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Abstract: In this paper free vibration behavior of lami-
nated composite stiffened elliptic parabolic shell has been
analyzed in terms of natural frequency and mode shape.
Finite element method has been applied using an eight-
noded curved quadratic isoparametric element for shell
with a three noded curved beam element for stiffener.
Cross and angle ply shells with different edge conditions
have been studied varying the size and position of the
cutouts to arrive at a set of inferences of practical engineer-
ing significances.
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1 Introduction

The analysis of thin shells attracted attention of re-
searchers from the first half of the nineteenth century.
While the theory of shell structures was being improved
from time to time by many researchers, another group of
researchers started developing exotic materials with high
strength and stiffness properties. This resulted in the use
of laminated composite materials to fabricate shell forms.
The researchers had realized that the configuration like
folded plates, conoidal, saddle, spherical, elliptic and hy-
perbolic parabolic and hypar shells can offer a number of
parallel advantages that suit to the requirements of the in-
dustry. In fact in industrial applications a shell may have
complicated boundary conditions and may be subjected to
complex loading. The advent of high speed computers in
the second half of the twentieth century was a major devel-
opment which paved the way of researchers to get involved
in analysis and design of shells of arbitrary geometry and
loading conditions using numerical techniques. Ghosh
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and Bandyopadhyay [1], Dey et al. [2, 3], Chakravorty et
al. [4, 5] reported static and dynamic behaviour of lami-
nated doubly curved shells. Later Nayak and Bandyopad-
hyay [6-8], Das and Chakravorty [9-12] and Pradyumna
and Bandyopadhyay [12-14] reported static, dynamic and
instability behavior of laminated doubly curved shells.
The shell surfaces are often provided with cutouts for var-
ious functional requirements. Such shells need to be stiff-
ened for avoiding stress concentration around cutouts. As
the numerical approaches like finite element method be-
come popular, investigators started venturing to analyze
stiffened shells with cutout. Earlier studies in this aspect
were due to Reddy [15], Malhotra et al. [16] and Sivasub-
ramonian et al. [17]. They analyzed the effect of cutouts
on the natural frequencies of plates. Later Sivakumar et
al. [18], Rossi [19], Huang and Sakiyama [20] and Hota
and Padhi [21] studied free vibration of plate with vari-
ous cutout geometries. Researchers like, Chakravorty et
al. [22], Sivasubramonian et al. [23], Hota and Chakra-
vorty [24], Nanda and Bandyopadhyay [25] published use-
ful information about free vibration of shells with cutout.

Shells of double curvature, particularly elliptic
paraboloids, have the ability to span over relatively large
distances without the need of intermediate supports in
comparison with flat plates and cylindrical panels of the
same general proportions. This aspect in particular at-
tracts the designers to use such shell forms in places of
large column free areas. Moreover, elliptic parabolic shells
are both architecturally acceptable and structurally stiff
due to their surface geometry. Qatu et al. [26] reviewed the
work done on the vibration aspects of composite shells
between 20002009 and observed that most of the re-
searchers dealt with closed cylindrical shells. Other shell
geometries like conical shells and shallow shells on rect-
angular, triangular, trapezoidal, circular, elliptical, rhom-
bic or other planforms are receiving considerable atten-
tion. Recently, Kumar et al. [27-30] considered finite ele-
ment formulation for shell analysis based on higher order
zigzag theory. Vibration analysis of spherical shells and
panels both shallow and deep has also been reported for
different boundary conditions [31-34]. A complete and
general view on mathematical modeling of laminated
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composite shells using higher order formulations has been
provided in recent literature [35-37]. Also a wide range of
literature is available on plates and shells of varying ma-
terials and geometries both in presence and absence of
cutout [38-47]. However, the information for free vibra-
tion behavior of stiffened elliptic parabolic shells with
cutouts is missing in literature and an in depth study of
such shells in presence of cutout is needed to exploit the
potential of these shell forms.

2 Mathematical Formulation

A laminated composite shell of uniform thickness h and
having principal radii of curvature Ry and Ry, (Fig. 1)
is considered. Keeping the total thickness the same, the
thickness may consist of any number of thin laminae each
of which may be arbitrarily oriented at an angle 6 with ref-
erence to the x-axis of the co-ordinate system. The consti-
tutive equations for the shell are given by (Definitions of
symbols are given in list of notations):

{F} = [El{¢} 1)

where,
{F} {Nx, Ny, ny, My, My, Mxy, Qx, Qy} {5}_
{Sx’ Sys ’ny, kx, kya kxy, 'sz’ 'sz} s

and
[ An A1» A B Bix By 0 0 ]
A1p Ap Ay Bix B By 0 0
At Aze Aes Big By Bgg O O
[E] = Bi1 Bz Big Din D1z Dig O O
Bi» By Bys Dio Dy Dy O 0
Bis By Bes Dig Dy Dsg O O
0 0 0 0 0 0 Su1 Si
0O 0 0 0 0 0 Su S»|

The detailed expressions of the elements of the elastic-
ity matrix are available in several references including
Vasiliev et al. [48] and Qatu [49]. The elements of the stiff-
ness matrix [E] are defined as

np
ij = E (Qipi(zi = zx-1)s
Bjj =3 Z (Ql])k(zk Zi4)s
Dy =3 I;(QU k(zk _Zk—l) i,j=1,2,6,
and S = éF,-F]-(G,-j)k(zk -zrq) 1,j=4,5.

In the above equations z; and z;_; are the distances mea-
sured from the mid surface of a laminate to the bottom of
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the kth and (k-1)th laminate, respectively. np is the num-
ber of plies in a laminate. Q;; are elements of the off-axis
elastic constant matrix which is given by

[Qij] .5 = [T [Qy],, [Tal ", i,j=1,2,6,
and [Gy] . = [T2]7' [Qy],, (T2l 0,5 = 4,5
m?> n’> 2mn
[Ti]=| n* m*> -2mn |, [T.]=

-mn mn m?-n?

ZH

-n . . .
} ,in whichm = cos@and n = sin 0.
m

Qi1 Qu O
[Qy],, Q Q2 O |, i4,j=1,2,6,
0 0 Qe
Qs O ..
d i1 s by = 4, 5-
an [Ql}:l on 0 Q55 L]
In which, Qi1 = (1 - vi2v21) 'E1, Q2 = (1 -

ViaVa1) 'E2, Q2 = (1 - viava1) 'Enivar, Qus = Gis,
Q55 = G23, Qep = G12.

F; and F; are two factors presently taken as unity for
thin shells. When the shell is moderately thick, the product
of F; and F; is taken as 5/6, which is commonly used sifnce
the evaluation of shear correction factor from exact theory
of elasticity is difficult.

