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Abstract

The free vibration characteristics, such as fundamental frequency and mode shape of stiffened plates employing standard 

finite element analysis, are investigated in this paper. The parametric study is presented for free vibration characteristics of 

stiffened plates with various parameters, such as type, orientation and number of stiffeners, boundary conditions and aspect 

ratio of plates and stiffener depth to plate thickness ratio. Typical mode shapes are also presented for clamped square eccen-

trically stiffened plates. Finally, design charts with non-dimensional parameters are proposed to determine the fundamental 

frequency of commonly adopted clamped stiffened plates in construction. These charts will be very much useful for designers 

for obtaining the fundamental frequencies of the stiffened plates of different dimensions without doing much complicated 

analysis or using standard computer codes.

Keywords Stiffened plates · Frequency · Mode shape · Finite element analysis · Design charts

List of Symbols

a, b  Length (span) and width of plate, 

respectively, in plan

bst, dst  Width and depth of stiffener, 

respectively

{d}  Eigen vector (mode shape) of stiff-

ened plate

E  Young’s modulus of isotropic plate 

and stiffener

h  Thickness of the plate

[Ke], [K]  Element and overall stiffness matri-

ces of stiffened plates, respectively

[Kpe], [Kxe], [Kye]  Element stiffness matrices of plate, 

x-directional stiffeners and y-direc-

tional stiffeners, respectively

[Me], [M]  Element and overall mass matrices of 

stiffened plates, respectively

[Mpe], [Mxe], [Mye]  Element mass matrices of plate, 

x-directional stiffeners and y-direc-

tional stiffeners, respectively

nx, ny  Number of stiffeners along x- and 

y-directions, respectively

u, usx  Tangential displacements along x 

axis of plate and x-directional stiff-

ener elements, respectively

usx,x  Derivative of tangential displace-

ments along x axis of x-directional 

stiffener with respect to x

v, vsy  Tangential displacements along y 

axis of plate and y-directional stiff-

ener elements, respectively

vsy,y  Derivative of tangential displace-

ments along y-axis of y-directional 

stiffener with respect to y

w, wsx, wsy  Transverse displacements along z 

axis of plate, x-directional stiffener 

and y-directional stiffener elements, 

respectively

wsx,x  Derivative of transverse displace-

ments along z axis of x-directional 

stiffener with respect to x

wsy,y  Derivative of transverse displace-

ments along z axis of y-directional 

stiffener with respect to y

x, y, z  Cartesian co-ordinates

α, αsx, αsy  Rotations along x axis of plate, 

x-directional stiffener and y-direc-

tional stiffener elements, respectively
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αsx, x  Derivative of rotation along x axis of 

x-directional stiffener with respect to 

x

αsy, y  Derivative of rotation along x axis of 

y-directional stiffener with respect to 

y

β, βsx, βsy  Rotations along y axis of plate, 

x-directional stiffener and y-direc-

tional stiffener elements, respectively

βsx, x  Derivative of rotation along y axis of 

x-directional stiffener with respect to 

x

βsy, y  Derivative of rotation along y axis of 

y-directional stiffener with respect to 

y

�
0

x
, �

0

y
  Mid-surface axial strains of plate ele-

ment along x and y axes, respectively

�
0

xy
, �

0

yz
, �

0

xz
  Mid-surface shear strains of plate 

element

{εsx}, {εsy}  Strain vectors of x- and y-directional 

stiffeners, respectively

ĸx, ĸy, ĸxy  Curvatures of plate element

ν  Poisson’s ratio of plate and stiffener

ρ  Mass density of plate and stiffener

ω  Fundamental frequency in rad/sec

ϖ  Non-dimensional fundamental 

frequency

ξ, η, ζ  Local natural co-ordinates

Introduction

Stiffened plates are extensively used in various engineering 

structures. The technique of stiffening a plate by provid-

ing beams is rather common and it also gives higher value 

of strength to weight ratio of the structure. This has also 

made the structure more attractive in practice. Further, these 

structures are frequently subjected to dynamic loading in 

their service life. Hence, the dynamic behaviour of stiffened 

plates is of much interest to the structural engineers. The 

resonance may occur due to undesirable vibrations due to 

which the stiffened structure may have sudden failure. It is, 

therefore, important to know the natural frequencies of these 

structures accurately. Hence, an in-depth study of free vibra-

tion behaviour of these stiffened plates is required to exploit 

their use. On the other hand, the designers have limited 

scope and also face difficulty in obtaining the natural fre-

quencies of stiffened plates with conventional techniques. It 

is also tedious for designers to obtain natural frequencies of 

the stiffened plates employing numerical tools like finite ele-

ment method (FEM)/finite difference method (FDM)/other 

approximate methods. Therefore, a user friendly design chart 

should be available to the designers for easy and immediate 

calculation of natural frequencies of stiffened plates of dif-

ferent dimensions.

