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Abstract: Analytical solutions for the nonlinear vibration of imperfect functionally graded
nanocomposite (FG-CNTRC) double curved shallow shells on elastic foundations subjected to
mechanical load in thermal environments are introduced in this paper. The double curved shallow shells
are reinforced by single-walled carbon nanotubes (SWCNTs) which are assumed to be graded
through the thickness direction according to the different types of linear functions. Motion and
compatibility equations are derived using Reddy’s higher order shear deformation shell theory and taking
into account the effects of initial geometrical imperfection and temperature — dependent properties. The
deflection — time curve and the natural frequency are determined by using Galerkin method and fourth —
order Runge — Kutta method. The effects geometrical parameters, elastic foundations, initial imperfection,
temperature increment, mechanical loads and nanotube volume fraction on the nonlinear thermal

vibration of the nanocomposite double curved shallow shells are discussed in numerical results. The
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accuracy of present approach and theoretical results is verified by some comparisons with the known data

in the literature.

Keywords: Nonlinear thermal dynamic and vibration; imperfect nanocomposite FG-CNTRC double

curved shallow shell; Galerkin method.

1. Introduction

Advanced materials are generally characterized by unusually high strength fibres
with unusually high stiffness, or modulus of elasticity characteristics, compared to other
materials, while bound together by weaker matrices. Besides normal advanced materials
like ceramic materials, polymers, functionally graded materials (FGM), etc the discovery
of carbon nanotubes (CNT) in 1991 opened up a new era in materials science. A CNT is a
tube-shaped material, made of carbon, having a diameter measuring on the nanometer
scale. Because of the high strength, low weight and high electrical conductivity, CNT
open an incredible range of applications in materials science, electronics, chemical
processing, energy management, and many other fields. Therefore, the mechanical

behaviors of carbon nanotube reinforced structures have attracted much attention of

scientists around the world. Patano (Pantano, 2017) investigated the effects of mechanical
deformation on electronic transport through multiwall carbon nanotubes. Lv et al. (Lv et
al., 2017) implemented molecular dynamics simulations to investigate the effect of single
adatom and stone-wales defects on the longitudinal elastic properties of unidirectional
carbon nanotube /polypropylene composites. Shen (Shen, 2009) presented an
investigation on the nonlinear bending of simply supported, functionally graded
nanocomposite plates reinforced by single-walled carbon nanotubes subjected to a
trans verse uniform or sinusoidal load in thermal environments. Dobrzanska-Danikie wicz
et al. (Dobrzanska-Danikiewicz et al., 2017) described the morphology of carbon-
metal nanocomposites consisting of nanostructured rhenium permanently attached to

carbon nanomaterials, in the form of single-walled, double-walled or multi-walled
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carbon nanotubes. Li et al. (Li et al., 2017) studied self nitrogen-doped carbon nanotubes
as anode materials for high capacity and cycling stability lithium-ion batteries.
Fontananova et al. (Fontananova et al., 2017) focused on effect of functional groups on
the properties of multi-walled carbon nanotubes/polyvinylidenefluoride composite
membranes. Shen and He (Shen and He, 2017) investigated a large amplitude vibration
analysis of nanocomposite doubly curved panels resting on elastic foundations in thermal
environments. Duc et al. (Duc et al., 2017) analyzed the thermal and mechanical stability
of a functionally graded composite truncated conical shell reinforced by carbon nanotube
fibers and surrounded by the elastic foundations. Liu et al. (Liu et al., 2017) prepared
antistatic silk fabrics through sericin swelling-fixing treatment with aminated carbon
nanotubes. Zghal et al. (Zghal et al., 2017) dealt with linear static analysis of functionally

graded carbon nanotube-reinforced composite structures.

Double curved shells can transfer forces very efficiently. Because the thickness to
span ratio is very small, very economical and flexible design are easily made and widely
used in energy saving constructions such as emergency shelter, cupola of an observatory,
roof of a building or an inner courtyard, the shell of a large multi-story building, a sports
hall and factory building. Recently, static and dynamic stability, buckling, postbuckling
and vibration of double curved shells under different types of loads are important for
practical applications and have received considerable interest. Kateryna and Nataliia
(Kateryna and Nataliia, 2015) considered stress-deformable state of isotropic double
curved shell with internal cracks and a circular hole. Ghosh and Bhattacharya (Ghosh and
Bhattacharya, 2015) tried to delve into the modeling of energy transmission through a
double-wall curved panel using Green's theorem. Jakomin et al. (Jakomin et al., 2010)
discussed stress, deformation and stability conditions for thin double curved shallow
bimetallic translation shells. Cortsen et al. (Cortsen et al., 2014) presented research and
development results that have lead to a fully automated fabrication cell with two robots,
that in one integrated step can produce unique double curved steel reinforcement
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structures with sizes up to 2 times 2 meters. Asnafi studied (Asnafi, 2001) theoretically
and experimentally the spring back of double curved autobody panels. The static dent
resistance performance of the aluminum alloy double-curved panel formed using viscous
pressure forming by finite element analysis, which mainly considers the forming process
conditions was studied in work of Li and Wang (Li and Wang, 2009). In 2014, Bich et al.
(Huy Bich et al., 2014) introduced an analytical approach to investigate the nonlinear
dynamic response and vibration of imperfect eccentrically stiffened FGM thick double
curved shallow shells on elastic foundation using both the first order shear deformation
theory and stress function with full motion equations. Weickgenannt et al. (Weickgenannt
et al., 2013) presented a method for optimal sensor placement on shell structures such
that the state of oscillation of the system can be reconstructed and model-based methods
for active vibration damping can be applied.