The stress-strain relations are given by

Ox
oy ¢ =
_Txy
Qi1 Q2 Qi 58 kx
=| Q2 Q2 Q% g o+z8 ky
Qe Qa6 Qes | £l Ky
@)
Txz Qus  Qus 'Y)(()z
and{ Tyz }_ | Qus Qss } { % } ©

where, Q45 = (G13 - Ga3) mn.
The force and moment resultants are expressed as

T
{ Ny, Ny, ny, My, My, Mxy, Qx; Qy } =
h/2

= f { Ox, Uy, Txy, 0z.2,... (4)
-h/2

T
..0y.2, Txy.Z, Txz, Tyz } dz
The strain-displacement relations on the basis of im-

proved first order approximation theory for thin shell [50]
are established as

T
{Ex, Eys  Txys  Vxzs ’sz} =
T
={e & o o e f e O

T
+Z { k)(, ky, kXyg kXZ; kyz }
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where, the first vector is the mid-surface strain for a shell
and the second vector is the curvature and are related to
degrees of freedom as:

g2 ou/0x — w/Rxx
&) ov/dy — w/Ryy
Yy ¢ =4 0u/oy+ov/ox-2w/Ry (6)
2, a+ow/ox
o B +ow/dy
and
kx oa/ox
ky oB/oy
ky =< oa/oy+0B/ox @)
Kxz 0
kyz 0

Finite Element Formulation

An eight-noded curved quadratic isoparametric finite el-
ement is used for shell analysis. Any shell surface can
be modeled by three dimensional solid elements. When
the thickness dimension is considerably smaller than the
other dimensions, the nodes along the thickness direction
supply additional degrees of freedom than needed and
hence are not preferred. When a two dimensional element
is obtained by considering the thickness direction nodes,
the displacements of adjacent thickness direction nodes
must be ensured to be equal to avoid numerical difficulties.
Thus the five degrees of freedom including three transla-
tions (u, v, w) and two rotations (a, ) are attached to each
node. The final element has mid surface nodes only and
a line in the thickness direction remains straight but not
necessarily normal to the mid surface after deformation.
The directions of the generalized displacements are shown
in Fig. 1. The following expressions establish the relations
between the displacement at any point with respect to the
co-ordinates ¢ and n and the nodal degrees of freedom.

Figure 1: Elliptic parabolic shell with a concentric cutout stiffened
along the margins
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8 8
u= N,-ui V=ZN1‘V1' W=ZN1'W1'
i=1 i=1 (8)

8 8
a=3 Niai B=> Nif;
i i

R

]
[N

1

where the shape functions derived from a cubic interpola-
tion polynomial are:

Ni =1+ ¢ +nn) S +nn; - 1)/ 4,
fori=1,2,3,4

Ni= 1+ -n’)/2,

N; = (1+nn)(1 - {2)/2,
The generalized displacement vector of an element is

expressed in terms of the shape functions and nodal de-
grees of freedom as:

fori=5,7 ©)

fori=6,8

[u] = [N]{d.} (10)
u
v
=9 w o=
a
i.e., B
N; U;
8 Nl Vl
= Z Nl Wi
= N; a;
Nl Bi
Element Stiffness Matrix
The strain-displacement relation is given by
{e} = [B]{de}, (11)
[Nix 0 -2 0 0 ]
0 Ny -g- 0 0
. Niy Nix -z 0 0
0 0 0 N; 0
where [B] = LX (12)
7] 121: 0 0 0 0 N
0 0 0 Niy, Ny
0 0 Ny N ©
L O 0 N;, 0 N; |
The element stiffness matrix is
(K1 - [ [ 181" 1E11B) dxdy (13)

Element Mass Matrix
The element mass matrix is obtained from the integral

M,] = / / [N]" [P][N] dxdy, (14)



DE GRUYTER OPEN

where,

N, 0O 0 0 O

s | O Ny O 0 o0
[NJ=>>| 0 o N, O O [,
'l o 0 0 N O
0 0 0 0 N;

P O OOO

s |0 PO OO
[Pl=>| 0 o P 0o 0|,
lo 001 0

0 00 0 I

np Zk np Zk
in whichP = /pdz and] = Z / zpdz  (15)
k=1 k=1

= Zk = Zk

where np is the number of plies in a laminate.

Finite Element Formulation for Stiffener of
the Shell

Three noded curved isoparametric beam elements (Fig. 2)
are used to model the stiffeners, which are taken to run
only along the boundaries of the shell elements. In the
stiffener element, each node has four degrees of freedom
i.e. usx, Wsx, asx and bsy for x-stiffener and vsy, wsy, asy
and by, for y-stiffener. The generalized force-displacement
relation of stiffeners can be expressed as:

x-stiffener : {st} = [sz] {Ssx} = [sz] [Bsx] {5sxi};
y-stiffener : {Fsy} = [Dsy] {€sy} = [Dsy] [Bsy] { syi}
(16)

where, {Fsx} = [Nsxix Msxx Tsxx stxz]T;
{8sx} = [Usx.x QAsx.x ﬁsx.x (asx + st.x)]T
and {Fsy} = [Nsyy Msyy Tsyy Qspyz]’s
{esy} = [Vsy.y Bsyy @syy (Bsy + Wsy-y)]T

The generalized displacements of the x-stiffener
and the shell are related by the transformation matrix
{8sxi} = [Tx] {6} where

1+ g symmetric
0 1
Tx] = 17
S I o 1 (17)
0 0 0 1

The generalized displacements of the y-stiffener
and the shell are related by the transformation matrix
{8syi} = [Ty] {6} where

1+ & symmetric
Ryy y

0 1

T)] = 18

[Ty] o o 1 (18)
0 0 0 1
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A (i) i

(a) by

Figure 2: (a) Eight noded shell element with isoparametric co-
ordinates (b) Three noded stiffener elements (i) x-stiffener (ii) y-
stiffener

These transformations are required due to curvature of
x-stiffener and y-stiffener. In the above equations, e is the
eccentricity of the stiffeners. {6} is the appropriate portion
of the displacement vector of the shell excluding the dis-
placement component along the other axis.

Elasticity matrices are as follows:

[Dsx] =
Aq1bsx Bglbsx B/lzbSX 0
_ | Biybsx Djjbs D!, b 0
Bézbsx Dﬁzbsx % (Qss + Qep) dsxng 0
0 0 0 bsxsll
(19)
[Dsy] =
Anbsy B}, bsy B}, bsy 0
_ By,bsy  1(Qus +Qee)bsy  Dl,bsy 0
B!, bsy Dy,bsy Dj,dsyby, 0
0 0 0 bsyS2>
(20)
where,

D{j = Dy + 2eB;; + e Ayj; B{j =B;+ed;, (21
and A;;, Bj;, D;j and S;; are explained in literature [51].

