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Abstract: In this paper free vibration behavior of lami-

nated composite sti�ened elliptic parabolic shell has been

analyzed in terms of natural frequency and mode shape.

Finite element method has been applied using an eight-

noded curved quadratic isoparametric element for shell

with a three noded curved beam element for sti�ener.

Cross and angle ply shells with di�erent edge conditions

have been studied varying the size and position of the

cutouts to arrive at a set of inferences of practical engineer-

ing signi�cances.
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1 Introduction

The analysis of thin shells attracted attention of re-

searchers from the �rst half of the nineteenth century.

While the theory of shell structures was being improved

from time to time by many researchers, another group of

researchers started developing exotic materials with high

strength and sti�ness properties. This resulted in the use

of laminated composite materials to fabricate shell forms.

The researchers had realized that the con�guration like

folded plates, conoidal, saddle, spherical, elliptic and hy-

perbolic parabolic and hypar shells can o�er a number of

parallel advantages that suit to the requirements of the in-

dustry. In fact in industrial applications a shell may have

complicated boundary conditions andmay be subjected to

complex loading. The advent of high speed computers in

the secondhalf of the twentieth centurywas amajor devel-

opmentwhich paved theway of researchers to get involved

in analysis and design of shells of arbitrary geometry and

loading conditions using numerical techniques. Ghosh

*Corresponding Author: Sarmila Sahoo: Department of Civil En-

gineering, Heritage Institute of Technology, Kolkata 700107, India,

E-mail: sarmila.sahoo@gmail.com, sarmila_ju@yahoo.com

and Bandyopadhyay [1], Dey et al. [2, 3], Chakravorty et

al. [4, 5] reported static and dynamic behaviour of lami-

nated doubly curved shells. Later Nayak and Bandyopad-

hyay [6–8], Das and Chakravorty [9–12] and Pradyumna

and Bandyopadhyay [12–14] reported static, dynamic and

instability behavior of laminated doubly curved shells.

The shell surfaces are often provided with cutouts for var-

ious functional requirements. Such shells need to be sti�-

ened for avoiding stress concentration around cutouts. As

the numerical approaches like �nite element method be-

come popular, investigators started venturing to analyze

sti�ened shells with cutout. Earlier studies in this aspect

were due to Reddy [15], Malhotra et al. [16] and Sivasub-

ramonian et al. [17]. They analyzed the e�ect of cutouts

on the natural frequencies of plates. Later Sivakumar et

al. [18], Rossi [19], Huang and Sakiyama [20] and Hota

and Padhi [21] studied free vibration of plate with vari-

ous cutout geometries. Researchers like, Chakravorty et

al. [22], Sivasubramonian et al. [23], Hota and Chakra-

vorty [24], Nanda and Bandyopadhyay [25] published use-

ful information about free vibration of shells with cutout.

Shells of double curvature, particularly elliptic

paraboloids, have the ability to span over relatively large

distances without the need of intermediate supports in

comparison with �at plates and cylindrical panels of the

same general proportions. This aspect in particular at-

tracts the designers to use such shell forms in places of

large column free areas. Moreover, elliptic parabolic shells

are both architecturally acceptable and structurally sti�

due to their surface geometry. Qatu et al. [26] reviewed the

work done on the vibration aspects of composite shells

between 2000-2009 and observed that most of the re-

searchers dealt with closed cylindrical shells. Other shell

geometries like conical shells and shallow shells on rect-

angular, triangular, trapezoidal, circular, elliptical, rhom-

bic or other planforms are receiving considerable atten-

tion. Recently, Kumar et al. [27–30] considered �nite ele-

ment formulation for shell analysis based on higher order

zigzag theory. Vibration analysis of spherical shells and

panels both shallow and deep has also been reported for

di�erent boundary conditions [31–34]. A complete and

general view on mathematical modeling of laminated
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composite shells usinghigher order formulations has been

provided in recent literature [35–37]. Also a wide range of

literature is available on plates and shells of varying ma-

terials and geometries both in presence and absence of

cutout [38–47]. However, the information for free vibra-

tion behavior of sti�ened elliptic parabolic shells with

cutouts is missing in literature and an in depth study of

such shells in presence of cutout is needed to exploit the

potential of these shell forms.

2 Mathematical Formulation

A laminated composite shell of uniform thickness h and

having principal radii of curvature Rxx and Ryy (Fig. 1)

is considered. Keeping the total thickness the same, the

thickness may consist of any number of thin laminae each

of which may be arbitrarily oriented at an angle θ with ref-

erence to the x-axis of the co-ordinate system. The consti-

tutive equations for the shell are given by (De�nitions of

symbols are given in list of notations):

{F} = [E]{ε} (1)

where,

{F} = {Nx , Ny , Nxy , Mx , My , Mxy , Qx , Qy}
T , {ε} =

{

ε0x , ε0y , γ
0
xy , kx , ky , kxy , γ

0
xz , γ

0
yz

}T
,

and

[E] =





























A11 A12 A16 B11 B12 B16 0 0

A12 A22 A26 B12 B22 B26 0 0

A16 A26 A66 B16 B26 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B12 B22 B26 D12 D22 D26 0 0

B16 B26 B66 D16 D26 D66 0 0

0 0 0 0 0 0 S11 S12

0 0 0 0 0 0 S12 S22





























The detailed expressions of the elements of the elastic-

ity matrix are available in several references including

Vasiliev et al. [48] and Qatu [49]. The elements of the sti�-

ness matrix [E] are de�ned as

Aij =
np
∑

k=1

(Qij)k(zk − zk−1),

Bij =
1
2

np
∑

k=1

(Qij)k(z
2
k − z

2
k−1),

Dij =
1
3

np
∑

k=1

(Qij)k(z
3
k − z

3
k−1) i, j = 1, 2, 6,

and Sij =
np
∑

k=1

FiFj(Gij)k(zk − zk−1) i, j = 4, 5.

In the above equations zk and zk−1 are the distances mea-

sured from the mid surface of a laminate to the bottom of

the kth and (k-1)th laminate, respectively. np is the num-

ber of plies in a laminate. Qij are elements of the o�-axis

elastic constant matrix which is given by
[

Qij

]

off
= [T1]

−1
[

Qij

]

on [T1]
−T , i, j = 1, 2, 6,

and
[

Gij

]

off
= [T2]

−1
[

Qij

]

on [T2] , i, j = 4, 5.

[T1] =







m2 n2 2mn

n2 m2
−2mn

−mn mn m2
− n2







, [T2] =

=

[

m −n

n m

]

, in whichm = cos θ and n = sin θ.

[

Qij

]

on
=







Q11 Q12 0

Q12 Q22 0

0 0 Q66







, i, j = 1, 2, 6,

and
[

Qij

]

on
=

[

Q44 0

0 Q55

]

, i, j = 4, 5.

In which, Q11 = (1 − ν12ν21)
−1E11, Q22 = (1 −

ν12ν21)
−1E22, Q12 = (1 − ν12ν21)

−1E11ν21, Q44 = G13,

Q55 = G23, Q66 = G12.

Fi and Fj are two factors presently taken as unity for

thin shells.When the shell ismoderately thick, theproduct

of Fi and Fj is taken as 5/6, which is commonly used sifnce

the evaluation of shear correction factor from exact theory

of elasticity is di�cult.