Thermal load is defined as the temperature that causes the effect on structures and
buildings, such as outdoor air temperature, solar radiation, underground temperature,
indoor air temperature and the heat source equipment inside the building. The studies in
vibration of structures subjected to thermal load are particularly important in
computational mechanics. Dong and Li (Dong and Li, 2017) presented a unified
nonlinear analytical solution of bending, buckling and vibration for the temperature-
dependent functionally graded rectangular plates subjected to thermal load. Liu et al. (Liu
et al., 2013) developed an analytical methodology combining averaging technique of
composites and an shape memory alloy constitutive model to determine the
transformation properties of the functionally graded — shape memory alloy composite.
Bouras and Vrcelj (Bouras and Vrcelj, 2017) performed non-linear elastic pre-buckling
and in-plane buckling analysis for a circular shallow concrete arch subjected to a
uniformly distributed load and time-varying uniform temperature field. Sha and Wang
(Sha and Wang, 2017) implemented thermal-acoustic excitation test and corresponding
simulation analysis for clamped metallic thin-walled plate for large deflection strongly

nonlinear response problem of thin-walled structure to thermal-acoustic load. To
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increase the thermal resistance of various structural components in high temperature
environments, Anh et al. (Anh et al., 2015) dealt with nonlinear stability analysis of thin
annular spherical shells made of functionally graded materials on elastic foundations
under external pressure and temperature. Xu et al. (Xu et al., 2017) studied core-shell
cylindrical systems under thermal loads, with the aim to describe possible wrinkling
modes, bifurcation diagrams and dimensionless parameters influencing the response of
the system. Sheng and Wang (Sheng and Wang, 2017) researched a method to predict
the nonlinear dynamic behavior of the fluid-conveying functionally graded cylindrical
shell. Han et al. (Han et al., 2017) investigated the free vibration and buckling behaviors
of foam-filled composite corrugated sandwich plates under thermal loading. Thai et al.
(Thai et al., 2017) used the isogeometric analysis to investigate the post-buckling
behavior of functionally graded microplates subjected to mechanical and thermal loads.
Up to date, there are very little researches on mechanical behaviors of
nanocomposite FG-CNTRC plates and shells using Reddy’s higher order shear
deformation theory based on analytical approach because of difficulties in calculations.
Therefore, new contribution of the paper is that this is the investigation successfully
establish modeling and analytical formulations for the nonlinear dynamic response and
vibration of an imperfect shear deformable nanocomposite (FG-CNTRC) double curved
shallow shell. The shells are assumed to be resting on elastic foundations and are
subjected to the combined action of mechanical, thermal and damping loads. Material
properties of nanocomposite double curved shallow shells are assumed to be temperature
dependent and graded in the thickness direction according to variety of linear functions.
The numerical results are obtained by using Galerkin method and fourth-order Runge-
Kutta method. The novelty feature of this study is that achieved results for dynamic
response and natural frequency of the shell are presented in the analytical forms. Thus,
this study provides fundamental scientific foundations for FG-CNTRC designers,

manufacturers and for building projects using FG-CNTRC to select the elements in FG-



CNTRC as well as the parameters of shell structure and foundations to create preeminent

loads, thermal resistant capabilities of materials.
2. Modeling

Consider a nanocomposite FG-CNTRC double curved shallow shell of radii of
curvature R ,R , length of edges a, b and uniform thickness h resting on elastic
foundations in thermal environments. A coordinate system (x,y,z) is established in
which (x,y) plane on the middle surface of the shell and z on thickness direction

(—h/2<z<h/2) as shown in Fig. 1.

Fig. 1. Geometry and coordinate system of nanocomposite FG-CNTRC double curved

shallow shells on elastic foundations.

In this study, the nanocomposite material FG-CNTRC is made of Poly (methyl
methacrylate), referred to as PMMA, reinforced by (10,10) SWCNTs. The effective
Young’s and shear modulus of the FG-CNTRC material are determined are given as

(Shen, 2009)
E, = 771VCNTE1C1NT +V,E,,
n, Venr n V.,

E, E E, (1)
75 _ Venr + v,
GlZ GICZNT Gm ’



where E, E;", G are Young’s and shear modulus of the CNT; E G, are

mechanical properties of the matrix. V., and V  are the volume fractions of the CNT

and the matrix, respectively and 7, (i = 1,3) are the CNT efficiency parameters.

The volume fractions of the CNT and the matrix in nanocomposite are assumed to
change according to the variety of linear functions of the shell thickness. Five types of
FG-CNTRGCs, i.e. UD, FG-O, FG-X, FG-V, and FG-A, are considered and the volume
fractions of the three distribution types are expressed specifically as following equations

(Shen, 2009)

Vier ( UD )
AT (1—2%] (FG-0)
Venr (2) = 4VV*CT M (FG—X) >
h (2)
Vier (1+2%) (FG-V)
Vier (1— 2%} (FG-A)
Vm(Z) :1_VCNT(Z)’
where
Vewr = o , 3)

Wenr T (pCNT ! P, ) - (IOCNT ! p, ) Wenr
in which w,,, 1s the mass fraction of CNTs, and p.,, and p, are the densities of CNT

and matrix, respectively.
Except Poisson’s ratio, the material properties of the matrix are assumed to

express as linear functions of temperature (Shen, 2009)



v, =0.34,
a, =45(1+0.0005AT)x10° / K, )
E, = (3.52-0.0034T)GPa,

with T=T,+AT, AT is the temperature increment in the environment containing the

material and 7, =300K (room temperature).

The Young’s modulus, shear modulus and thermal expansion coefficient of

SWCNTs of (10,10) SWCNTs are highly dependent to temperature as

ES [TPa]=6.3998—4.33817*107°T +7.43%10°T* - 4.45833%10°T°,

E;," [TPa]=8.02155—-5.420375*107°T +9.725%107°T* - 5.5625*107°T",

GO [TPa]=1.40755+3.476208 10T —6.965*10°T* +4.479167 *10°T", (5)
" [10°/ K | =-1.12515+0.022916887 — 2.887 10T +1.13625*10°T",

a" [10°/ K | =5.43715-0.984625*%107'T +2.9%10 7> —1.25%10"'T",
and the Poisson’s ratio of SWCNTs is chosen to be constant v, =0.175.

The CNT efficiency parameters 7, (i = 1,3) are obtained by the extended rule of

mixture to molecular simulation results (Duc et al., 2017; Zghal et al., 2017). For three

different volume fraction of CNTs, these parameters are: 7, =0.137,n, =1.022,17, =0.715
for the case of V,, =0.12 (12%); n, =0.142,, =1.626, n, =1.138 for the case of
Viur =0.17 (17%) and 7, =0.141,;7, =1.585,7, =1.109 for the case of V,,, =0.28 (28%) .

The effective Poisson’s ratio of nanocomposite FG-CNTRC depends weakly on

temperature change and position as (Shen, 2009)

__ys* ..CNT
VIZ_VCNTVIZ

+Vv., (6)

where v and v, are Poisson’s ratio of the CNT and the matrix, respectively.

The thermal expansion coefficients in the longitudinal and transverse directions of

the CNTRC:s are given by (Shen, 2009)



CNT _ CNT
_ VCNTEII Cle +‘/mEmam
Ty BV LV E
CNT 11 + m—m
_ CNT CNT
a22 - (1 + V12 )VCNT a22

matrix, respectively.

with o, a5,

+(+v )V a, —v,a,,

(7)

and ¢, are the thermal expansion coefficients of the CNT and the

3. Basic equations

In this study, the Reddy’s higher order shear deformation shell theory (Brush and

Almroth, 1975; Reddy, 2004) is used to establish governing equations and to determine

the nonlinear vibration and dynamic response of imperfect FG-CNTRC thick double

curved shallow shells in thermal environments.