Here for the stiffener considering it as moderately
thick, the shear correction factor is taken as 5/6. The sec-
tional parameters are calculated with respect to the mid-
surface of the shell by which the effect of eccentricities of
stiffeners is automatically included. The element stiffness
matrices are of the following forms.

for x-stiffener : [Kxe] = [ [Bsx]" [Dsx] [Bsx] dx;

for y-stiffener : [Kye] = [ [Bsy]” [Dsy] [Bsy] dy @)

The integrals are converted to isoparametric coordi-
nates and are carried out by 2-point Gauss quadrature. Fi-
nally, the element stiffness matrix of the stiffened shell is
obtained by appropriate matching of the nodes of the stiff-
ener and shell elements through the connectivity matrix
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and is given as:
[Ke] = [Kshe] + [Kxe] + [Kye] - (23)

The element stiffness matrices are assembled to get the
global matrices.

Element Mass Matrix

The element mass matrix for shell is obtained from the in-
tegral

[Me] = / [N]" [P] [N] dxdy, (24)
where,

N, 0 0 0 O

s | O Ny O 0 0

[N] = o0 0 N O O |,
1o 0 0 N O

0 0 0 0 N;
P O OOO
s |0 PO OO
[Pl=>|0 0o P 0o O |,
1o 001 0
0 00 0 I

np Zk np Zk
in which P = Z /pdzand[ = Z /zpdz (25)
k=1 k=1

2z 2z
where np is the number of plies in a laminate.

Element mass matrix for stiffener element

[Ms] = [ [N]"[P][N]dx for x-stiffener

and [Ms]= [ [N]T[P][N]dy for y-stiffener (26)

Here, [N] is a 3x3 diagonal matrix for stiffener.

p.bsxdsx 0 O
3 O p.bsxdsx O
Pl =
[P] ,z; 0 0 p.bsxd% /12
0 0 0
0
0

0 for x-stiffener

p(bsx.d3 + b .dsx)/12

p.bsydsy 0 0
3 O p.bsydsy 0
Pl =
o 1; 0 0 p.bsyds,[12
0 0 0
0
0

0 for y-stiffener

p(bsy.d3, + b3,.dsy)[12
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The mass matrix of the stiffened shell element is the
sum of the matrices of the shell and the stiffeners matched
at the appropriate nodes.

[Me] = [Mgpe] + [Mxe] + [Mye] . (27)

The element mass matrices are assembled to get the global
matrices.

Modeling the cutout

The code developed can take the position and size of
cutout as input. The program is capable of generating
non uniform finite element mesh all over the shell sur-
face. So the element size is gradually decreased near the
cutout margins. One such typical mesh arrangement is
shown in Fig. 3 where the mesh divisions are in the ratio
6:4:4:3:3:3:3:4:4:6. Such finite element mesh is redefined
in steps and a particular grid is chosen to obtain the fun-
damental frequency when the result does not improve by
more than one percent on further refining. Convergence of
results is ensured in all the problems taken up here.

Y i

[T

- X
Figure 3: Typical 10x10 non-uniform mesh arrangements drawn to
scale

Solution Procedure for Free Vibration
Analysis

The free vibration analysis involves determination of nat-
ural frequencies from the condition

[K] - w?[M]| =0 (28)
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Table 1: Natural frequencies (Hz) of centrally stiffened clamped square plate
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Mode Mukherjee and Nayak and Present
no.  Mukhopadhyay [52] Bandyopadhyay[53] method
N8 N9
(FEM) (FEM)
1 711.8 725.2 725.1 733

a=>b=0.2032 m, shell thickness =0.0013716 m,

stiffener depth 0.0127 m, stiffener width = 0.00635 m,
stiffener eccentric at bottom
Material property: E = 6.87x101° N/m?, v = 0.29,
p =2823 kg/m’

Table 2: Non-dimensional Fundamental Frequencies (w) for laminated composite saddle shell with cutout.

a’/a Cs SS CL

Chakravorty Present Chakravorty Present Chakravorty Present

etal. [22] model etal. [22] model etal. [22] model

0.0 13.485 13.249 14.721 14.686 113.567 112.926
0.1 13.060 13.084 14.350 14.695 97.753 98.041
0.2 12.530 12.449 13.544 13.507 97.599 97.032
0.3 12.016 12.038 12.908 12.882 111.489 111.033
0.4 11.721 11.733 12.560 12.559 110.210 110.20

a/b=1,a/h =100, a’/b’ =1, h/Rxx = -h/Ryy = 1/300,
CS=Corner point supported, SS=Simply supported, CL=Clamped

Table 3: Non-dimensional Fundamental Frequencies (w) for laminated composite (0/90/0/90) stiffened elliptic parabolic shell for different
sizes of the central square cutout and different boundary conditions.

Boundary Cutout size (a’/a)

conditions 0 0.1 0.2 0.3 0.4
CCCC 139.71 119.13 133.82 152.26 152.99
CSCC 98 105.54 117.64 120.51 121.84
CCSsC 99.19 106.35 118.08 129.78 133.29
CCCs 97.8 104.59 117.34 120.5 121.82
CSscC 80.43 87.38 92.46 96.68 100.71
CCSS 80.43 87.38 92.46 96.68 100.71
CSCS 106.82 100.62 113.02 113.71 114.7
SCSC 100.3 103.75 115.68 124.68 125.6
CSSS 72,96 80.66 83.91 87.7 92.14
SSSC 75.27 82.63 86.14  89.89 93.65
SSCS 72.96 79.7 83.91 87.7 92.14
SSSS 66.29 72.77 76.75 80.43 84.75
Point 35.65 38.04 40.62 43.15 42.99

supported

a/b=1,a/h =100, a’/b’ =1, h/Rxx = 1/300, Rxx/Ryy = 1.5;
E11/E2; =25, G23 = 0.2 E2y, G13 = G12 = 0.5 E23, V12 = V21 = 0.25.
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Table 4: Non-dimensional Fundamental Frequencies (w) for laminated composite (+45/-45/+45/-45) stiffened elliptic parabolic shell for
different sizes of the central square cutout and different boundary conditions.

Boundary Cutout size (a’/a)
conditions 0 0.1 0.2 0.3 0.4
cccc 143.55 156.08 165.22 166.77 157.25
CSCC 118.68 127.5 129.9 130.18 126.45
CCSC 127.22 135.27 139.29 140.28 138.42
CcCccs 118.65 127.28 129.87 129.98 126.43
CSSC 112.52 122.38 124.23 124.1 121.69
CCss 112.58 122.42 124.66 124.11 121.12
CScs 108.89 117.52 122.31 126.27 125.59
SCSC 118.85 127.01 133.74 139.51 136.51
CSSS 102.38 111.57 115.4 118.74 119.75
SSSC 107.64 117.59 119.26 118.89 116.87
SSCS 102.37 111.77 115.4 118.74 119.75
SSSS 96.82 106.74 109.73 112.61 114.3
Point 32.82 35.56 38.02 41.03 42.2
supported

a/b=1,a/h =100, a’/b’ =1, h/Rxx = 1/300, Rxx/Ryy = 1.5;

E11/E2 =25, G23 = 0.2 Ezy, G13 = G12 = 0.5 E2y, V12 = V31 = 0.25.