The stress-strain relations are given by










σx

σy

τxy











=

=







Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



























ε0x
ε0y
ε0xy











+ z











kx

ky

kxy





















(2)

and

{

τxz

τyz

}

=

[

Q44 Q45

Q45 Q55

]{

γ
0
xz

γ
0
yz

}

(3)

where, Q45 = (G13 − G23)mn.

The force and moment resultants are expressed as
{

Nx , Ny , Nxy , Mx , My , Mxy , Qx , Qy

}T

=

=
h/2
∫

−h/2

{

σx , σy , τxy , σz .z, . . .

. . . σy .z, τxy .z, τxz , τyz

}T

dz

(4)

The strain-displacement relations on the basis of im-

proved �rst order approximation theory for thin shell [50]

are established as
{

εx , εy , γxy , γxz , γyz

}T

=

=
{

ε0x , ε0y , γ
0
xy , γ

0
xz , γ

0
yz

}T

+

+z
{

kx , ky , kxy , kxz , kyz

}T

(5)
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where, the �rst vector is the mid-surface strain for a shell

and the second vector is the curvature and are related to

degrees of freedom as:



























ε0x
ε0y
γ
0
xy

γ
0
xz

γ
0
yz



























=



























∂u/∂x − w/Rxx

∂v/∂y − w/Ryy

∂u/∂y + ∂v/∂x − 2w/Rxy

α + ∂w/∂x

β + ∂w/∂y



























(6)

and


























kx

ky

kxy

kxz

kyz



























=



























∂α/∂x

∂β/∂y

∂α/∂y + ∂β/∂x

0

0



























(7)

Finite Element Formulation

An eight-noded curved quadratic isoparametric �nite el-

ement is used for shell analysis. Any shell surface can

be modeled by three dimensional solid elements. When

the thickness dimension is considerably smaller than the

other dimensions, the nodes along the thickness direction

supply additional degrees of freedom than needed and

hence are not preferred. When a two dimensional element

is obtained by considering the thickness direction nodes,

the displacements of adjacent thickness direction nodes

must be ensured tobe equal to avoidnumerical di�culties.

Thus the �ve degrees of freedom including three transla-

tions (u, v, w) and two rotations (α, β) are attached to each

node. The �nal element has mid surface nodes only and

a line in the thickness direction remains straight but not

necessarily normal to the mid surface after deformation.

Thedirections of the generalizeddisplacements are shown

in Fig. 1. The following expressions establish the relations

between the displacement at any point with respect to the

co-ordinates ζ and η and the nodal degrees of freedom.

Figure 1: Elliptic parabolic shell with a concentric cutout sti�ened

along the margins

u =
8
∑

i=1

Niui v =
8
∑

i=1

Nivi w =
8
∑

i=1

Niwi

α =
8
∑

i=1

Niαi β =
8
∑

i=1

Niβi

(8)

where the shape functions derived from a cubic interpola-

tion polynomial are:

Ni = (1 + ζζ
i
)(1 + ηη

i
)(ζζ

i
+ ηη

i
− 1)/4,

for i = 1, 2, 3, 4

Ni = (1 + ζζ
i
)(1 − η2)/2, for i = 5, 7

Ni = (1 + ηη
i
)(1 − ζ 2)/2, for i = 6, 8

(9)

The generalized displacement vector of an element is

expressed in terms of the shape functions and nodal de-

grees of freedom as:

[u] = [N] {de} (10)

i.e.,

{u} =



























u

v

w

α

β



























=

=
8
∑

i=1
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Ni

Ni

Ni

Ni
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Element Sti�ness Matrix

The strain-displacement relation is given by

{ε} = [B] {de} , (11)

where [B] =

8
∑

i=1





























Ni,x 0 −
Ni

Rxx
0 0

0 Ni,y −
Ni

Ryy
0 0

Ni,y Ni,x −
2Ni

Rxy
0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni





























(12)

The element sti�ness matrix is

[Ke] =

∫∫

[B]
T
[E] [B] dxdy (13)

Element Mass Matrix

The element mass matrix is obtained from the integral

[Me] =

∫∫

[N]
T
[P] [N] dxdy, (14)
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where,

[N] =
8
∑

i=1















Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni















,

[P] =
8
∑

i=1















P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I















,

in which P =

np
∑

k=1

zk
∫

zk−1

ρdz and I =

np
∑

k=1

zk
∫

zk−1

zρdz (15)

where np is the number of plies in a laminate.

Finite Element Formulation for Sti�ener of

the Shell

Three noded curved isoparametric beam elements (Fig. 2)

are used to model the sti�eners, which are taken to run

only along the boundaries of the shell elements. In the

sti�ener element, each node has four degrees of freedom

i.e. usx, wsx, asx and bsx for x-sti�ener and vsy, wsy, asy

and bsy for y-sti�ener. The generalized force-displacement

relation of sti�eners can be expressed as:

x-sti�ener : {Fsx} = [Dsx] {εsx} = [Dsx] [Bsx] {δsxi} ;

y-sti�ener : {Fsy} = [Dsy] {εsy} = [Dsy] [Bsy]
{

δsyi
}

(16)

where, {Fsx} = [Nsxx Msxx Tsxx Qsxxz]
T;

{εsx} = [usx.x αsx.x βsx.x (αsx + wsx.x)]
T

and {Fsy} = [Nsyy Msyy Tsyy Qsyyz]
T;

{εsy} = [vsy.y βsy.y αsy.y (βsy + wsy.y)]
T

The generalized displacements of the x-sti�ener

and the shell are related by the transformation matrix

{δsxi} = [Tx] {δ} where

[Tx] =











1 + e
Rxx

symmetric

0 1

0 0 1

0 0 0 1











(17)

The generalized displacements of the y-sti�ener

and the shell are related by the transformation matrix
{

δsyi
}

= [Ty] {δ} where

[Ty] =











1 + e
Ryy

symmetric

0 1

0 0 1

0 0 0 1











(18)

Figure 2: (a) Eight noded shell element with isoparametric co-

ordinates (b) Three noded sti�ener elements (i) x-sti�ener (ii) y-

sti�ener

These transformations are required due to curvature of

x-sti�ener and y-sti�ener. In the above equations, e is the

eccentricity of the sti�eners. {δ} is the appropriate portion

of the displacement vector of the shell excluding the dis-

placement component along the other axis.

Elasticity matrices are as follows:

[Dsx] =

=











A11bsx B/
11bsx B/

12bsx 0

B/
11bsx D/

11bsx D/
12bsx 0

B/
12bsx D/

12bsx
1
6 (Q44 + Q66) dsxb

3
sx 0

0 0 0 bsxS11











(19)

[Dsy] =

=











A22bsy B/
22bsy B/

12bsy 0

B/
22bsy

1
6 (Q44 + Q66)bsy D/

12bsy 0

B/
12bsy D/

12bsy D/
11dsyb

3
sy 0

0 0 0 bsyS22











(20)

where,

D/
ij = Dij + 2eBij + e

2Aij; B/
ij = Bij + eAij , (21)

and Aij, Bij, Dij and Sij are explained in literature [51].