The relationship of strains and displacements taking into account the von Karman

nonlinear terms are (Brush and Almroth, 1975; Reddy, 2004)
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u,v,w are displacement components corresponding to the coordinates

(x, y,z), ¢X,¢y are the slopes of the transverse normal about the x and y axesat z=0.

Hooke law for a nanocomposite FG-CNTRC double curved shallow shell

including temperature effect is defined as (Duc et al., 2017; Zghal et al., 2017; Quan and

Duc, 2017)
o] o,
G}y le
o, = 0
G)CZ O
_O-yz L 0

where

E
0, = 5
1_‘/12‘/21

0, 0 0 0
0, 0 0 0
0 g, 0 0

0o 0 Q, O
0 0

E22
’ 22 12

=T
1_‘/12‘/21

0 st i

_gxx _allAT_
£, —a,,AT
- , (10)
¥z _
v, E
=21 ’Q44:G23’Q55 :Gl3’Q66:G12' (11)
1_V12V21

and we use an assumption that G, =G, and G,, =1.2G,.

The force and moment resultants of FG-CNTRC double curved shallow shells are

given by
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hi2

(N, M.P)= [ 6,(1,z,2)dz, i = x, y,xy,
—h/2

hi2 (12)
(0.K)= [ 0,(.z")dz. i =x.y.

—h/2

Introduction of Egs. (8) and (9) into Eq. (10) and the results into Eq. (12) give the

constitutive relations as

N, = A, &) + A,&) + B, k. + B,k + D,k + D,k — (@), + @} ) AT,
N, = A,&) + Apgl + Bk! + Bk, + D,k + Dyyk) — (@) + @) ) AT,
N, = A667/3y + B66k)lcy + Déékiv’

M, =B, &) + B,&) +C,k} + C k} + E, K + E, k) — (@} +®; )AT,
M, = B,&} + B,&) + C k), + Cyk) + Epk] + Eyk, (D), +®@; AT,
M, =By, +Cgyk,, +Egk, ,

P, =D, &) + D&} + E, k. + E k, + G, k] + Gk, —(® +®? AT,
P, = D&} + Dy &) + Epk, + Epk), + Gk + Gk} (@) + @} AT, (13)
P, =Dyy, +Egk, +Ggk’
0 = A447;(c)z + C44kx2z’

Qy = A557Sz + Csskyzz )

K = C447/Sz + E44k2

Xz
_ 0 2
Ky - C557yz + ESSkyz’
in which
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hi2

D,.E,.G,)= [ 0,(, 2.2, 2", 2%, 2*)dz. ij =11,12,22,66,

jr Ty Ty T
—hi2

(A.. B.C.

/A

n2
(Ay> Cy» Ey) = j Q,(, 2%, 2%)dz, kl = 44,55,

—h/2
hi2

((DL’(D?;’(Dz’(Di): J- (Qllall’Q12a22’Q12a11’Q22a22)dZ’ (14)
—hl2

hi2

1 2 3 4
((Db’q)b’q)b’q)b): _[ (Qllall’Q12a22’Q12all’Q22a22)zdz’
—h/2
hi2

((Di’q)cz’q)?’q)j): I (Qllall’Q12a22’Q12all’Q22a22)Z3dZ'

—~h/2

From the constitutive relations in Eq. (13), one can write
&) =A,N,— A, N, — B, k, — Bk, — Dk}
~DLK + [A; (@) +®2)- A, (@) + D! )] AT,
g) =A\N,—A,N, + Bk, +B,k, +D,k; (15)
+D}k} — [A;; (@) +@2)- A (@ + @3 )]AT,
Vo = AN,y = Bk, — Dok,

where

A_AIIAZZ_AIZ’ All:f’ A]QZAQ]Zf’ Azzz%’ 321:A22 “A 12 129

* AzzBlz _Alszz , B* — Alan _AllBl2 — AlzBlz _AuBzz ,

B,, = A 11 > Bl*z A
« _ApD,—A,D, « _AyD, - A,D,, D’ = A12D11 _A11D12 (16)
D, = » D, = s L = s
A A A
D, = el ;AuDzz A=t g Be o Ds
Aas A66 Ags

Based on the higher order shear deformation theory, the nonlinear motion
equations of an imperfect FG-CNTRC double curved shallow shells are defined by
(Reddy, 2004)
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in which £, is the Winkler foundation modulus, k, is the shear layer foundation stiffness
of the Pasternak model, g is an external pressure uniformly distributed on the surface of

the panel, ¢ is the viscous damping coefficient and

- 21, = 21, — I J— I I
[ =1 +22 1 =1 +22 1 =1+ —cl, -5 [ =] +>—c], -5
R R, R, R, ] R,
I3:CII4+C1R_5, ; :c114+f I,=I =I1,-2¢I,+cI, I, =1 =cI,—cI,,
' g (18)

(1,,1,,1,,1,,1,,1,) = j p(z)(l,z,zz,z3,z4,z6)dz,

—h/2

P(2) =Venr Penr +V,, P
The Airy stress function f (x, y,t) is defined as

o’ f o’ f o’ f
N, =—-,N,=—-,N_ =- :
oy ox Ox0Oy

(19)

Substituting Eq. (19) into Egs. (17a) and (17b) gives
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__Loe L , (20a)
I

(20b)

Inserting Eqgs. (20a) and (20b) into Egs. (17¢), (17d) and (17¢) yields

Q..+0,,-3¢(K, +K, )+c (P, +2P, +P )+f*"-" L gt fw @D

Xy, X Y, yy ULxx
Y, Xy yy Rx Ry y

o*w 9, ¢
-2 + —kw+k,Vw=1 —+2 I +I +I
f Wy foW}y w W= ot or ¢ ot 8t28x étzﬁx
= o'w = 0'w
1 +1 ,
Torox® 7 ortoy?