Table 5: Clamping options for 0/90/0/90 elliptic parabolic shells with central cutouts having a’/a ratio 0.2.

Number of
sides to be
clamped

Clamped edges

Improvement of
frequencies with respect
to point supported shells

Marks indicating
the efficiencies of

no of restraints

0
0

Corner Point supported
Simply supported no
edges clamped (SSSS)
a) Elliptic edge along
x = a (SSCS)

b) Elliptic edge along
x =0 (CSSS)

b) One parabolic edge
alongy = b (5550)
a) Two elliptic edges
x=0and x = a (CSCS)
b) Two parabolic edges

alongy =0andy = b(SCSC)

¢) Any two adjacent
edges (CSSC,CCSS)
3 edges including the two
elliptic edges (CSCC,CCCS)
3 edges excluding the

elliptic edge along x = a (CCSQ)

All sides (CCCQ)

Good improvement
Good improvement
Good improvement
Good improvement
Marked improvement
Marked improvement
Good improvement
Marked improvement
Marked improvement

Frequency attains
highest value

0
39

46

46

49

78

81

56

83

83

100
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This is a generalized eigen value problem and is solved
by the subspace iteration algorithm. The generalized for-
mulation considers all three radii of curvature, viz., Ryx,
Ryy and Ryy. The shell surface considered for the present
study is elliptic parabolic which has the following fea-
tures and can be handled by the proposed formulation
as a special case: doubly curved synclastic surface having
Rxx/Ryy = 1.5and 1/Ryy = 0.

3 Results and discussion

Numerical results are obtained by employing an appro-
priate mesh size until the convergence is achieved with
a residual error below 1%. The accuracy of the formula-
tion is first established by comparing the results of the
present analysis with those existing in the literature. Non-
dimensional frequencies for centrally stiffened clamped
square plate obtained through present formulation are
compared with those of Mukherjee and Mukhopad-
hyay [52] and Nayak and Bandyopdhyay [53] as furnished
in Table 1. Here for comparison, a shell has been converted
to a plate considering a high value of radius of curvature.
The agreement is found to be good. This establishes the
correctness of stiffener formulation. The present FEM re-
sults are also compared with those obtained by Chakra-
vorty et al. [22] for corner point supported, simply sup-
ported and clamped laminated composite saddle shells
with cutouts. These are presented in Table 2 and the re-
sults are found to match extremely well. Thus the cutout
formulation for doubly curved shell is established.

Numerical results are then obtained for several elliptic
parabolic shells with 0/90/0/90 and +45/-45/+45/-45 lami-
nations by varying boundary constraints, cutout size and
position. The shell thickness h is taken to be constant in
all cases and lamina properties taken are: E1;/E>> = 25,
Gz3 =0.2 Ezz, Gl3 = G12 = 0.5E22, Vi2 = V21 = 0.25.

Tables 3 and 4 contains the results of non-dimensional
frequency (w) of 0/90/0/90 and +45/-45/+45/-45 stiffened
elliptic parabolic shells of square planform with cutouts.
The cutouts are also taken to be square in plan (a/ = b/ ).
The sizes of the concentric cutouts are varied from 0 to 0.4
and boundary conditions are varied along the four edges.
The stiffeners, along the cutout periphery are extended up
to the edge of the shell. The boundary conditions are des-
ignated as: C for clamped and S for simply supported. The
four edges are considered in an anticlockwise order from
the edge x = 0. For example a shell with CSCS boundary
is clamped along x = 0, simply supported along y =0
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and clamped along x =
y =b.

The effect of cutout size on fundamental frequency of
composite shells with different boundary conditions can
be studied using the results furnished in Tables 3 and 4. All
the stiffened shells exhibit greater stiffness with introduc-
tion of cutout. But in some angle ply shell, the frequency
shows a monotonic increase upto al /a = 0.3. This initial
increase in frequency is due to the fact that with the in-
troduction of cutout, numbers of stiffeners are increase
from two to four in the present study. Only one exception
is there. In case of clamped shell, with the introduction
of cutout, fundamental frequency decreases. In this case,
though number of stiffeners increases but loss of stiffness
is relatively more pronounced. Table 3 and 4 provides fur-
ther information about the effect of cutout size on funda-
mental frequency. With further increase in cutout size, the
shell surface undergoes loss of both mass and stiffness as
a result fundamental frequency may increase or decrease.
As with the introduction of a cutout of a’/a = 0.3, in shell
surface, the frequency increases in all the cases, this leads
to the engineering conclusion that concentric cutouts with
stiffened margins may be provided safely on shell surfaces
for corner point supported functional requirements upto
a'la=023.

The boundary conditions arranged according to the
increased number of boundary constraints are as follows:
Corner Point supported, SSSS, SSCS, SSSC, CSSS, SSSC,
CSCS, SCSC, CSSC, CCSS, CSCC, CCCS, CCSC and CCCC.
As evident from Tables 5 and 6, fundamental frequen-
cies of members belonging to same number of bound-
ary constraints may not have the same value. Stiffness
depends on number of boundary constraints. Arrange-
ment of boundary constraints are more significant than
number of boundary constraints to increase the stiffness
of the stiffened shells with cutout. Table 5 and 6 shows
the efficiency of a particular boundary combination in in-
creasing the fundamental frequency. Marks are assigned
to each boundary combination in a scale assigning a value
of 0 to the minimum frequency (corner point supported
shell) and 100 to the maximum frequency (clamped shell).
These marks are furnished for cutouts with a//a = 0.2
These tables will enable a practicing engineer to realize at
a glance the efficiency of a particular boundary combina-
tion in increasing the frequency of a shell, taking that of
clamped shell as the upper limit.

It can be seen from the present study that if the one
edge is released from clamped to simply supported, the
change of frequency is more in case of an angle ply shells
than that for a cross ply shells. Again, if the two adjacent
edges are released, fundamental frequency decreases re-

a and simply supported along
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Table 6: Clamping options for +45/-45/+45/-45 elliptic parabolic shells with central cutouts having a’/a ratio 0.2.