Here for the sti�ener considering it as moderately

thick, the shear correction factor is taken as 5/6. The sec-

tional parameters are calculated with respect to the mid-

surface of the shell by which the e�ect of eccentricities of

sti�eners is automatically included. The element sti�ness

matrices are of the following forms.

for x-sti�ener : [Kxe] =
∫

[Bsx]
T
[Dsx] [Bsx] dx;

for y-sti�ener : [Kye] =
∫

[Bsy]
T
[Dsy] [Bsy] dy

(22)

The integrals are converted to isoparametric coordi-

nates and are carried out by 2-point Gauss quadrature. Fi-

nally, the element sti�ness matrix of the sti�ened shell is

obtained by appropriate matching of the nodes of the sti�-

ener and shell elements through the connectivity matrix
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and is given as:

[Ke] = [Kshe] + [Kxe] + [Kye] . (23)

The element sti�ness matrices are assembled to get the

global matrices.

Element Mass Matrix

The element mass matrix for shell is obtained from the in-

tegral

[Me] =

∫∫

[N]
T
[P] [N] dxdy, (24)

where,

[N] =
8
∑

i=1















Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni















,

[P] =
8
∑

i=1















P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I















,

in which P =

np
∑

k=1

zk
∫

zk−1

ρdz and I =

np
∑

k=1

zk
∫

zk−1

zρdz (25)

where np is the number of plies in a laminate.

Element mass matrix for sti�ener element

[Msx] =
∫

[N]
T
[P][N]dx for x-sti�ener

and [Msy] =
∫

[N]
T
[P][N]dy for y-sti�ener

(26)

Here, [N] is a 3×3 diagonal matrix for sti�ener.

[P] =
3
∑

i=1











ρ.bsxdsx 0 0

0 ρ.bsxdsx 0

0 0 ρ.bsxd
2
sx/12

0 0 0

. . .

. . .

0

0

0

ρ(bsx .d
3
sx + b

3
sx .dsx)/12











for x-sti�ener

[P] =
3
∑

i=1











ρ.bsydsy 0 0

0 ρ.bsydsy 0

0 0 ρ.bsyd
2
sy/12

0 0 0

. . .

. . .

0

0

0

ρ(bsy .d
3
sy + b

3
sy .dsy)/12











for y-sti�ener

The mass matrix of the sti�ened shell element is the

sum of thematrices of the shell and the sti�eners matched

at the appropriate nodes.

[Me] = [Mshe] + [Mxe] + [Mye] . (27)

The elementmassmatrices are assembled to get the global

matrices.

Modeling the cutout

The code developed can take the position and size of

cutout as input. The program is capable of generating

non uniform �nite element mesh all over the shell sur-

face. So the element size is gradually decreased near the

cutout margins. One such typical mesh arrangement is

shown in Fig. 3 where the mesh divisions are in the ratio

6:4:4:3:3:3:3:4:4:6. Such �nite element mesh is rede�ned

in steps and a particular grid is chosen to obtain the fun-

damental frequency when the result does not improve by

more than one percent on further re�ning. Convergence of

results is ensured in all the problems taken up here.

Figure 3: Typical 10×10 non-uniform mesh arrangements drawn to

scale

Solution Procedure for Free Vibration

Analysis

The free vibration analysis involves determination of nat-

ural frequencies from the condition
∣

∣

∣ [K] − ω
2
[M]

∣

∣

∣
= 0 (28)
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Table 1: Natural frequencies (Hz) of centrally sti�ened clamped square plate

Mode Mukherjee and Nayak and Present

no. Mukhopadhyay [52] Bandyopadhyay [53] method

N8 N9

(FEM) (FEM)

1 711.8 725.2 725.1 733

a = b = 0.2032 m, shell thickness = 0.0013716 m,

sti�ener depth 0.0127 m, sti�ener width = 0.00635 m,

sti�ener eccentric at bottom

Material property: E = 6.87×1010 N/m2, ν = 0.29,

ρ = 2823 kg/m3

Table 2: Non-dimensional Fundamental Frequencies (ω) for laminated composite saddle shell with cutout.

a’/a CS SS CL

Chakravorty Present Chakravorty Present Chakravorty Present

et al. [22] model et al. [22] model et al. [22] model

0.0 13.485 13.249 14.721 14.686 113.567 112.926

0.1 13.060 13.084 14.350 14.695 97.753 98.041

0.2 12.530 12.449 13.544 13.507 97.599 97.032

0.3 12.016 12.038 12.908 12.882 111.489 111.033

0.4 11.721 11.733 12.560 12.559 110.210 110.20

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = −h/Ryy = 1/300,

CS=Corner point supported, SS=Simply supported, CL=Clamped

Table 3: Non-dimensional Fundamental Frequencies (ω) for laminated composite (0/90/0/90) sti�ened elliptic parabolic shell for di�erent

sizes of the central square cutout and di�erent boundary conditions.

Boundary Cutout size (a//a)

conditions 0 0.1 0.2 0.3 0.4

CCCC 139.71 119.13 133.82 152.26 152.99

CSCC 98 105.54 117.64 120.51 121.84

CCSC 99.19 106.35 118.08 129.78 133.29

CCCS 97.8 104.59 117.34 120.5 121.82

CSSC 80.43 87.38 92.46 96.68 100.71

CCSS 80.43 87.38 92.46 96.68 100.71

CSCS 106.82 100.62 113.02 113.71 114.7

SCSC 100.3 103.75 115.68 124.68 125.6

CSSS 72.96 80.66 83.91 87.7 92.14

SSSC 75.27 82.63 86.14 89.89 93.65

SSCS 72.96 79.7 83.91 87.7 92.14

SSSS 66.29 72.77 76.75 80.43 84.75

Point 35.65 38.04 40.62 43.15 42.99

supported

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5 E22, ν12 = ν21 = 0.25.
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Table 4: Non-dimensional Fundamental Frequencies (ω) for laminated composite (+45/-45/+45/-45) sti�ened elliptic parabolic shell for

di�erent sizes of the central square cutout and di�erent boundary conditions.

Boundary Cutout size (a//a)

conditions 0 0.1 0.2 0.3 0.4

CCCC 143.55 156.08 165.22 166.77 157.25

CSCC 118.68 127.5 129.9 130.18 126.45

CCSC 127.22 135.27 139.29 140.28 138.42

CCCS 118.65 127.28 129.87 129.98 126.43

CSSC 112.52 122.38 124.23 124.1 121.69

CCSS 112.58 122.42 124.66 124.11 121.12

CSCS 108.89 117.52 122.31 126.27 125.59

SCSC 118.85 127.01 133.74 139.51 136.51

CSSS 102.38 111.57 115.4 118.74 119.75

SSSC 107.64 117.59 119.26 118.89 116.87

SSCS 102.37 111.77 115.4 118.74 119.75

SSSS 96.82 106.74 109.73 112.61 114.3

Point 32.82 35.56 38.02 41.03 42.2

supported

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5 E22, ν12 = ν21 = 0.25.

Table 5: Clamping options for 0/90/0/90 elliptic parabolic shells with central cutouts having a//a ratio 0.2.