If the density of stiffeners is very high, the stiffened plate 

can be analysed using orthotropic plate theory. Kirk (1970) 

used this approach to evaluate the vibration characteristics 

of beam plate systems. On the other hand, when the density 

of the stiffeners is low, an approximate method has to be 

employed, since the governing differential equations for this 

case are very cumbersome to solve. Aksu and Ali (1976) 

used FDM for the vibration analysis of rectangular plate 

having single stiffener and obtained good results. Other 

approximate analyses of stiffened plate structures like gril-

lage and finite strip methods were presented by Balendra and 

Shanmugam (1985) and Filiatrault et al. (1990), respectively. 

A survey of the earlier works on the vibration analysis of 

stiffened plates was reported by Mukherjee and Mukhopad-

hyay (1986) and Mukhopadhyay and Mukherjee (1989). The 

free and forced vibration responses of square clamped plate 

were studied by Dharaneepathy and Sudhesh (1990) with 

different stiffener patterns to obtain an optimal layout of the 

stiffeners for a given mass subjected to blast loads.

The FEM is the most successful tool used for vibration 

analysis of plates having discrete stiffeners. A number of 

research works were carried out by several investigators 

(Olson and Hazell 1977; Gupta et al. 1986; Mukherjee and 

Mukhopadhyay 1988; Koko and Olson 1992; Palani et al. 

1993; Harik and Guo 1993; Chen et al. 1994; Holopainen 

1995) for free vibration study of stiffened plates employ-

ing FEM. Further, the vibration analysis of stiffened plates 

was studied by Barrette et al. (2000) using hierarchical 

finite elements. Barik and Mukhopadhyay (2002) presented 

a new four node stiffened plate element to include arbitrary 

shaped plates without shear locking phenomena. The vibra-

tion, buckling and dynamic instability of stiffened plates 

subjected to in-plane partial and concentrated edge load-

ing were investigated by Srivastav et al. (2003a, b) employ-

ing FEM. The results show that the stiffened plate is less 

susceptible to bucking for the position of loading near the 

supported edges as well as near the position of stiffeners. 

Moreover, the location, size and number of stiffeners have 

a significant effect on the location of the boundaries of the 

principal instability region. Akl et al. (2008) optimised the 

static and dynamic characteristics of plate stiffener assem-

bly by taking the orientation angles of stiffeners arranged 

in the form of iso-grid configuration over a flat plate. Vörös 

(2009) presented a new stiffener element with 7 degrees of 

freedom per node considering the stiffener and the plate as 

separate elements. The vibration analysis of stiffened plates 

was made by Hamedani et al. (2012) employing both con-

ventional and super finite element methods. Srivastava et al. 

(2004, 2005, 2013) and Srivastava (2012) investigated vibra-

tion characteristics of stiffened plates with cut-outs subjected 

to in-plane uniform and partial edge loadings at the plate 
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boundaries using FEM. These studies show that aspect ratio 

of the plate, position and number of stiffeners, and size of 

cut-outs have pronounced effects on the dynamic instability 

characteristics in comparison to unstiffened plate.

On the other hand, Nguyen-Thoi et al. (2013) developed 

a cell-based smoothed discrete shear gap method (CS-FEM-

DSG3) using triangular elements to study the free vibration 

and buckling characteristics of eccentrically stiffened plates. 

Huang et al. (2015) also developed a finite element model 

for buckling analysis of grid stiffened laminated composite 

plates using 6-noded triangular curve shell element based 

on three-dimensional degenerated shell theory and a com-

patible 3-noded curved beam element based on a similar 

hypothesis for the modelling of the stiffeners. It was found 

from the study that the performance of the model is very 

good for the problems related to grid stiffened plates with 

ortho-grid, x-grid, bi-grid and iso-grid stiffening arrange-

ments. A procedure for the vibration analysis of stiffened 

panels with arbitrary edge constraints was presented by 

Cho et al. (2015). It is based on the assumed mode method, 

where natural frequencies and modes are determined by 

solving an eigen value problem of a multi-degree of freedom 

with non-dimensional parameters are proposed using the com-

puter code based on the present finite element formulation, 

which will be very much useful to the designers in the prac-

tice. Finally, the frequencies of different physical problems of 

stiffened plates obtained from the proposed design charts and 

those obtained from the present code are also compared for 

verifying the accuracy in the design charts.

Mathematical formulation

The present formulation of the stiffened plate has been modi-

fied by omitting the curvature in the formulation of the stiff-

ened shells developed by Nayak and Bandyopadhyay (2002). 

Accordingly, the nine node isoparametric plate element and 

three node beam elements are appropriately combined together 

to get the stiffness and mass matrices of the stiffened plate ele-

ment. The plate element has five degrees of freedom, u, v, w, α 

and β. Here, u, v and w are displacements along x, y and z axes, 

respectively, and α and β are the rotations along x and y axes, 

respectively. Considering the first-order shear deformation 

theory of thin plates in the formulation, the strain–displace-

ment relation is expressed as follows:

system matrix equation derived using Lagrange’s equations 

of motion. Shi et al. (2015) developed a element method-

based approach to study the static, vibration, and buckling 

characteristics of curvilinear stiffened plates in the pres-

ence of in-plane compressive and tensile stresses using the 

first-order shear deformation theory for both plate and the 

Timoshenko beam modelling. Rajanna et al. (2016) studied 

the influence of uniaxial and biaxial partial edge loads on 

buckling and vibration characteristics of stiffened laminated 

plates employing finite element method.