Number of Clamped edges Improvement of Marks
sides to be frequencies with respectto  indicating
clamped point supported shells the
efficiencies
of no of
restraints
0 Corner Point supported - 0
0 Simply supported no edges Good improvement 56
clamped (SSSS)
1 a) Elliptic edge along Good improvement 61
x = a (SSCS)
b) Elliptic edge along Good improvement 61
x =0 (CSSS)
along y=b (SSSC) Good improvement 64
along y = b (5550)
2 a) Two elliptic edges x =0 Marked improvement 66
and x = a (CSCS)
b) Two parabolic edges Marked improvement 75
alongy =0andy = b(SCSC)
c) Any two adjacent Marked improvement 68
edges (CSSC,CCSS)
3 3 edges including the two Marked improvement 72
elliptic edges (CSCC,CCCS)
3 edges excluding the elliptic  Remarkable improvement 80
edge along x = a (CCSQ)
4 All sides (CCCQ) Frequency attains 100

highest value
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Figure 4: First mode shapes of laminated composite (0/90/0/90) stiffened elliptic parabolic shell for different sizes of the central square
cutout and boundary conditions
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Figure 5: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened elliptic parabolic shell for different sizes of the central

square cutout and boundary conditions

markably whereas if the two alternate edges are released
the decrease in frequency is far less. This change in fre-
quency is very much significant in case of cross ply shells.
For cross ply shells if three or four edges are simply sup-
ported, frequency values undergo marked decrease but
for angle ply shells with the introduction of more number
of simply supported edges the frequency value does not
change so drastically. The results indicate that particularly
for cross ply shells two alternate edges should preferably
be clamped in order to achieve higher frequency values.

The mode shapes of the fundamental modes of vi-
bration are shown in Fig. 4 and Fig. 5 for cross-ply and
angle ply shells respectively. The normalized displace-
ments are plotted taking the shell mid-surface as the ref-
erence. For all the boundary conditions for cross ply and
angle ply shell the fundamental mode is clearly a bend-
ing mode or torsional mode. Only for corner point sup-
ported shells the fundamental mode shapes are compli-
cated. With the introduction of cutout mode shapes remain
almost similar. When the size of the cutout is increased
from 0.2 to 0.4 the fundamental modes of vibration are pre-
sented.

The effect of eccentricity of cutout positions on funda-
mental frequencies, are studied from the results obtained
for different locations of a cutout with a’ /a = 0.2. The non-
dimensional coordinates of the cutout centre (x = g, y =
%) was varied from 0.2 to 0.8 along each directions, so that
the distance of a cutout margin from the shell boundary
was not less than one tenth of the plan dimension of the
shell. The margins of cutouts were stiffened with four stiff-
eners. The study was carried out for all the thirteen bound-
ary conditions for both cross ply and angle ply shells. The
fundamental frequency of a shell with an eccentric cutout
is expressed as a percentage of fundamental frequency of a
shell with a concentric cutout. This percentage is denoted
by r. In Tables 7 and 8 such results are furnished.

It can be seen that eccentricity of the cutout along the
length of the shell towards the clamped edges makes it
more flexible. When edge, opposite to a clamped edge is
simply supported, r value first increases towards the sim-
ply supported edge then decreases. This is true for both
cross ply and angle ply shells. For cross ply shells, when
two opposite edges are simply supported r value decreases
towards the simply supported edges. But in case of an an-
gle ply shell, if the two opposite edges are simply sup-
ported then r value first increase and then decrease to-
wards the boundary. So, for functional purposes, if a shift
of central cutout is required, eccentricity of a cutout along
the length or width should preferably be towards the sim-
ply supported edge but not towards very near to the bound-
ary for angle ply shells. But in case of cross ply shells
eccentricity of a cutout should be towards a simply sup-
ported edge, which is opposite to a clamped edge.

Tables 9 and 10 provide the maximum values of r
together with the position of the cutout. These tables
also show the rectangular zones within which r is always
greater than or equal to 90 and 95. It is to be noted that
at some other points r values may have similar values,
but only the zone rectangular in plan has been identified.
These tables indicate the maximum eccentricity of a cutout
which can be permitted if the fundamental frequency of
a concentrically punctured shell is not to reduce a drastic
amount. So these tables will help practicing engineers

The mode shapes corresponding to the fundamental
modes of vibration are plotted in Fig. 6 - 13 for cross-ply
and angle ply shell of different boundary conditions for
different eccentric position of the cutout. All the mode
shapes are either bending or torsional mode. It is found
that for different position of cutout mode shapes are some-
what similar to one another, only the crest and trough po-
sition changes.



172 —

x—lLT

S. Sahoo

7

DE GRUYTER OPEN

=03

[}

.

@

05

[

o7

[

§919/99 4

99190 04]

PO 00099
o009

Figure 6: First mode shapes of laminated composite (0/90/0/90)
stiffened elliptic parabolic shell for different position of the central
square cutout and CCCC boundary condition
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Figure 7: First mode shapes of laminated composite (0/90/0/90)
stiffened elliptic parabolic shell for different position of the central
square cutout and CCSC boundary condition.
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Figure 8: First mode shapes of laminated composite (0/90/0/90)
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Figure 10: First mode shapes of laminated composite (+45/-
45/+45/-45) stiffened elliptic parabolic shell for different position of
the central square cutout and CCCC boundary condition.
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Figure 11: First mode shapes of laminated composite (+45/-
45/+45/-45) stiffened elliptic parabolic shell for different position of
the central square cutout and CCSC boundary condition.
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Figure 9: First mode shapes of laminated composite (0/90/0/90)
stiffened elliptic parabolic shell for different position of the central
square cutout and SSSC boundary condition.

the central square cutout and SCSC boundary condition.
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Figure 13: First mode shapes of laminated composite (+45/-
45/+45/-45) stiffened elliptic parabolic shell for different position of

the central square cutout and SSSC boundary condition.
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Table 7: Values of ‘r for 0/90/0/90 elliptic parabolic shells.