1 ~1,
ot Corox

=09, = Ow
M, +M,, -0 +3c¢K —¢(P,, +P )=1, preal B 5

M, +M -0 +3¢K, (P P ) =09, = 0w

xy,y

(22)
—\2 , = 2 # _*2 - 2
L =(L) 11 -, 7=(13) /T~

Replacing Eqgs. (15) and (19) into Eq. (13) and then into Egs. (21), we have

H,(w)+H, (s )+H, (¢,)+Hl4(f)+P(w,f)+

2 — 3 =a3 — 4 _ 4
16_‘:}—'_28]18‘4}4_[ a2¢ +15 2¢ +1 azw +1 62W2
ot or orox Corex Torox’ T or'dy
2 — 3
oY [ ow (23)
e > ortox’
=09, = &w
H3'(W)+H32(¢)+H32(¢ )+H34(f) L= or? IS%’

=1

H21(W)+H22 (¢x)+H23 (¢ )+H24 (f)

where
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H,, w) =X\ W, + Xlszy + X 3W o T XMW’XW
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w
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T om R oE T T oxT T

Y.y

with and the detail of coefficients X, (i=112), X,;(j=18), X;, (k=1,8) are given in
Appendix A.
The initial imperfection of the nanocomposite (FG-CNTRC) double curved

shallow shells can be seen as a small deviation of middle surface of the shell from the

perfect shape, also seen as an initial deflection which is very small compared with the
shell dimensions, but may be compared with the shell wall thickness. Let w (x,y)

denote a known small imperfection, Eq. (23) can be rewritten as the following form

Hy, (w)+Hy, (6,)+ Hyy (8,)+ Hy (f)+ P(w.f)+Hiy (w)+ P (W', f)+q

2 =3 =a3 — 4 — 4
a—ZV+2311@+IS °9 T / Byl : 82w2’
d o> oy

=1 +
! ot ortox S ortox | ortox?
’g,_= Ow
o ortox’

B (25)
H,, (W)+H22 (¢x)+H23 (¢y)+H24 (f)"'H; (Wk) :E
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=09, = o'w

H,, (w)+Hy (¢,)+ Hy (8,)+ Hyy () + Hyy (W) =1, 72 s oy

in which

H (W)= X, Wiy + X' + Xwl Vi + X ow' o+ X ow'

P( f)=fva —2f Wy +fuw,,s

Hy (W)= Xow', + X Wiy + Xopw' (26)
Hy (w')= Xyw', + Xpw' + Xgw', .

The geometrical compatibility equation for an imperfect nanocomposite (FG-
CNTRC) double curved shallow shell may be derived as (Quan and Duc, 2017; Duc and
Quan, 2015; Duc, 213)

4 = R —w w4 2wo W —wow s —ww, — o M 27
X,y y,xx yx}”x}' - Ty SXX L)Y SXY XY SXX LYY LYY XX R R ' ( )

X y

Setiing Egs. (15) and (19) into the Eq. (27) gives

A S e A;Zf:yyyy + (A66 A21 ) Sy + (Bl*l - chl*l )¢xm + (ch; _Bzz)¢y,}v}=)r
+(Bg + ¢, D5, — By, — ¢, Dy ), ., +(Bas + By —¢, D, =, Dy ) 4, .,

—c,D\w .. +ch22wym +(C1D —¢Dy, 2ch66)w oy (28)
. w w
_ 2 _ * _ * _ * _ ,yy _ ’_m
=wl, —w, . w o+ 2w’xy Wy =W W =W W e R
X y

Egs. (25) and (28) are nonlinear equations in terms of variables w,@,,¢, and f,

and are used to investigate the nonlinear vibration and dynamic response of the imperfect

FG-CNTRC thick double curved shallow shells using the higher order shear deformation

shell theory.
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4. Nonlinear vibration analysis
4.1. Boundary conditions and solutions

The imperfect FG-CNTRC double curved shallow shell is subjected to uniformly
distributed pressure of intensity g (Pascals) and simultaneously exposed to temperature
environments. Four edges of the shell are assumed to be simply supported and

immovable. The boundary conditions are defined as

w=u=¢ =M =P, =0,N =N, at x=0,q,
W=V=¢x=My =P, =0,N, =N, at y=0,b,

(29)

with N, N, are fictitious compressive loads at immovable edges.

The following approximate solution is chosen to satisfy the boundary conditions

w(x,y,t)=W(t)sinaxsin Sy,
&, (x,y.t)

() (30)
¢y (x’ y’t) =

t)cosaxsin Sy,

a
(

. t) sinaxcos Sy,

where a=mrx/a, f=nx/b;, m,n are odd natural numbers representing the number of

half waves in the x and y directions, respectively; and W(t),CDx,CDy are the time

dependent amplitudes.
The initial imperfection of the FG-CNTRC double curved shallow shell is assumed

to have the form like the shell deflection, i.e.
w' (x,y)=W,sinaxsin Sy. (31)

The Airy stress function is obtained by putting Egs. (30) and (31) into Eq. (28) as
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f(x,y,t)=A (t)cos2ax+ A, (t)cos2fy

(32)
+A, (t)sin axsin Sy +%Nx0y2 +%Ny0x2,
in which
ﬂZ
A = —W (W +2W, ),
' 32a%A ( 0)
2
A, = 32;2 W), (33)
2

A, = HZ(D A R +H4W,
Hl 1 1
and
H = Aa' + AL B+ (A - A, - AL) & B
H, =—(B), -¢,D},)a’ =By +¢,D;, - B;, —c,Dy ) afp’,
Hy=~(¢,D;, — B, ) ° —(Bg + By, —¢,D}, — ¢, Dy ) & B. (34)

ﬂz aZ * * E * *
H, = LR_-'-R_ —|:C1D22ﬂ4 —¢ Do’ +(ch21 -, D), - 201D66)a2,6’2].

X y

4.2. Nonlinear dynamic response

Subsequently, replacing Egs. (30) - (32) into Egs. (25) and then applying Galerkin
method to the resulting equations yields
JW+T,@ (1) + ;0 (1) + T, @ (W+W,)+ @ (W +W,)
+(m =Ny = BN ) (W +W, )+, W (W +W,)
(

+n,W (W +2W, )+ n,W (W +2W, ) (W + W) (35a)
! 1 o'W oW —82® —62
+n5(R—xNx0 +R—yNy0]+n5q=I at +2 I E—a —ﬁl
_82 =82W
I W+ J,@ (1) + ;@ (1) +ng (W+W,)+n,W (W +2W,) =1, pwe L —al, o (35b)
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2

or

g W oW (35¢)

T W +J5,®@ (1) + T, @ () +ng (W +W,)+n,W (W +2W, ) = I_ P

where the details of coefficients J,,(i=1,5), J,;(j =13), J; (k=13),n, (¢ =1,_9) may be
found in Appendix B.
These are basic equations to determine the nonlinear dynamic response and natural

frequency of imperfect thick nanocomposite FG-CNTRC double curved shallow shell in

thermal environments.