Number of Clamped edges Improvement of Marks indicating

sides to be frequencies with respect the e�ciencies of

clamped to point supported shells no of restraints

0 Corner Point supported - 0

0 Simply supported no Good improvement 39

edges clamped (SSSS)

1 a) Elliptic edge along Good improvement 46

x = a (SSCS)

b) Elliptic edge along Good improvement 46

x = 0 (CSSS)

b) One parabolic edge Good improvement 49

along y = b (SSSC)

2 a) Two elliptic edges Marked improvement 78

x = 0 and x = a (CSCS)

b) Two parabolic edges Marked improvement 81

along y = 0 and y = b(SCSC)

c) Any two adjacent Good improvement 56

edges (CSSC,CCSS)

3 3 edges including the two Marked improvement 83

elliptic edges (CSCC,CCCS)

3 edges excluding the Marked improvement 83

elliptic edge along x = a (CCSC)

4 All sides (CCCC) Frequency attains 100

highest value

Brought to you by | Kainan University

Authenticated

Download Date | 5/18/15 11:22 AM



Free vibration behavior of laminated composite | 169

This is a generalized eigen value problem and is solved

by the subspace iteration algorithm. The generalized for-

mulation considers all three radii of curvature, viz., Rxx,

Ryy and Rxy. The shell surface considered for the present

study is elliptic parabolic which has the following fea-

tures and can be handled by the proposed formulation

as a special case: doubly curved synclastic surface having

Rxx/Ryy = 1.5 and 1/Rxy = 0.

3 Results and discussion

Numerical results are obtained by employing an appro-

priate mesh size until the convergence is achieved with

a residual error below 1%. The accuracy of the formula-

tion is �rst established by comparing the results of the

present analysis with those existing in the literature. Non-

dimensional frequencies for centrally sti�ened clamped

square plate obtained through present formulation are

compared with those of Mukherjee and Mukhopad-

hyay [52] and Nayak and Bandyopdhyay [53] as furnished

in Table 1. Here for comparison, a shell has been converted

to a plate considering a high value of radius of curvature.

The agreement is found to be good. This establishes the

correctness of sti�ener formulation. The present FEM re-

sults are also compared with those obtained by Chakra-

vorty et al. [22] for corner point supported, simply sup-

ported and clamped laminated composite saddle shells

with cutouts. These are presented in Table 2 and the re-

sults are found to match extremely well. Thus the cutout

formulation for doubly curved shell is established.

Numerical results are then obtained for several elliptic

parabolic shells with 0/90/0/90 and +45/-45/+45/-45 lami-

nations by varying boundary constraints, cutout size and

position. The shell thickness h is taken to be constant in

all cases and lamina properties taken are: E11/E22 = 25,

G23 = 0.2 E22, G13 = G12 = 0.5E22, ν12 = ν21 = 0.25.

Tables 3 and4 contains the results of non-dimensional

frequency (ω) of 0/90/0/90 and +45/-45/+45/-45 sti�ened

elliptic parabolic shells of square planform with cutouts.

The cutouts are also taken to be square in plan (a/ = b/).

The sizes of the concentric cutouts are varied from 0 to 0.4

and boundary conditions are varied along the four edges.

The sti�eners, along the cutout periphery are extended up

to the edge of the shell. The boundary conditions are des-

ignated as: C for clamped and S for simply supported. The

four edges are considered in an anticlockwise order from

the edge x = 0. For example a shell with CSCS boundary

is clamped along x = 0, simply supported along y = 0

and clamped along x = a and simply supported along

y = b.

The e�ect of cutout size on fundamental frequency of

composite shells with di�erent boundary conditions can

be studied using the results furnished in Tables 3 and4. All

the sti�ened shells exhibit greater sti�ness with introduc-

tion of cutout. But in some angle ply shell, the frequency

shows a monotonic increase upto a//a = 0.3. This initial

increase in frequency is due to the fact that with the in-

troduction of cutout, numbers of sti�eners are increase

from two to four in the present study. Only one exception

is there. In case of clamped shell, with the introduction

of cutout, fundamental frequency decreases. In this case,

though number of sti�eners increases but loss of sti�ness

is relatively more pronounced. Table 3 and 4 provides fur-

ther information about the e�ect of cutout size on funda-

mental frequency. With further increase in cutout size, the

shell surface undergoes loss of both mass and sti�ness as

a result fundamental frequency may increase or decrease.

As with the introduction of a cutout of a//a = 0.3, in shell

surface, the frequency increases in all the cases, this leads

to the engineering conclusion that concentric cutouts with

sti�enedmarginsmay be provided safely on shell surfaces

for corner point supported functional requirements upto

a//a = 0.3.

The boundary conditions arranged according to the

increased number of boundary constraints are as follows:

Corner Point supported, SSSS, SSCS, SSSC, CSSS, SSSC,

CSCS, SCSC, CSSC, CCSS, CSCC, CCCS, CCSC and CCCC.

As evident from Tables 5 and 6, fundamental frequen-

cies of members belonging to same number of bound-

ary constraints may not have the same value. Sti�ness

depends on number of boundary constraints. Arrange-

ment of boundary constraints are more signi�cant than

number of boundary constraints to increase the sti�ness

of the sti�ened shells with cutout. Table 5 and 6 shows

the e�ciency of a particular boundary combination in in-

creasing the fundamental frequency. Marks are assigned

to each boundary combination in a scale assigning a value

of 0 to the minimum frequency (corner point supported

shell) and 100 to themaximum frequency (clamped shell).

These marks are furnished for cutouts with a//a = 0.2

These tables will enable a practicing engineer to realize at

a glance the e�ciency of a particular boundary combina-

tion in increasing the frequency of a shell, taking that of

clamped shell as the upper limit.

It can be seen from the present study that if the one

edge is released from clamped to simply supported, the

change of frequency is more in case of an angle ply shells

than that for a cross ply shells. Again, if the two adjacent

edges are released, fundamental frequency decreases re-
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Table 6: Clamping options for +45/-45/+45/-45 elliptic parabolic shells with central cutouts having a//a ratio 0.2.

Number of Clamped edges Improvement of Marks

sides to be frequencies with respect to indicating

clamped point supported shells the

e�ciencies

of no of

restraints

0 Corner Point supported - 0

0 Simply supported no edges Good improvement 56

clamped (SSSS)

1 a) Elliptic edge along Good improvement 61

x = a (SSCS)

b) Elliptic edge along Good improvement 61

x = 0 (CSSS)

along y= b (SSSC) Good improvement 64

along y = b (SSSC)

2 a) Two elliptic edges x = 0 Marked improvement 66

and x = a (CSCS)

b) Two parabolic edges Marked improvement 75

along y = 0 and y = b(SCSC)

c) Any two adjacent Marked improvement 68

edges (CSSC,CCSS)

3 3 edges including the two Marked improvement 72

elliptic edges (CSCC,CCCS)

3 edges excluding the elliptic Remarkable improvement 80

edge along x = a (CCSC)

4 All sides (CCCC) Frequency attains 100

highest value

Figure 4: First mode shapes of laminated composite (0/90/0/90) sti�ened elliptic parabolic shell for di�erent sizes of the central square

cutout and boundary conditions
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Figure 5: First mode shapes of laminated composite (+45/-45/+45/-45) sti�ened elliptic parabolic shell for di�erent sizes of the central

square cutout and boundary conditions

markably whereas if the two alternate edges are released

the decrease in frequency is far less. This change in fre-

quency is very much signi�cant in case of cross ply shells.