DE GRUYTER OPEN

Edge y X
condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8
CCcCC 0.2 9156 9452 9999 106.19 9998 94.51  91.56
0.3 9017 9297 98.13 10472 98.14 92.97 90.17
04 9113 93.27 97.36 10119  97.36 93.27 91.13
0.5 9277  94.26 97.32 100 97.32 94.25  92.76
0.6 9113 93.27 97.36  101.20 97.36 93.27 91.13
0.7 9017 9297 98.13 10392 98.14 92.97 90.17
0.8 91.29 94.22 9964 10612 99.86 94.28 91.37
CScCC 0.2 9298 94.81 97.51 99.58 97.51 94.81 9299
0.3 9352 96,56 10113 105.32 10113 96,57  93.53
04 94.02 9709 102.07 105.84 102.07 9711 94.02
0.5 9346  94.87 97.65 100 97.78 9493  93.35
0.6 9092 90.64 92.24 93.71 9236  90.73  90.64
0.7 8924 88.69 90.10 91.35 90.18 88.76  88.93
0.8 89.00 88.52 8993 91.16 90.04 88.60 88.72
CCSC 0.2 8373 86.74 92,51 10251 10723 9891 93.17
0.3 8310 86.09 91.82 101.71 10511 97.36 91.99
04 83.06 85.73 91.07 100.59 103.21 95.04  89.13
0.5 8333 8579 90.85 100 102.12  93.80 87.52
0.6 83.06 8573 91.07 100.59 103.20 95.04  89.13
0.7 8310 86.09 91.82 10171 10511 9736 91.99
0.8 8354 86,53 9227 10240 10714  98.67 9298
CCCS 0.2 8891 8875 90.14 91.28 90.14 88.75 88.90
0.3 8907 88.87 90.26 91.45 90.26  88.87  89.07
04 90.80 90.83 9240 93.76 9240  90.83 90.80
0.5 9357 95.08 97.82 100 97.82 95.08  93.57
0.6 9425 9734 10231 1061 10231 9734  94.25
0.7 9376 96.80 101.39 10558 10139 96.80 93.76
0.8 9219 9434 9746 99.75 97.51 9451  92.39
CSsC 0.2 8456 8763 9236 96.84  94.20 8716  80.03
0.3 88.23 91.68 96.61 101.01 9945 9340 87.01
04 8969 9331 9843 10322 103.29 98.83  93.48
0.5 86.68 8950  94.15 100 10147 9752 92.85
0.6 8276 85.11 89.33 9497 9630 92.28  87.84
0.7 8045 8272 86.63 91.35 92.16 88.72  84.83
0.8 7953 81.75 85.33 89.18 89.69 86.86 8347
CCSS 0.2  79.55 81.78 85.37 89.18 89.68 86.85 83.46
0.3 8045 8272 86.63 91.35 9R.14 88.70  84.80
04 8276 85.12 89.33 9497  96.28  92.25 87.82
0.5 86.68 8950  94.15 100 101.45 9749 92.83
0.6 89.68 9331 9843 103.22 103.29 98.82 9348
0.7 8821 91.68 96.61 101.00 9945 9340 87.01
0.8 8421 8730 9209 96.69 9398 86.89 79.80
CSCS 0.2 8993 89.24 88,60 88.27 88.60 8924 89.96
03 9109 9034 9039 9056 90.39 9034  91.08
04 9318  93.05 93.91 94.69 93.91 93.05 93.19
0.5 9449 9672  98.67 100 98.63  96.72  94.49
0.6 9318 93.05 93.91 94.69 93.91 93.05 93.19
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Table 7: Continued

Edge y X
condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8
07 9108 9034 9039 90.56 9039 9034  91.07
0.8 8989 89.23 88.59 88.25  88.59 89.23 89.95
SCSC 0.2 8272 86.72 93.25 10259  93.25 86.72 82.72
0.3 8230 86.18 92,57 102.07  92.57 86.18 8230
04 8076  84.77 91.12 101.41 91.12 84.77  80.76
0.5 7984 84.01 90.38 100 90.37 84.01 79.83
0.6 8076  84.77 91.12 101.52 9112 84.77  80.76
0.7 8230 86.18 92.57 10211 9257 86.18  82.30
0.8 8254 86,52 93.02 10252 9318 86.58  82.62
CSSS 0.2 80.04 8238 86.12 90.10 89.36 84.28  78.66
03 82,65 85.07 89.04 93.53 93.52 88.86  83.63
04 8597 88.64 92.83 97.54 98.11 93.98 89.07
0.5 88.38 9149 95.81 100 100.72 9745 93.21
0.6 8597 88.64 92.83 97.54 98.11 93.98 89.07
07 8265  85.07 89.04 93.53 93.52 88.86  83.63
0.8 7998 8230 86.04 90.01 89.21 84.13 78.52
SSSC 0.2 8054  86.67 93.10 97.09 93.12 86.67  80.54
0.3 86.64 92.12 97.83 10098  97.83 92.12 86.64
04 9077 9533 100.28 102.88 100.28  95.33 90.77
0.5 8767 91.57 96.62 100 96.62 91.57 87.67
0.6 83.52 87.06 91.84 95.36 91.84 87.06 83.52
07 8137 84.66 8897 91.86 8897 84.66 8137
0.8 80.62 8374 87.56 89.85 8757 83.74  80.64
SSCS 0.2 78.66 84.28 8936 90.10 86.12 8237  80.04
03 8363 88.86 93.52 93,53  89.04 8507  82.65
04 89.07 9398 98.11 97.54 92.83 88.64 8597
0.5 93.20 9744  100.72 100 95.81 9149  88.38
0.6 89.07 9398 98.11 97.54 92.83 88.64  85.97
0.7 8363 88.86 93.52 93.53 89.04  85.08  82.65
0.8 78.56 84.17 89.24 90.04 86.04 8230 79.97
SSSS 0.2 7859 8313 87.99 90.85 87.99 83.13 78.59
0.3 8232 86.55 91.32 94.19 91.32 86.55 82.32
04 8657 90.67  95.28 97.93 9528 90.66  86.57
0.5 89.92 93.81 97.93 100 9793 93.81 89.92
0.6 86,57 90.66  95.28 97.93 95.28 90.66  86.57
0.7 8232 86.55 91.32 94.19 91.32 86.55 82.32
0.8 7849 83.04 87.87 90.76 87.86 83.00 78.46
CS 0.2 102.07 10347 10537 108.62 10534 10347 102.07
0.3 10138 10239 103.96 10647 10396 102.39 101.38
04 99.29 99.63 83.95 102.26 100.64  99.63 99.29
0.5 98.03 98.06 98.77 100 98.74 98.03 98.03
0.6 99.29 99.63 100.64 102.26 100.64 99.63 99.29
0.7 10140 102.39 10399 106.62 10396 102.36 101.38
0.8 101.65 103.03 104.80 10716 104.63 103.00 101.67
a/b=1,a/h =100, a’ /b’ = 1,h/Ryx = 1/300, Rxx/Ryy = 1.5;
E11/E22 = 25, 623 =0.2 Ezz, Gl3 = Glz = 0.5E22, V12 = V21 = 0.25.
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Table 8: Values of ‘r’ for +45/-45/+45/-45 elliptic parabolic shells.