The in-plane condition on immovability at all edges of nanocomposite double
curved shallow shell, ie. u=0 at x=0,a and v=0 at y=0,b, is fulfilled in an average
sense as

” —dxdy = O”—dydx 0. (36)

00 Ox

We can give the following expression from Egs. (9) and (15) in which initial

imperfection of the shell and Eq. (19) are taken into account

a = Azzf,yy o A21fm _B21 XX BZZ¢y,y + C1D21 (¢x,x + W ) + C1D22 (¢y,y + W,yy)

+K——(8Wj2 —8—W8—W*+[A; (@ +®2)- 45, (@] + @) |AT
ax ax 2 a a 1 a a 4

a % * i (37)
= Anf,x.x - Alzf,yy ¢ + Bll¢ —¢ D, (¢x,x +w., ) ¢ D12 (¢ tw, )

2 .
Y 1[awj _Gwow [, (@) +®2)= A (0] + D) |AT.
Putting the Egs. (30) — (32) into the Eq. (37), then the results into Eq. (36) leads to
N, =mW+m® +m® +mW (W +2W,)+mAT,
— — — — (38)
Ny=mW+m® +m> +mW (W +2W, ) +m,AT,

where
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g,m, +qm — q,m,+qm, — _ q,m; +q,m,

A =99, 4,4, m = >, My, = > 1 )
A, A, 1
— m,+qm, — m. +q.m. — m +mqg. — qm. +m.q.
m4:q2 4 T4, 4’m5:q2 s T4, s’mlqu 1 1qz’m2:q1 2 24>
A A A, A,

— _qm,+tmyq, — qm,+tmgq, = q,m; +nmgq,
D) - E) - .

3 A, 4 A, . A,

3
3

and m., m (i=1,5), q;.4;(j=12) are givenin Appendix C.

Introduction of Egs. (38) into Eq. (35), yields

LW+L,® +L,® +L,® (W+W,)+L;® (W+W,)+(n +1)(W+W,)

+RW (W +W,)+ W (W +2W, )+ W (W + W, )(W +2W,)

2 ) _82
+r5+n5q=laat +2168VV 8(1) ﬁs ,

— 22
LW+ 1,®@ (1) + T, @ (1) +ng(W+W, ) +n,W (W +2W, ) =1, Lo

or’

2

T W+ Tu® (1) + 1,0, (1) + ng (W +W, )+ n,W (W +2W, ) = I, —> —

where

1 — 1 — 1 — 1 —
L, = J11+n5R_m1+”5R_m1]’L12:(le"'”sR_mz"’”sR_mz}’

x y y

1 — 1 — ab
L, = J13+”5R_m3+”5R_m3J’L14Z(JM_TO‘

x y

L= Jls_affaznz a4bﬂ E),r—(—%aza—%ﬂzm_:],

ab ,— ab ,—= 1 — 1 —=
n,——am-—_pBm |, = 113+nSR—m4+nSR—m4 ,

ab ,— ab ,—~ 1 — 1 —
n=\n-——a m4—7ﬁ my |, 15 = nsR_ms"'nsR_ms .
x y

— ab ,—~
2m2 _Tﬂzmzj’

_82
- Bl —

b

=0*'W
als

2

b

(39)

(40a)

(40b)

(40c)

(41)

The above system equations are basic equations which are used to investigate the
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nonlinear dynamic response and vibration of the imperfect nanocomposite double curved
shallow shells on the elastic foundations with immovable edges subjected to uniformly
distributed pressure, thermal and damping loads. These equations could be solved by

using the fourth — order Runge — Kutta method with the initial conditions are chosen as

dd
W(0)=0,®,(0)=0,d (0)=0 and ‘;—Vf(o):o, dj;x 0)=0, dty (0)=0.

4.3. Natural frequency

In the case of free and linear vibration, the natural frequencies of the perfect
nanocomposite double curved shallow shell are the smallest values of the axial,
circumferential and radial directions which can be determined by solving the following

determinant

L|1 +n +n +Ila)2 L12 _aza)z L|4 _ﬂl_;a)2

J,, +ng— (JcZa)2 J,, + sz J,s =0. (42)

= 2 =
J, +n,— Pl Js, J,+ Lo

5. Numerical results and discussion

5.1. Validation

To validate the accuracy of the present approach, the results of the fundamental
frequency for the square plates and the nonlinear dynamic response of the double curved

shallow shells are compared with other studies.

Firstly, Table 1 shows the comparison of the fundamental natural parameter
Q=aw(b’/h)/p,!E, for CNTRC double curved shell (a/b=1,a/R =1b/R =1/2,
b/ h=10,h=1mm,AT =0) in this paper with the results in (Shen and He, 2017) based

on the higher order deformation shell theory with different values of volume fraction

CNT V,,,, modes m,n and types of FG-CNTRC. It is easy to see a very good agreement

in this comparison study.
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Table 1. Comparison of the fundamental natural parameter Q=aw(b’/h)\p,/E, for

CNTRC double curved shells (a/b=La/R =1b/R =1/2,b/h=10,h=1mm).

(m,n)  Venr o UD FG-V  FG-A  FG-X

0.12 Shen and He (2017) 12.5022 11.6320 13.2122 16.5508

Present 12.4872  11.0238 12.8605 16.2241

0.17 Shen and He (2017) 15.6968 145319 163159  20.6753

(D Present 15.8814  14.0843 15.8927  20.1793
0.28 Shen and He (2017) 17.6011 16.5070  19.2067  23.5531

Present 17.2216  16.1794  18.8433  23.1640

0.12 Shen and He (2017)  27.0617 264172  30.5916 359614

Present 26.6825  25.8692  29.8258  35.6402

0.17 Shen and He (2017)  34.8137  34.0998  38.8197  45.7687

(- Present 347901  33.5290 382176  45.6503
0.28 Shen and He (2017)  36.8280  36.6022  43.0309  53.0948

Present 364659  36.2307  42.8946  52.5474

Next, Fig. 2 compares the nonlinear dynamic responses of the double curved
shallow shell without elastic foundations subjected to uniformly distributed pressure and
damping load in this paper with the results presented in (Bich et al., 2014) using the first
order shear deformation shell theory. The input data are chosen as:
N=0,b/h=20,b/a=1, R, =R =6m, k =k, =0, W, =0, £=0.1, g =5000sin(500z). As
can be seen that there is a little difference between the results in this paper and those

determined in existing publication.
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Fig. 1. Comparison of nonlinear dynamic responses of FGM double curved shallow shell

subjected to mechanical and damping loads.