For cross ply shells if three or four edges are simply sup-

ported, frequency values undergo marked decrease but

for angle ply shells with the introduction of more number

of simply supported edges the frequency value does not

change so drastically. The results indicate that particularly

for cross ply shells two alternate edges should preferably

be clamped in order to achieve higher frequency values.

The mode shapes of the fundamental modes of vi-

bration are shown in Fig. 4 and Fig. 5 for cross-ply and

angle ply shells respectively. The normalized displace-

ments are plotted taking the shell mid-surface as the ref-

erence. For all the boundary conditions for cross ply and

angle ply shell the fundamental mode is clearly a bend-

ing mode or torsional mode. Only for corner point sup-

ported shells the fundamental mode shapes are compli-

cated.With the introductionof cutoutmode shapes remain

almost similar. When the size of the cutout is increased

from0.2 to 0.4 the fundamentalmodes of vibration are pre-

sented.

The e�ect of eccentricity of cutout positions on funda-

mental frequencies, are studied from the results obtained

for di�erent locations of a cutout with a//a = 0.2. The non-

dimensional coordinates of the cutout centre (x = x
a , y =

y
a ) was varied from 0.2 to 0.8 along each directions, so that

the distance of a cutout margin from the shell boundary

was not less than one tenth of the plan dimension of the

shell. Themargins of cutouts were sti�ened with four sti�-

eners. The studywas carried out for all the thirteen bound-

ary conditions for both cross ply and angle ply shells. The

fundamental frequency of a shell with an eccentric cutout

is expressed as a percentage of fundamental frequency of a

shell with a concentric cutout. This percentage is denoted

by r. In Tables 7 and 8 such results are furnished.

It can be seen that eccentricity of the cutout along the

length of the shell towards the clamped edges makes it

more �exible. When edge, opposite to a clamped edge is

simply supported, r value �rst increases towards the sim-

ply supported edge then decreases. This is true for both

cross ply and angle ply shells. For cross ply shells, when

two opposite edges are simply supported r value decreases

towards the simply supported edges. But in case of an an-

gle ply shell, if the two opposite edges are simply sup-

ported then r value �rst increase and then decrease to-

wards the boundary. So, for functional purposes, if a shift

of central cutout is required, eccentricity of a cutout along

the length or width should preferably be towards the sim-

ply supported edgebutnot towards verynear to thebound-

ary for angle ply shells. But in case of cross ply shells

eccentricity of a cutout should be towards a simply sup-

ported edge, which is opposite to a clamped edge.

Tables 9 and 10 provide the maximum values of r

together with the position of the cutout. These tables

also show the rectangular zones within which r is always

greater than or equal to 90 and 95. It is to be noted that

at some other points r values may have similar values,

but only the zone rectangular in plan has been identi�ed.

These tables indicate themaximumeccentricity of a cutout

which can be permitted if the fundamental frequency of

a concentrically punctured shell is not to reduce a drastic

amount. So these tables will help practicing engineers

The mode shapes corresponding to the fundamental

modes of vibration are plotted in Fig. 6 - 13 for cross-ply

and angle ply shell of di�erent boundary conditions for

di�erent eccentric position of the cutout. All the mode

shapes are either bending or torsional mode. It is found

that for di�erent position of cutoutmode shapes are some-

what similar to one another, only the crest and trough po-

sition changes.
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Figure 6: First mode shapes of laminated composite (0/90/0/90)

sti�ened elliptic parabolic shell for di�erent position of the central

square cutout and CCCC boundary condition

Figure 7: First mode shapes of laminated composite (0/90/0/90)

sti�ened elliptic parabolic shell for di�erent position of the central

square cutout and CCSC boundary condition.

Figure 8: First mode shapes of laminated composite (0/90/0/90)

sti�ened elliptic parabolic shell for di�erent position of the central

square cutout and SCSC boundary condition.

Figure 9: First mode shapes of laminated composite (0/90/0/90)

sti�ened elliptic parabolic shell for di�erent position of the central

square cutout and SSSC boundary condition.

Figure 10: First mode shapes of laminated composite (+45/-

45/+45/-45) sti�ened elliptic parabolic shell for di�erent position of

the central square cutout and CCCC boundary condition.

Figure 11: First mode shapes of laminated composite (+45/-

45/+45/-45) sti�ened elliptic parabolic shell for di�erent position of

the central square cutout and CCSC boundary condition.

Figure 12: First mode shapes of laminated composite (+45/-

45/+45/-45) sti�ened elliptic parabolic shell for di�erent position of

the central square cutout and SCSC boundary condition.
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Figure 13: First mode shapes of laminated composite (+45/-

45/+45/-45) sti�ened elliptic parabolic shell for di�erent position of

the central square cutout and SSSC boundary condition.
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Table 7: Values of ‘r’ for 0/90/0/90 elliptic parabolic shells.

Edge y x

condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CCCC 0.2 91.56 94.52 99.99 106.19 99.98 94.51 91.56