DE GRUYTER OPEN

Edge y X
condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8
CCcccC 0.2  79.66 82.85 84.84 85.74 84.86 82.87 79.69
03 80.31 84.19 87.56 89.71 87.66 84.28 80.35
0.4  80.05 84.59 90.03 95.29 90.17 84.67  80.08
0.5 79.67 84.63 91.24 100 91.22 84.61 79.67
0.6 80.09 84.67 90.19 94.95 90.06 84.59  80.08
0.7 80.36 84.28 87.66 89.54 87.56 84.20 80.32
0.8 7957 82.84 84.84 85.66 84.87 82.81 79.57
CSCC 0.2 9721 9998 103.64 10741 10336 99.85 9714
0.3 9750 103.57 108.60 10994 10848 10337 9707
04 9215 9710 102.06 104.71 102.12  96.68 91.33
05 8735 91.82  96.90 100 9691 9146  86.53
0.6 8712 91.38 96.09 98.75 95.98 91.19 86.61
0.7 8941 93.62 97.54 99.38 97.34 93.61 89.28
0.8 8958 94.39 98.14 99.38 98.18 94.80 89.75
CCSC 0.2 90.79 90.78 88.46 88.76 94.18 9745 92.96
03 9255 9296 9144 9248 9849 9929  93.22
04  92.00 94.63 94.78 96.94 10347  99.94 93.45
0.5 9154 96.78 9742 100 10645 100.15 93.66
0.6 9214 95.54 95.18 97.14 103.07  99.81 93.50
07 9221 93.32 91.74 92.90 98.85 99.17 93.24
0.8 9044  90.67 88.63 89.30 9491 97.64 92.86
CCCS 0.2 8973 9481 9821 9941 98.18 9441 89.34
03 8928 9362 9736 9939 9757  93.64  89.20
04 86.61 91.19 95.99 98.76 96.10 9141 86.94
0.5 86.51 91.44 96.88 100 96.91 91.85 87.19
0.6 91.29 96.65 102.07 104.69 102.08 9711 92.04
0.7 9705 103.36 108.51 10993 108.62 103.60 9745
0.8 9711 99.63 103.03 10713 10298  99.55 96.72
CSSC 0.2 96.07 97.95 96.72 98.01 101.80 10096  97.75
0.3 9528 100.08 100.59 102.37 106.09 102.77 97.35
04 90.75 95.97 101.16  104.11 102.58 97.75 92.51
0.5 86.40 91.38 96.69 100 98.25 93.44 88.45
0.6 86.00 90.90 95.98 98.98 97.24 92.86 87.83
0.7 8780 9280 9746  99.69 98.05 94.24  89.08
0.8 8780 92.74 95.59 96.69 98.21 94.82 89.48
CCSS 0.2 8745 9291 95.60 95.95 98.42 94.43 88.94
03 8726 92.71 9753 99.91 98.29 94.11 88.91
04  84.96 90.37 95.92 99.20 97.19 92.68 87.80
0.5 84.85 90.37 96.37 100 97.75 93.00 88.27
0.6 89.04 94.69 100.51 103.81 101.83 97.06 92.14
0.7 9410 99.54 100.63 102.25 106.26 10245 9705
0.8 9440 9796 96.84 98.09 10174 100.69 96.82
CSCS 0.2 93.56 98.10 101.23 10193 100.57  97.29 92.94
03 93.52 97.73 101.01 102.31 100.96 97.51 93.28
0.4 8931 93.65 98.28 100.90 98.29 93.49 89.13
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Table 8: Continued

Edge y X
condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8
05 8691 9136  96.69 100 96.69 9136  86.91
06 8913 9349 98.29 10090 98.28 93.65 8277
0.7 93.28 97.51 10096 102.31 101.01 97.73 93.52
0.8 9292 9713 100.29 101.59 100.83 97.83 93.46
SCSC 0.2 9351 94.06 90.70 88.69 90.56 93.94 92.74
03  94.58 96.25 93.72 92.19 93.76 96.61 93.70
04 9449  98.00 97.26 96.75 97.57 98.98 94.12
0.5 9444 100.09 99.96 100 99.96 100.04 94.44
0.6 9430 99.03 97.57 96.75 97.26 98.03 94.55
0.7 93.72 96.62 93.76 92.19 93.72 96.25 94.58
0.8 92.63 93.90 90.50 88.68 90.65 94.01 93.43
CSSS 0.2 9234 97.05 99.89 102.08 101.06 9711 9243
0.3 9226 9742 101.57 103.12 101.63 97.54 92.86
0.4  88.26 93.24 98.33 101.33  99.72 95.24 90.48
05 8590 90.81 9630 100 98.29  93.65 88.99
0.6 8798 92.83 9785 100.79  99.22 94.97 90.35
0.7 9192 96.81 100.79 102.33 101.07 97.37 92.87
0.8 91.86 96.25 99.20 101.30 100.71 97.26 92.76
SSSC 0.2 9524 100.24 98.64 97.67 98.86 100.02  95.33
03 9479 100.29 102,55 102.03 102.87 99.87 94.26
04 90.56 95.77 10092 10299 100.82 95.44 89.91
0.5 86.98 92.26 97.33 100 9748 92.02  86.40
0.6 86.37 91.96 97.05 99.55 97.12 91.82 85.92
0.7 8723 93.18 98.30 99.97 98.31 93.23 87.05
0.8 8715 93.08 97.28 95.80 98.16 93.43 87.21
SSCS 0.2 9291 9763 10114 101.82 9956  96.53 9198
03 9287 9737 101.07 102.33 100.79 96.82 91.91
04 90.35 94.97 99.22 100.79  97.85 92.83 8798
0.5 88.99 93.65 98.30 100 96.30 90.81 85.90
0.6 9048 95.24 99.72 101.33  98.32 93.24 88.26
0.7 92.86 97.54 101.63 103.12 101.57 9744 92.25
0.8  92.25 96.84 100.73 102.03 99.38 96.74 92.22
SSSS 0.2 9117 9636 100.55 10218 100.03 95.81 90.74
03 9111 96.35 100.87 10254 100.75 96.14 90.94
0.4 88.70 93.93 98.75 10097 98.79 9390  88.66
0.5 8730 9247 97.51 100 97.51 92.47 8730
0.6 88.66 93.90 98.79 10097  98.75 93.93 88.70
0.7 9094 96.14 100.75 102.54 100.87 96.35 91.11
0.8 90.45 95.42 99.57 10170  99.99 95.97 90.86
CS 0.2 106.23 111.34 112.81 111.57 11247 11047 105.50
0.3 10547 108.78 108.65 10773 108.76 108.42 104.76
04 10053 10266 102,71 102.13 102.87 102.76 100.53
0.5 98.68 100.50 10047 100 10047 100.50 98.66
0.6 100.53 102.76 102.87 102.13 102,71 102.66 100.53
0.7 104.76 108.42 108.76 10773 108.65 108.84 105.47
0.8 10539 11049 111.89 110.60 112.07 111.13 106.15
a/b=1,a/h =100, a’ /b’ =1, h/Rxx =1/300, Rxx/Ryy = 1.5;
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Table 8: Continued

Edge y X
condition 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E11/E» =25, Go3 = 0.2 E3, Gz = G1a = 0.5E>,, V12 = V21 = 0.25.
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Table 9: Maximum values of r with corresponding coordinates of cutout centres and zones where r 290 and r 295 for 0/90/0/90 elliptic
parabolic shells.