5.2. Natural frequency

Table 2 shows the effects of types of FG-CNTRC and ratio »/a on the natural
frequency of the FG-CNTRC double curved shallow shells with a/h=30,

R /h=R /h=1500, k, =10’ Pa/m, k, =10° Pa.m, AT = 200K . Five types of FG-CNTRC
(FG-A, FG-0O, UD, FG-X, FG-V) are considered. From the results in this table, it is
observed that the value of the natural oscillation frequency of FG-CNTRC double curved
shallow shells increases when the ratio b/ a increases. Moreover, the natural oscillation
frequency of FGV-CNTRC double curved shallow shell is highest and the natural
oscillation frequency of FGA -CNTRC double curved shallow shell is lowest of all.
Furthermore, natural oscillation frequency of FGX-CNTRC double curved shallow
shell is higher than that of UD-CNTRC double curved shallow shell which is also
higher than the frequency of FGO-CNTRC double curved shallow shell.
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Table 2. Influences of type of FG-CNTRC and ratio »/a on the natural frequency of
FG-CNTRC double curved shallow shells.

bla FG-A FG-O UD FG-X FG-V
1 2732 2927.6 29299 2931.9 3109.8
2 2659.3 2859.5 2863.9 2867.6 3049
3 2616 2819.1 2824 2828.0 3011.6
4 2576.3 2782.1 2787.3 27914 2977.2
5 2537.1 2745.8 2751.2 27554 29433
6 2497.8 2709.4 27149 2719.2 29094

The influences of volume fraction CNT, ratio R /h, temperature increment and
elastic foundations on the natural frequency of the FGX-CNTRC double curved shallow

shells are indicated in Table 3 with a/h =30 and b/a=1. Obviously, an increase of ratio

R_/h leads to an increase of the natural oscillation frequency of the FGX-CNTRC
double curved shallow shells. Next, the natural oscillation frequency of FGX-CNTRC

double curved shallow shells increases when the volume fraction CNT increases. In other
words, carbon nanotubes have positive effect on the natural oscillation frequency of the
FGX-CNTRC double curved shallow shell. In contrast, temperature increment has
negative effect on the natural oscillation frequency of the FGX-CNTRC double curved
shallow shells; when the temperature increment increases, the natural oscillation
frequency of FGX-CNTRC double curved shallow shells decrease. The effect of elastic
foundations with coefficients k,,k, of the Winkler and Pasternak foundations on the
natural oscillation frequency of FGX-CNTRC double curved shallow shells is also
considered in Table 3. It can be seen that the natural frequencies of FGX-CNTRC double
curved shallow shells on elastic foundations are greater than one of FGX-CNTRC double
curved shallow shells without elastic foundations. The effect of elastic foundations on the
natural frequencies of FGX-CNTRC double curved shallow shells are also shown

specifically in Table 4 with various values of modulus k, and k,. Clearly, the natural
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frequency of FGX-CNTRC double curved shallow shells increases when the modulus %,
and k, increase. Furthermore, the Pasternak foundation with modulus k, has stronger
effect on the natural frequency of the shell than the Winkler foundation with modulus £ .

Table 3. Effect of volume fraction CNT, elastic foundations, ratio R_/h and temperature

increment AT on the natural frequency of FGX-CNTRC double curved shallow shells.

k,=0,k,=0 k, =10’ Pa.m, k, =10° Pa/m

AT(K) R./h ‘ ;. .,
Vi =012 V.. =017 V.. =028 V., =012 V., =017 V., =028

100 1588.2 1933.7 2374.8 3319.6 3485.2 3723

0 400 1261.2 1547.5 1875.7 3176.2 3286.7 3426.3
800 1246.3 1530.1 1853 3170.4 3278.5 3413.9

100 1512.8 1887.1 2246 3295.3 3459.8 3708.6

100 400 1129.6 1474.5 1763.2 3085.1 3247.2 3369.9
800 1217.8 1476.4 1702.3 3159.5 3201.8 3350.2

100 1420.4 1797.3 2196.4 3276.2 3378.5 3682.3

200 400 1076.3 1378.9 1686.4 3026.5 3186.3 3309.8
800 1173.6 1354.8 1627 3139.2 3178.6 3267.1

Table 4. Effect of elastic foundations on the natural frequency of FGX-CNTRC double

curved shallow shells.

0 0.01 0.02 0.03 0.04 0.05
0 2.8152  3.1950 3.5343 3.8438 4.1302 4.3979
0.1 2.8873 3.2587 3.5920 3.8969 4.1797 4.4445
0.2 29576 33212 3.6488 3.9493 4.2286 4.4905
0.3 3.0263 3.3826 3.7047 4.0011 4.2769 4.5361
0.4 3.0935  3.4428 3.7598 4.0522 4.3248 45812
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0.5 3.1593 3.5021 3.8141 4.1026 43721 4.6259

5.3. Nonlinear dynamic responses

In this section, we will consider the effect of geometrical parameters, temperature
increment, elastic foundations, initial imperfection, mechanical loads, nanotube volume
fraction and types of FG-CNTRC on the nonlinear dynamic response of imperfect

nanocomposite double curved shallow shells. The thickness of FGX-CNTRC double

curved shallow shells is h = 0.01m.
Effect of geometrical parameters

Figs. 3 and 4 indicate the effects of geometrical parameters a/h and b/a on the
nonlinear dynamic response of imperfect FGX-CNTRC double curved shallow shells on
elastic foundations subjected to uniformly distributed pressure in thermal environment,
respectively. Obviously, the fluctuation amplitude of the imperfect FGX-CNTRC double

curved shallow shells increases when increasing the ratio a/h and the ratio b/a.

6 X 10_3 T T T T
== =a/h=20
4 a/h=30
i A A A A |- a/h=40
Y A O A )
oL Al | I} n i i
I N i Iy ! [
\ ] A\ n ]
~ \ 1 ‘ .' v, H I
g0 \ N | 1\ i A 1
= | LY on | \
SV/EERR VI !
2F g 1 { (R7.VH \Y AV
i : l ' Al \
| \ \ ’. \: [
4t ‘V' v v i/ -
b/a=1, R /h=R /h=1500, e=0.1, 0=0.3 MPa, =600 rad/s, m=n=1
-6 F _ ; _ o _ _
k,=0.2 GPa/m, k,=0.04 GPa.m, VCNTfO.IZ, AT=200K, w,=0
0 0.01 0.02 0.03 0.04 0.05 0.06
t(s)

Fig. 3. Effect of ratio a/ 4 on the nonlinear dynamic response of the imperfect FGX-

CNTRC double curved shallow shell in thermal environments.
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. k1=0.21GPa/m, k2=l0.04 GPa.m,l VCNT=0.121, AT=200 KI W0=0
0 0.01 0.02 0.03 0.04 0.05 0.06
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Fig. 4. Effect of ratio b/a on the nonlinear dynamic response of the imperfect FGX-
CNTRC double curved shallow shell in thermal environments.