0.3 90.17 92.97 98.13 104.72 98.14 92.97 90.17

0.4 91.13 93.27 97.36 101.19 97.36 93.27 91.13

0.5 92.77 94.26 97.32 100 97.32 94.25 92.76

0.6 91.13 93.27 97.36 101.20 97.36 93.27 91.13

0.7 90.17 92.97 98.13 103.92 98.14 92.97 90.17

0.8 91.29 94.22 99.64 106.12 99.86 94.28 91.37

CSCC 0.2 92.98 94.81 97.51 99.58 97.51 94.81 92.99

0.3 93.52 96.56 101.13 105.32 101.13 96.57 93.53

0.4 94.02 97.09 102.07 105.84 102.07 97.11 94.02

0.5 93.46 94.87 97.65 100 97.78 94.93 93.35

0.6 90.92 90.64 92.24 93.71 92.36 90.73 90.64

0.7 89.24 88.69 90.10 91.35 90.18 88.76 88.93

0.8 89.00 88.52 89.93 91.16 90.04 88.60 88.72

CCSC 0.2 83.73 86.74 92.51 102.51 107.23 98.91 93.17

0.3 83.10 86.09 91.82 101.71 105.11 97.36 91.99

0.4 83.06 85.73 91.07 100.59 103.21 95.04 89.13

0.5 83.33 85.79 90.85 100 102.12 93.80 87.52

0.6 83.06 85.73 91.07 100.59 103.20 95.04 89.13

0.7 83.10 86.09 91.82 101.71 105.11 97.36 91.99

0.8 83.54 86.53 92.27 102.40 107.14 98.67 92.98

CCCS 0.2 88.91 88.75 90.14 91.28 90.14 88.75 88.90

0.3 89.07 88.87 90.26 91.45 90.26 88.87 89.07

0.4 90.80 90.83 92.40 93.76 92.40 90.83 90.80

0.5 93.57 95.08 97.82 100 97.82 95.08 93.57

0.6 94.25 97.34 102.31 106.1 102.31 97.34 94.25

0.7 93.76 96.80 101.39 105.58 101.39 96.80 93.76

0.8 92.19 94.34 97.46 99.75 97.51 94.51 92.39

CSSC 0.2 84.56 87.63 92.36 96.84 94.20 87.16 80.03

0.3 88.23 91.68 96.61 101.01 99.45 93.40 87.01

0.4 89.69 93.31 98.43 103.22 103.29 98.83 93.48

0.5 86.68 89.50 94.15 100 101.47 97.52 92.85

0.6 82.76 85.11 89.33 94.97 96.30 92.28 87.84

0.7 80.45 82.72 86.63 91.35 92.16 88.72 84.83

0.8 79.53 81.75 85.33 89.18 89.69 86.86 83.47

CCSS 0.2 79.55 81.78 85.37 89.18 89.68 86.85 83.46

0.3 80.45 82.72 86.63 91.35 92.14 88.70 84.80

0.4 82.76 85.12 89.33 94.97 96.28 92.25 87.82

0.5 86.68 89.50 94.15 100 101.45 97.49 92.83

0.6 89.68 93.31 98.43 103.22 103.29 98.82 93.48

0.7 88.21 91.68 96.61 101.00 99.45 93.40 87.01

0.8 84.21 87.30 92.09 96.69 93.98 86.89 79.80

CSCS 0.2 89.93 89.24 88.60 88.27 88.60 89.24 89.96

0.3 91.09 90.34 90.39 90.56 90.39 90.34 91.08

0.4 93.18 93.05 93.91 94.69 93.91 93.05 93.19

0.5 94.49 96.72 98.67 100 98.63 96.72 94.49

0.6 93.18 93.05 93.91 94.69 93.91 93.05 93.19
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Table 7: Continued

Edge y x

condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.7 91.08 90.34 90.39 90.56 90.39 90.34 91.07

0.8 89.89 89.23 88.59 88.25 88.59 89.23 89.95

SCSC 0.2 82.72 86.72 93.25 102.59 93.25 86.72 82.72

0.3 82.30 86.18 92.57 102.07 92.57 86.18 82.30

0.4 80.76 84.77 91.12 101.41 91.12 84.77 80.76

0.5 79.84 84.01 90.38 100 90.37 84.01 79.83

0.6 80.76 84.77 91.12 101.52 91.12 84.77 80.76

0.7 82.30 86.18 92.57 102.11 92.57 86.18 82.30

0.8 82.54 86.52 93.02 102.52 93.18 86.58 82.62

CSSS 0.2 80.04 82.38 86.12 90.10 89.36 84.28 78.66

0.3 82.65 85.07 89.04 93.53 93.52 88.86 83.63

0.4 85.97 88.64 92.83 97.54 98.11 93.98 89.07

0.5 88.38 91.49 95.81 100 100.72 97.45 93.21

0.6 85.97 88.64 92.83 97.54 98.11 93.98 89.07

0.7 82.65 85.07 89.04 93.53 93.52 88.86 83.63

0.8 79.98 82.30 86.04 90.01 89.21 84.13 78.52

SSSC 0.2 80.54 86.67 93.10 97.09 93.12 86.67 80.54

0.3 86.64 92.12 97.83 100.98 97.83 92.12 86.64

0.4 90.77 95.33 100.28 102.88 100.28 95.33 90.77

0.5 87.67 91.57 96.62 100 96.62 91.57 87.67

0.6 83.52 87.06 91.84 95.36 91.84 87.06 83.52

0.7 81.37 84.66 88.97 91.86 88.97 84.66 81.37

0.8 80.62 83.74 87.56 89.85 87.57 83.74 80.64

SSCS 0.2 78.66 84.28 89.36 90.10 86.12 82.37 80.04

0.3 83.63 88.86 93.52 93.53 89.04 85.07 82.65

0.4 89.07 93.98 98.11 97.54 92.83 88.64 85.97

0.5 93.20 97.44 100.72 100 95.81 91.49 88.38

0.6 89.07 93.98 98.11 97.54 92.83 88.64 85.97

0.7 83.63 88.86 93.52 93.53 89.04 85.08 82.65

0.8 78.56 84.17 89.24 90.04 86.04 82.30 79.97

SSSS 0.2 78.59 83.13 87.99 90.85 87.99 83.13 78.59

0.3 82.32 86.55 91.32 94.19 91.32 86.55 82.32

0.4 86.57 90.67 95.28 97.93 95.28 90.66 86.57

0.5 89.92 93.81 97.93 100 97.93 93.81 89.92

0.6 86.57 90.66 95.28 97.93 95.28 90.66 86.57

0.7 82.32 86.55 91.32 94.19 91.32 86.55 82.32

0.8 78.49 83.04 87.87 90.76 87.86 83.00 78.46

CS 0.2 102.07 103.47 105.37 108.62 105.34 103.47 102.07

0.3 101.38 102.39 103.96 106.47 103.96 102.39 101.38

0.4 99.29 99.63 83.95 102.26 100.64 99.63 99.29

0.5 98.03 98.06 98.77 100 98.74 98.03 98.03

0.6 99.29 99.63 100.64 102.26 100.64 99.63 99.29

0.7 101.40 102.39 103.99 106.62 103.96 102.36 101.38

0.8 101.65 103.03 104.80 107.16 104.63 103.00 101.67

a/b = 1, a/h = 100, a//b/ = 1,h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5E22, ν12 = ν21 = 0.25.
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Table 8: Values of ‘r’ for +45/-45/+45/-45 elliptic parabolic shells.

Edge y x

condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CCCC 0.2 79.66 82.85 84.84 85.74 84.86 82.87 79.69