Boundary Maximum Co-ordinate of  Areain which the value Area in which
Condition valuesofr cutout centre of r 290 the value r 295
cccc 106.18 x=0.5 0.2<X0.3;0.7<x<0.8 0.4<x<0.5

y=0.2 0.2<y<0.8 0.2<y=<0.8
CSCC 105.84 x=0.5 0.2<Xx0.3;0.7<x<0.8 0.4<x<0.6
y=0.4 0.2<y<0.6 0.2<y<0.5
0.4<Xx<0.6,0.6sy<0.8
Cccsc 107.23 X =0.6 X =0.4, 0.2<y<0.8 0.5 x<0.7
y=0.2 0.2<y<0.8
CCCs 106.12 x=0.5 0.2X0.3,0.7<x<0.8 0.4<x<0.6
y=0.6 0.2<y <0.8; 0.5c7<0.8
0.4<X<0.6,0.2<y < 0.4

CSssc 103.29 X =0.6 X =0.4, 0.7,0.2< ¥y < 0.6; 0.5¢x<0.6
y=0.4 0.5<Xx<0.6,0.6<sy<0.7 0.3sy<0.5
CCSsS 103.29 X =0.6 x =0.4, 0.5y <0.8; 0.5¢x<0.6
y=0.6 X=0.7,0.4<y <0.7; 0.5<7<0.7
CSCs 100.00 X =0.5 0.2 X <0.8,0.3cy <0.4; 0.3 x<0.7

y=0.5 0.2<X<0.8,0.6<y <0.7; y=0.5

SCSC 102.59 X =0.5 X=0.4,0.6 X=0.5
y=0.2 0.2<y<0.8 0.2<y<0.8
CSSS 100.72 X =0.6 x =0.4,0.7 0.5 x<0.6
y=0.5 0.4<y<0.6 0.4<y <0.6
SSSC 102.88 x=0.5 x=0.3,0.7 0.4<x<0.6
y=0.4 0.3<y<0.5 0.3<y<0.5
SSCS 100.72 X=0.4 x=0.3,0.6 0.4<x<0.5
y =0.5 0.4y <0.6 0.4<y <0.6
SSSS 100.00 x=0.5 x=0.3,0.7 0.4<x<0.6
y=0.5 0.4<y<0.6 0.4y <0.6
() 108.62 x=0.5 nil 0.2 x<0.8
y=0.2 nil 0.2<y<0.8

a/b=1,a/h =100, a’/b’ =1, h/Ryx = 1/300, Rx/Ryy = 1.5;
E11/E2; =25, Gy3 = 0.2 E>, Gi3 = G12 = 0.5E2, V12 = V21 = 0.25.
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Table 10: Maximum values of r with corresponding coordinates of cutout centres and zones where r 290 and r 295 for +45/-45/+45/-45
elliptic parabolic shells.

Boundary  Maximum Coordinate Area in which Area in which
Condition values of r  of cutout centre value of r 290 the value r 295
CCCcC 100.00 X=0.5,y=0.5 X=0.4,0.6,0.4<y<0.6 X =0.5,0.4cy<0.5
Ccscc 109.94 X =0.5 x=0.3,0.7 0.2 X <0.8,0.2<y <0.3;
y=0.3 0.5y <0.8 0.4<Xx<0.6,0.4<y <0.8;
ccsc 106.45 X =0. x=0.2,0.8 0.3 Xx<0.4,0.55s ¥ <0.6;
y=0.5 0.2y <0.8 X =0.5,0.4<y <0.6;
X =0.6,0.3cy<0.7;
X =0.7,0.2<y <0.8;
Cccces 109.93 X =0.5 x=0.3,0.7 0.4<X<0.6,0.2<y <0.6;
y=0.7 0.2<y<0.5 0.2 x<0.8,0.7<y<0.8
CSsscC 106.09 X =0.6 x=0.3,0.7 0.2 x<0.8,0.2< ¥ <0.3;
y=0.3 0.5y <0.8 0.4<Xx<0.6,0.4<y<0.8
CCSS 103.81 X =0.5 X =0.3,0.7 0.4<Xx<0.6,0.2<y <0.6;
y=0.6 0.2y <0.6 0.3 Xx<0.8,0.7<y<0.8
CSCs 102.31 X =0.5 X =0.3,0.7 0.3 Xx<0.7,0.2cy<0.3
y=0.7 0.4<y <0.6 &0.7<y <0.8;
0.4<Xx<0.6,0.4<y <0.6
SCSC 100.04 x=0.7 X =0.2,0.8 X =0.3,0.7,0.3sy <0.7;
y=0.5 0.2<y<0.8 0.4<Xx<0.6,0.4<y <0.6
CSSS 103.12 X =0.5 x=0.3,0.7 0.3 x<0.7,0.2c ¥y <0.3;
y=0.3 0.4<y<0.8 0.4<X<0.6,0.4<y<0.8
SSSC 102.99 X =0.5 x=0.3,0.7 0.3 x<0.7,0.2<c y < 0.4;
y=0.4 0.5y <0.8 0.4<X<0.6,0.5<y<0.8
SSCS 103.12 x=0.5 X=0.3,0.7,0.4cy<0.6; 0.35x<0.7,0.2<sy<0.3
y=0.7 Xx=0.2,0.8,0.2<sy<0.3& &0.7<y <0.8;
0.7y <0.8 0.4<x<0.6,0.4<y <0.6
SSSS 102.54 X =0.5 x=0.3,0.7 0.3 Xx<0.7,0.2cy<0.3
y=0.7 0.4<y <0.6; &0.7<y <0.8;
x =0.2,0.8 0.4<x<0.6,0.4<y<0.6
0.2y <0.3&0.7cy<0.8
cs 112.47 X =0.6 nil 0.2<x<0.8
y=0.2 0.2<y<0.8

a/b=1,a/h =100, a’/b’ =1, h/Rxx = 1/300, Rxx/Ryy = 1.5;
E11/E> =25, G23 = 0.2 Ey), G13 = G1p = 0.5E5;, V13 = V21 = 0.25.
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The laminated composite finite element shell model
proposed in the present study can work also with
anisotropic lamination with general orientation of the
plies. However, the present study considers only cross-
ply and angle-ply lamination schemes. Future studies will
consider anisotropic laminations.

4 Conclusions

The following conclusions may be drawn from the present
study:

1.

This approach is suitable for analyzing free vibra-
tion problems of stiffened elliptic parabolic shell
panels with cutouts. The finite element code used
here produces results in close agreement with those
of the benchmark problems.

The arrangement of boundary constraints along the
four edges is far more important than their actual
number as for free vibration is concerned.

If a fully clamped shell is released for any functional
reason, then two alternate edges must release in-
stead of two adjacent edges.

The relative free vibration performances of stiffened
shells with cutout for different boundary combina-
tion are expected to be very helpful for practicing
engineers.

For cross ply shells eccentricity towards the simply
supported edge which is opposite to a clamped edge
is preferable. For angle ply shells eccentricity to-
wards simply supported edge is preferable.

This study may be helpful as design aids for struc-
tural engineers as it provides information regarding
the behavior of stiffened elliptic parabolic shell with
eccentric cutouts for a wide spectrum of eccentricity
and boundary conditions for cross ply and angle ply
shells.

That will also help an engineer to make a decision re-
garding the eccentricity of the cutout centre that he
can allow as it provides information regarding the
specific zones within which the cutout centre may
be moved so that the loss of frequency is less than
10% with respect to a shell with a central cutout.
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