Effect of temperature increment

Fig. 5 shows the effect of temperature increment AT on the nonlinear dynamic
response of the imperfect FGX-CNTRC double curved shallow shell in thermal
environments with a/h=b/h=30, R /h=R /h=1500,V,, =0.12, £=0.1. It can be
seen that the temperature increment AT has negative effect on the nonlinear dynamic
response of FGX-CNTRC double curved shallow shells. Specifically, FGX-CNTRC

double curved shallow shell fluctuation amplitude increases when the temperature

increment AT increases.
Effect of exciting force amplitude

The nonlinear dynamic response of FGX-CNTRC double curved shallow shells on
elastic foundations subjected to mechanical load and temperature with different values of

exciting force amplitude Q 1is illustrated in Fig. 6. As can be observed, an increase of the
amplitude of uniformly distributed pressure Q leads to an increase of nonlinear dynamic
response amplitude of the FGX-CNTRC double curved shallow shell.
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Fig. 5. Effect of temperature increment AT on the nonlinear dynamic response of the

imperfect FGX-CNTRC double curved shallow shell in thermal environments.

x 10
gl = = =0=0.1 MPa |
0=0.3 MPa
stk = 0=0.5 MPa ||

a’h=b/h=30, R/h—R /h 1500, m n=1I, W =0, €=0.1, 2=600 rad/s

8t -
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Fig. 6. Effect of exciting force amplitude Q on the nonlinear dynamic response of the

imperfect FGX-CNTRC double curved shallow shell in thermal environments.
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Effect of initial imperfection
The influences of initial imperfection with amplitude W, on the nonlinear dynamic

response of FGX-CNTRC double curved shallow shells subjected to uniformly
distributed pressure, thermal and damping loads are shown in Fig. 7. Three values of
amplitude of initial imperfection W, : 0, 0.001m and 0.002 m are used. It can be seen
that the nonlinear dynamic response amplitude of the FGX-CNTRC double curved

shallow shell increased when the amplitude W, increased.

%107

W(m)

a/h=b/h=30, Rt/h:Rv/h:1500, 0=0.3 MPa, 2=600 rad/s, m=n=1

e=0.1, k1:0'2 GPa/m, k2:0.04 GPa.m, VCNT:0.12, AT=200 K

-10 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06

t(s)

Fig. 7. Effects of initial imperfection on the nonlinear dynamic response of the imperfect

FGX-CNTRC double curved shallow shell in thermal environments.

Effects of elastic foundations

Figs. 8 and 9 indicate the effects of elastic foundations on the nonlinear dynamic
response of the FGX-CNTRC double curved shallow shells under uniform external
pressure in thermal environments. As expected, the nonlinear dynamic amplitude of the

panel becomes considerably lower due to the support of elastic foundations. Furthermore,
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the beneficial effect of the Pasternak foundation on the nonlinear dynamic response of the

FGX-CNTRC double curved shallow shells is better than the Winkler one.

T T T T T

0.01 - -_— kl=0.1 GPa/m ||
_k1=0‘2 GPa/m
'\ ..... k1:0.3 GPa/m
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\
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i I \ 1
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I
\, ‘l \y |
2001k a/h=b/h=30, Rx/hZRV/h=]500, €=0.1, 0=0.3 MPa, 2=600 rad/s
Im:n:l, k2:0I.04 GPa.m, V(I?NT:()']Z’ A]I"ZZ()OK, WO:,O
0 0.01 0.02 0.03 0.04 0.05 0.06
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Fig. 8. Effect of Winkler foundation on the nonlinear dynamic response of the imperfect

FGX-CNTRC double curved shallow shell in thermal environments.
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Fig. 9. Effect of Pasternak foundation on the nonlinear dynamic response of the imperfect

FGX-CNTRC double curved shallow shell in thermal environments.
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Effect of carbon nanotube volume fraction

Fig. 10 considers the nonlinear dynamic response of the imperfect FGX-CNTRC

double curved shallow shells in thermal environments with different values of carbon

nanotube volume fraction  ( VgNT ). The input data  are: alb=l,

b/h=30, R /h =R, /h=1500, £ =0.1, W, =0. As shown, the higher the carbon
nanotube volume fraction is, the lower the amplitude of the FGX-CNTRC double curved
shallow shells is. In other words, carbon nanotubes play an important role in increasing

the stiffness of FGX-CNTRC double curved shallow shells.

0.015 T T T T T T T T T

0.01

0.005
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m=n=1, €=0.1, k/=0'] G[Da/m, k2=0.01 GPa.m, AT=200 K, W0=0
1 1 1 1 1 1 1 1 1

-0.015
0 0005 001 0015 002 0025 003 0035 004 0045 0.05
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Fig. 10. Effects of CNT volume fraction on the nonlinear dynamic response of the

imperfect FGX-CNTRC double curved shallow shells in thermal environments.
Effect of types of FG-CNTRC

Fig. 11 gives comparison of the nonlinear amplitude fluctuation for FG-CNTRC
double curved shallow shells of type X, O and UD subjected to uniformly distributed
pressure, thermal and damping loads with the same geometrical parameters. Clearly, the
amplitude fluctuation of FGX-CNTRC double curved shallow shell is highest of all and
the amplitude fluctuation of FGX-CNTRC double curved shallow shell is lowest of all.
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Fig. 11. Effects of type of CNT reinforcements on the nonlinear dynamic response of the

imperfect FG-CNTRC double curved shallow shells in thermal environments.
6. Conclusions

This paper used the stress method to investigate the nonlinear dynamic response
and vibration of nanocomposite (FG-CNTRC) double curved shallow shells on elastic
foundations subjected to combination of mechanical, thermal and damping loads.
Governing equations are derived using Reddy’s higher order shear deformation shell
theory taking into account geometrical nonlinearity and temperature dependent
properties. One-term approximate solutions are assumed to satisfy simply supported
boundary conditions. The full order equations are obtained by using Galerkin method
then Runge — Kutta method is used to give the nonlinear dynamic responses of the
nanocomposite shells. Numerical results show the positive effects of elastic foundations
and carbon nanotubes as well as the negative influence of temperature increment and
initial imperfection on the nonlinear vibration of the nanocomposite double curved
shallow shells. While elastic foundations and carbon nanotubes enhance the stiffness,
increase the natural frequency and decrease the nonlinear dynamic response amplitude of

the nanocomposite shells, the temperature increment and initial imperfection increase the
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amplitude and reduce the natural frequency of the shell. The influences of geometrical
parameters and the type of FG-CNTRC on nonlinear vibration of the nanocomposite
double curved shallow shells are also studied and discussed in details. The present
approach and theory are validated by comparing with results of other authors.
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Appendix A