0.3 80.31 84.19 87.56 89.71 87.66 84.28 80.35

0.4 80.05 84.59 90.03 95.29 90.17 84.67 80.08

0.5 79.67 84.63 91.24 100 91.22 84.61 79.67

0.6 80.09 84.67 90.19 94.95 90.06 84.59 80.08

0.7 80.36 84.28 87.66 89.54 87.56 84.20 80.32

0.8 79.57 82.84 84.84 85.66 84.87 82.81 79.57

CSCC 0.2 97.21 99.98 103.64 107.41 103.36 99.85 97.14

0.3 97.50 103.57 108.60 109.94 108.48 103.37 97.07

0.4 92.15 97.10 102.06 104.71 102.12 96.68 91.33

0.5 87.35 91.82 96.90 100 96.91 91.46 86.53

0.6 87.12 91.38 96.09 98.75 95.98 91.19 86.61

0.7 89.41 93.62 97.54 99.38 97.34 93.61 89.28

0.8 89.58 94.39 98.14 99.38 98.18 94.80 89.75

CCSC 0.2 90.79 90.78 88.46 88.76 94.18 97.45 92.96

0.3 92.55 92.96 91.44 92.48 98.49 99.29 93.22

0.4 92.00 94.63 94.78 96.94 103.47 99.94 93.45

0.5 91.54 96.78 97.42 100 106.45 100.15 93.66

0.6 92.14 95.54 95.18 97.14 103.07 99.81 93.50

0.7 92.21 93.32 91.74 92.90 98.85 99.17 93.24

0.8 90.44 90.67 88.63 89.30 94.91 97.64 92.86

CCCS 0.2 89.73 94.81 98.21 99.41 98.18 94.41 89.34

0.3 89.28 93.62 97.36 99.39 97.57 93.64 89.20

0.4 86.61 91.19 95.99 98.76 96.10 91.41 86.94

0.5 86.51 91.44 96.88 100 96.91 91.85 87.19

0.6 91.29 96.65 102.07 104.69 102.08 97.11 92.04

0.7 97.05 103.36 108.51 109.93 108.62 103.60 97.45

0.8 97.11 99.63 103.03 107.13 102.98 99.55 96.72

CSSC 0.2 96.07 97.95 96.72 98.01 101.80 100.96 97.75

0.3 95.28 100.08 100.59 102.37 106.09 102.77 97.35

0.4 90.75 95.97 101.16 104.11 102.58 97.75 92.51

0.5 86.40 91.38 96.69 100 98.25 93.44 88.45

0.6 86.00 90.90 95.98 98.98 97.24 92.86 87.83

0.7 87.80 92.80 97.46 99.69 98.05 94.24 89.08

0.8 87.80 92.74 95.59 96.69 98.21 94.82 89.48

CCSS 0.2 87.45 92.91 95.60 95.95 98.42 94.43 88.94

0.3 87.26 92.71 97.53 99.91 98.29 94.11 88.91

0.4 84.96 90.37 95.92 99.20 97.19 92.68 87.80

0.5 84.85 90.37 96.37 100 97.75 93.00 88.27

0.6 89.04 94.69 100.51 103.81 101.83 97.06 92.14

0.7 94.10 99.54 100.63 102.25 106.26 102.45 97.05

0.8 94.40 97.96 96.84 98.09 101.74 100.69 96.82

CSCS 0.2 93.56 98.10 101.23 101.93 100.57 97.29 92.94

0.3 93.52 97.73 101.01 102.31 100.96 97.51 93.28

0.4 89.31 93.65 98.28 100.90 98.29 93.49 89.13
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Table 8: Continued

Edge y x

condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5 86.91 91.36 96.69 100 96.69 91.36 86.91

0.6 89.13 93.49 98.29 100.90 98.28 93.65 82.77

0.7 93.28 97.51 100.96 102.31 101.01 97.73 93.52

0.8 92.92 97.13 100.29 101.59 100.83 97.83 93.46

SCSC 0.2 93.51 94.06 90.70 88.69 90.56 93.94 92.74

0.3 94.58 96.25 93.72 92.19 93.76 96.61 93.70

0.4 94.49 98.00 97.26 96.75 97.57 98.98 94.12

0.5 94.44 100.09 99.96 100 99.96 100.04 94.44

0.6 94.30 99.03 97.57 96.75 97.26 98.03 94.55

0.7 93.72 96.62 93.76 92.19 93.72 96.25 94.58

0.8 92.63 93.90 90.50 88.68 90.65 94.01 93.43

CSSS 0.2 92.34 97.05 99.89 102.08 101.06 97.11 92.43

0.3 92.26 97.42 101.57 103.12 101.63 97.54 92.86

0.4 88.26 93.24 98.33 101.33 99.72 95.24 90.48

0.5 85.90 90.81 96.30 100 98.29 93.65 88.99

0.6 87.98 92.83 97.85 100.79 99.22 94.97 90.35

0.7 91.92 96.81 100.79 102.33 101.07 97.37 92.87

0.8 91.86 96.25 99.20 101.30 100.71 97.26 92.76

SSSC 0.2 95.24 100.24 98.64 97.67 98.86 100.02 95.33

0.3 94.79 100.29 102.55 102.03 102.87 99.87 94.26

0.4 90.56 95.77 100.92 102.99 100.82 95.44 89.91

0.5 86.98 92.26 97.33 100 97.48 92.02 86.40

0.6 86.37 91.96 97.05 99.55 97.12 91.82 85.92

0.7 87.23 93.18 98.30 99.97 98.31 93.23 87.05

0.8 87.15 93.08 97.28 95.80 98.16 93.43 87.21

SSCS 0.2 92.91 97.63 101.14 101.82 99.56 96.53 91.98

0.3 92.87 97.37 101.07 102.33 100.79 96.82 91.91

0.4 90.35 94.97 99.22 100.79 97.85 92.83 87.98

0.5 88.99 93.65 98.30 100 96.30 90.81 85.90

0.6 90.48 95.24 99.72 101.33 98.32 93.24 88.26

0.7 92.86 97.54 101.63 103.12 101.57 97.44 92.25

0.8 92.25 96.84 100.73 102.03 99.38 96.74 92.22

SSSS 0.2 91.17 96.36 100.55 102.18 100.03 95.81 90.74

0.3 91.11 96.35 100.87 102.54 100.75 96.14 90.94

0.4 88.70 93.93 98.75 100.97 98.79 93.90 88.66

0.5 87.30 92.47 97.51 100 97.51 92.47 87.30

0.6 88.66 93.90 98.79 100.97 98.75 93.93 88.70

0.7 90.94 96.14 100.75 102.54 100.87 96.35 91.11

0.8 90.45 95.42 99.57 101.70 99.99 95.97 90.86

CS 0.2 106.23 111.34 112.81 111.57 112.47 110.47 105.50

0.3 105.47 108.78 108.65 107.73 108.76 108.42 104.76

0.4 100.53 102.66 102.71 102.13 102.87 102.76 100.53

0.5 98.68 100.50 100.47 100 100.47 100.50 98.66

0.6 100.53 102.76 102.87 102.13 102.71 102.66 100.53

0.7 104.76 108.42 108.76 107.73 108.65 108.84 105.47

0.8 105.39 110.49 111.89 110.60 112.07 111.13 106.15

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

Brought to you by | Kainan University

Authenticated

Download Date | 5/18/15 11:22 AM



178 | S. Sahoo

Table 8: Continued

Edge y x

condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5E22, ν12 = ν21 = 0.25.
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Table 9:Maximum values of r with corresponding coordinates of cutout centres and zones where r ≥90 and r ≥95 for 0/90/0/90 elliptic

parabolic shells.

