechanical, thermal and damping loads. 

Governing equations are derived using Reddy’s higher order shear deformation shell 

theory taking into account geometrical nonlinearity and temperature dependent 

properties. One-term approximate solutions are assumed to satisfy simply supported 

boundary conditions. The full order equations are obtained by using Galerkin method 

then Runge – Kutta method is used to give the nonlinear dynamic responses of the 

nanocomposite shells. Numerical results show the positive effects of elastic foundations 

and carbon nanotubes as well as the negative influence of temperature increment and 

initial imperfection on the nonlinear vibration of the nanocomposite double curved 

shallow shells. While elastic foundations and carbon nanotubes enhance the stiffness, 

increase the natural frequency and decrease the nonlinear dynamic response amplitude of 

the nanocomposite shells, the temperature increment and initial imperfection increase the 
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amplitude and reduce the natural frequency of the shell. The influences of geometrical 

parameters and the type of FG-CNTRC on nonlinear vibration of the nanocomposite 

double curved shallow shells are also studied and discussed in details. The present 

approach and theory are validated by comparing with results of other authors. 
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