X, =8,-3¢Z,, X;, =S —3¢Zs, X, =V, X, =V, +4V, +V,, Xs =V,,,

X = (Zy + Vi )s Xpy =0, (2255 + Wi + Zyy +V,y ). X5 = ¢, (Z,y + V).
Xyg =€, (Zsy + Vg +2Z5 + 2V ). X1 = €531, X,y = €,85, = 20,556 + 546, X,y = Sc
X, =3¢Z, =Sy, Xp, =V, = Vi, Xpy =V, +2V, —2¢, Ve, — Vs,
X, =2, +V, —cVy =2y, Xps =V + Zey —C Zeg — Ve —C\ Zs,,
Xoy=Zp, Vi, +Zo + Ve — Ve =, Zgs — Vo
X, =8, 46,8y, Xog =S, =S¢ —€,S5, + ¢S
Xy, =(30Zss = S55). Xy = (Ve + Vi, =20V Vi ). X35 = (Vipe, = Viyp).
Xy =(Zog + Vg =€, Zg5 = Vg + Zoy +Vis€, =€, 24y =V, )y X5 = (Zg + Vg =125 — Vi)
Xyo =(Zy + Ve, =€, Zy —Viy)s X33 = (S = Sg6 + ¢80 =¢84 ) X35 = (S, —¢,5., )
with

1 =(BoA\ - B,\A,;,):S,, =(B, A, — B,A), ):Z,, =(B,,B;, - B,B;, + C,, );
Z,=(B,B),~B,B;, +C,,):V,, =¢,(B, Dy, - B,D, — E,, ):V,, =¢,(B,, Dy, - B,,D}, — E,, )

Sy = (BZZAI*I _Ble;I )’ Sp = (BIZAZZ _B22A1*2)’ Zy = (BMB]*I _B”B; * Clz)’
Zy = (Bzzsz - BnB;z + sz)’ Vii=¢ (BI2D;1 - Bzle*l —E, ) Vo=¢ (BIZD; _B”Dl*z —Ey )
S

31 (D12A1*1 _DIIA;)’ S32 = (DIIA;Z _DIZAI*Z)’ Zy = (DlzBl*l _DllB; +E11)’

Zy, = (DIZBI*Z _DIIB;Z + EIZ)’ Vi =¢ (DIID; _D12D1*1 -G, )’ Vi, =¢ (DnD; _D12D1*2 _GIZ)’
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Sy =(DuA =DyA,;,). S,, = (DA, —DpAL ), Z,, = (DyB), — DBy, +E,y),

Z,, =(DyB}, - D,,B;, +E,,)). V, = ¢,(D,,D;, - D,, D), —Gu), V, =c (DIZD; -D,D;, -Gy,
Ses = BosAus» Zss =(Cos = BeoBi ):Vis = € (ByoDig — Egg )+ St = DegAcg Zeg = (Eqe — Do Bg )
Vi = (D Dig —Ges )+ Zay =(Coy =3¢,Eyy)s Zss =(Cg —301E55).

Appendix B
H, H, H
J =U ,J —(U12+U143 Hlj’JB:(UB—FUMSF?J’
232ab ,4ab \H, 4 5 2 32ab 24ab H, 4
2a =l a —-2a°
( K 97 jH ab’ " iy p 97° JH, ab’
2 2
U, [azﬂz 32ab 4ab] =20y Py, |
97 97> JH, ab’ 3 320°A, 328°A,, ) ab

_ 2 2 4 4 4 H H
m:ibazﬂz ﬁz T 0!2 W _,nszizb_"lzl :U242_4"122: Uzz""Uzzu_2 )
2 32a°A, 32p°A,, Jab z° ab H, H,

H p°  8ab H H
Jos :|:U23 +Usyp ??} ng =U,, m, :U241my’ S :U341?T’ I3 :£U32 +Uyy ??j’

& 8ab 4
342
325°A,, 3n° ab’

H,
Jy3 = Uy +U341? sng=Us,ng =U
1
with
Uy :( X, a’ ~ 12ﬂ2+X13a4+X14a2ﬂ2+X15ﬂ4_k1_k2a2_k2ﬂ2)’
U

12 :( X11a+Xl6a +X17a/3) :(_X12ﬂ+X18ﬂ3+X190‘2ﬂ)’

y X

Uy = (Xno (20‘)4 _Rl(za)z} Uy = (an (218)4 _Ri(zﬁ)zj,

1 1
Uy = (Xnoa4 + X111a2ﬁ2 + X112ﬂ3 _R_IBZ _R_szl,

X y

Uy =(Xypa - Xpo' = X508 ), Uy, = (X, = X,,0" = Xy 8°). Uy, ==X 503,
Upy = Xy, (20) Uy =—(X e’ + X 508°).
Uy =(XyB-Xp@’ =X, 8 ). Uy, = —X5,08. Uy, =(X5, - Xy = X, 7).
Usy == (X5’ B+ X33 ). Uy, = X35 (28).
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Appendix C

q9, = abA;a q, = abA; > q;k = abA: ) q; = abAI*Z’

_4ab H,

m 2
T

. H 1 . -
- Azzﬂ2 —* +R__CID21a2 _ClDzzﬂzJ’

)
a _
A, H H,

X

H, H,

* H * H * *
’4210!2 ?3_ Azzﬂz ?3 + Bzzﬂ_chzzﬂ}
1 1

4ab( . , H . H . .
m, = 2(‘421“2 2_A22ﬂ2_2+321a_C1D21aj’

1 .
m, :—Eoﬁ%, m; =ab[A22(CD‘a +®2)- A, (D] +<1>;‘)]AT,
. o H . ,H, 1 .
m =-— Alzﬂz H? _Anaz H4 "'R_'l'chUOC2 +ClD12:B2J’

1 y

. 4 . H . H .
m, = z° A12ﬁ2#_A11a2?2+C1D11a_311aj’

1 1

. 4dab| .. H . H . .
m, = 7[2 Alzﬁz Fj_Auaz Fj-'_chlzﬂ_BlZﬁj’

£ 1 ) ab Lo ® 3 4 * 1 2
m,=—2B s ms —ab[A”((Da+(Da)—A12(CDa+CDa)]AT.
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