Boundary Maximum Co-ordinate of Area in which the value Area in which

Condition values of r cutout centre of r ≥90 the value r ≥95

CCCC 106.18 x = 0.5 0.2≤ x 0.3; 0.7≤ x ≤ 0.8 0.4 ≤ x ≤ 0.5

y = 0.2 0.2≤ y ≤ 0.8 0.2 ≤ y ≤ 0.8

CSCC 105.84 x = 0.5 0.2≤ x 0.3; 0.7≤ x ≤ 0.8 0.4≤ x ≤ 0.6

y = 0.4 0.2 ≤ y ≤ 0.6 0.2≤ y ≤ 0.5

0.4≤ x ≤ 0.6, 0.6≤ y ≤ 0.8

CCSC 107.23 x = 0.6 x = 0.4, 0.2≤ y ≤ 0.8 0.5≤ x ≤ 0.7

y = 0.2 0.2≤ y ≤ 0.8

CCCS 106.12 x = 0.5 0.2≤ x 0.3, 0.7≤ x ≤ 0.8 0.4≤ x ≤ 0.6

y = 0.6 0.2≤ y ≤ 0.8; 0.5≤ y ≤ 0.8

0.4≤ x ≤ 0.6, 0.2≤ y ≤ 0.4

CSSC 103.29 x = 0.6 x = 0.4, 0.7, 0.2≤ y ≤ 0.6; 0.5≤ x ≤ 0.6

y = 0.4 0.5≤ x ≤ 0.6, 0.6≤ y ≤ 0.7 0.3≤ y ≤ 0.5

CCSS 103.29 x = 0.6 x = 0.4, 0.5≤ y ≤ 0.8; 0.5≤ x ≤ 0.6

y = 0.6 x = 0.7, 0.4≤ y ≤ 0.7; 0.5≤ y ≤ 0.7

CSCS 100.00 x = 0.5 0.2≤ x ≤ 0.8, 0.3≤ y ≤ 0.4; 0.3≤ x ≤ 0.7

y = 0.5 0.2≤ x ≤ 0.8, 0.6≤ y ≤ 0.7; y = 0.5

SCSC 102.59 x = 0.5 x = 0.4, 0.6 x = 0.5

y = 0.2 0.2≤ y ≤ 0.8 0.2≤ y ≤ 0.8

CSSS 100.72 x = 0.6 x = 0.4, 0.7 0.5≤ x ≤ 0.6

y = 0.5 0.4≤ y ≤ 0.6 0.4≤ y ≤ 0.6

SSSC 102.88 x = 0.5 x = 0.3, 0.7 0.4≤ x ≤ 0.6

y = 0.4 0.3≤ y ≤ 0.5 0.3≤ y ≤ 0.5

SSCS 100.72 x = 0.4 x = 0.3, 0.6 0.4≤ x ≤ 0.5

y = 0.5 0.4≤ y ≤ 0.6 0.4≤ y ≤ 0.6

SSSS 100.00 x = 0.5 x = 0.3, 0.7 0.4≤ x ≤ 0.6

y = 0.5 0.4≤ y ≤ 0.6 0.4≤ y ≤ 0.6

CS 108.62 x = 0.5 nil 0.2≤ x ≤ 0.8

y = 0.2 nil 0.2≤ y ≤ 0.8

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5E22, ν12 = ν21 = 0.25.
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Table 10:Maximum values of r with corresponding coordinates of cutout centres and zones where r ≥90 and r ≥95 for +45/-45/+45/-45

elliptic parabolic shells.

Boundary Maximum Coordinate Area in which Area in which

Condition values of r of cutout centre value of r ≥90 the value r ≥95

CCCC 100.00 x = 0.5, y = 0.5 x = 0.4, 0.6, 0.4≤ y ≤ 0.6 x = 0.5, 0.4≤ y ≤ 0.5

CSCC 109.94 x = 0.5 x = 0.3, 0.7 0.2≤ x ≤ 0.8, 0.2≤ y ≤ 0.3;

y = 0.3 0.5≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.8;

CCSC 106.45 x = 0. x = 0.2, 0.8 0.3≤ x ≤ 0.4, 0.5≤ y ≤ 0.6;

y = 0.5 0.2≤ y ≤ 0.8 x = 0.5, 0.4≤ y ≤ 0.6;

x = 0.6, 0.3≤ y ≤ 0.7;

x = 0.7, 0.2≤ y ≤ 0.8;

CCCS 109.93 x = 0.5 x = 0.3, 0.7 0.4≤ x ≤ 0.6, 0.2≤ y ≤ 0.6;

y = 0.7 0.2≤ y ≤ 0.5 0.2≤ x ≤ 0.8, 0.7≤ y ≤ 0.8

CSSC 106.09 x = 0.6 x = 0.3, 0.7 0.2≤ x ≤ 0.8, 0.2≤ y ≤ 0.3;

y = 0.3 0.5≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.8

CCSS 103.81 x = 0.5 x = 0.3, 0.7 0.4≤ x ≤ 0.6, 0.2≤ y ≤ 0.6;

y = 0.6 0.2≤ y ≤ 0.6 0.3≤ x ≤ 0.8, 0.7≤ y ≤ 0.8

CSCS 102.31 x = 0.5 x = 0.3, 0.7 0.3≤ x ≤ 0.7, 0.2≤ y ≤ 0.3

y = 0.7 0.4≤ y ≤ 0.6 &0.7≤ y ≤0.8;

0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.6

SCSC 100.04 x = 0.7 x = 0.2, 0.8 x = 0.3, 0.7, 0.3≤ y ≤ 0.7;

y = 0.5 0.2≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.6

CSSS 103.12 x = 0.5 x = 0.3, 0.7 0.3≤ x ≤ 0.7, 0.2≤ y ≤ 0.3;

y = 0.3 0.4≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.8

SSSC 102.99 x = 0.5 x = 0.3, 0.7 0.3≤ x ≤ 0.7, 0.2≤ y ≤ 0.4;

y = 0.4 0.5≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.5≤ y ≤ 0.8

SSCS 103.12 x = 0.5 x = 0.3, 0.7, 0.4≤ y ≤ 0.6; 0.3≤ x ≤ 0.7, 0.2≤ y ≤ 0.3

y = 0.7 x = 0.2, 0.8, 0.2≤ y ≤ 0.3 & &0.7≤ y ≤ 0.8;

0.7≤ y ≤ 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.6

SSSS 102.54 x = 0.5 x = 0.3, 0.7 0.3≤ x ≤ 0.7, 0.2≤ y ≤ 0.3

y = 0.7 0.4≤ y ≤ 0.6; &0.7≤ y ≤ 0.8;

x =0.2, 0.8 0.4≤ x ≤ 0.6, 0.4≤ y ≤ 0.6

0.2≤ y ≤ 0.3 & 0.7≤ y ≤ 0.8

CS 112.47 x = 0.6 nil 0.2≤ x ≤ 0.8

y = 0.2 0.2≤ y ≤ 0.8

a/b = 1, a/h = 100, a//b/ = 1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E22 = 25, G23 = 0.2 E22, G13 = G12 = 0.5E22, ν12 = ν21 = 0.25.
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The laminated composite �nite element shell model

proposed in the present study can work also with

anisotropic lamination with general orientation of the

plies. However, the present study considers only cross-

ply and angle-ply lamination schemes. Future studies will

consider anisotropic laminations.

4 Conclusions

The following conclusions may be drawn from the present

study:

1. This approach is suitable for analyzing free vibra-

tion problems of sti�ened elliptic parabolic shell

panels with cutouts. The �nite element code used

here produces results in close agreement with those

of the benchmark problems.

2. The arrangement of boundary constraints along the

four edges is far more important than their actual

number as for free vibration is concerned.

3. If a fully clamped shell is released for any functional

reason, then two alternate edges must release in-

stead of two adjacent edges.

4. The relative free vibration performances of sti�ened

shells with cutout for di�erent boundary combina-

tion are expected to be very helpful for practicing

engineers.

5. For cross ply shells eccentricity towards the simply

supported edge which is opposite to a clamped edge

is preferable. For angle ply shells eccentricity to-

wards simply supported edge is preferable.

6. This study may be helpful as design aids for struc-

tural engineers as it provides information regarding

the behavior of sti�ened elliptic parabolic shell with

eccentric cutouts for a wide spectrum of eccentricity

and boundary conditions for cross ply and angle ply

shells.

7. Thatwill alsohelp anengineer tomakeadecision re-

garding the eccentricity of the cutout centre that he

can allow as it provides information regarding the

speci�c zones within which the cutout centre may

be moved so that the loss of frequency is less than

10% with respect to a shell with a central cutout.
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