From the above discussion, it is evident that most of the 

researchers have attempted to develop models employing var-

ious methods to study static, vibration, buckling and dynamic 

instability of stiffened plates. There is limited research work 

focusing on the extensive parametric study of stiffened plates 

to obtain the effects of various parameters on their static, 

vibration, buckling and dynamic stability characteristics. 

Moreover, the user friendly design charts are yet to be devel-

oped which will be useful to the designers in obtaining these 

characteristics of the stiffened plates directly without using 

any complicated method available in the literature.

To fulfil the some of the lacunae mentioned above, this 

paper presents the extensive parametric study for free vibra-

tion characteristics of stiffened plate, such as fundamental fre-

quency and mode shapes, by developing finite element code 

as per Nayak and Bandyopadhyay (2002). Then, design charts 
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The element stiffness and mass matrices of the plate ele-

ment are derived following the procedure mentioned in Nayak 

and Bandyopadhyay (2002).

The beam elements considered for stiffeners have four 

degrees of freedom, i.e., usx, wsx, αsx and βsx for the x-direc-

tional stiffener and vsy, wsy, αsy and βsy for the y-directional 

stiffener. The strain displacement relations for both the stiff-

ener elements are given below:

Here, �sx and �
sy are strain matrices for x- and y-direc-

tional stiffeners, respectively, and comma (,) denotes for 

differentiation.

Employing the procedure available in the literature (Nayak 

and Bandyopadhyay 2002), the stiffness and mass matrices of 

x- and y-direction stiffeners are obtained. Finally, the stiffness 

and mass matrices of the plate element are obtained as follows:

(2)
{�sx} =

[

usx,x �sx,x �sx,x (�sx + wsx,x)
]T

for x - direction stiffener
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where [Ke], [Kpe],[Kxe] and [Kye] are stiffness matrices of 

stiffened plate, unstiffened plate, x-directional stiffener and 

y-directional stiffener elements, respectively. Similarly, [Me], 

[Mpe], [Mxe] and [Mye] are mass matrices of stiffened plate, 

unstiffened plate, x-directional stiffener and y-directional 

stiffener elements, respectively.

Thereafter, these matrices are assembled to get overall 

stiffness [K] and mass [M] matrices of the stiffened plate. 

The equation of free vibration without damping is expressed 

in the form of Eigen value problem as follows:

where ω and {d} are Eigen values (natural frequencies) and 

corresponding Eigen vector (mode shape) of the stiffened 

plate. The subspace iteration method is used to determine 

the natural frequencies and corresponding mode shapes of 

the stiffened plates.

Numerical results and discussions

Convergence study

The convergence study of the present finite element code has 

been studied with respect to the element mesh size for the 

square plate with central stiffener (Fig. 1) available in the 

literature (Olson and Hazell 1977; Koko and Olson 1992; 

Hamedani et al. 2012). The non-dimensional fundamental 

frequencies [� = �b
2{12�(1 − �

2)∕(Eh
2)}1∕2] of the above 

study are presented in Fig. 2 for both simply supported (SS) 

and clamped (CC) boundary conditions. The element mesh 

size is made finer till the desired results do not change by more 

than 1% with further refinement of the grid. It is observed that 

the non-dimensional fundamental frequencies of the above 

problem converge to nearly the same value. It is found that 

6 × 6 mesh size and 8 × 8 mesh size are required to obtain 

the converged results of the non-dimensional fundamental 
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frequencies of the above problem for simply supported and 

clamped boundary conditions, respectively. These two ele-

ment mesh sizes are further considered to obtain the con-

verged fundamental frequencies of the stiffened plates with 

simply supported and clamped boundary conditions.

Validation of FEM code

The present FEM code is validated by comparing the present 

free vibration results with those of specific problems avail-

able in the literature. The results of the natural frequencies 

of a square clamped plate with one central stiffener along 

y-direction (Fig. 1) available in the literature (Olson and 

Hazell 1977; Koko and Olson 1992; Hamedani et al. 2012) 

are presented in Table 1 along with those obtained from 

the present FEM code. Similarly, the results of the natural 

frequencies for a square clamped plate stiffened with equally 

spaced two number of stiffeners along y-direction (Fig. 3), 

obtained from the present code, are also furnished in Table 2 

with those obtained by Olson and Hazell (1977), Mukherjee 

Fig. 1  Square clamped plate 

with one central stiffener 0.2032m
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Fig. 2  Convergence study of stiffened plate elements for the square 

plate with central stiffener (Fig. 1) available in the literature (Olson 

and Hazell 1977; Koko and Olson 1992; Hamedani et al. 2012)
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and Mukhopadhyay (1988), Harik and Guo (1993), Chen 

et al. (1994), Hamedani et al. (2012) and Bhimaraddi et al. 

(1989). From Tables 1 and 2, it is found that there is good 

agreement between the present results and those available 

in the literature and hence the accuracy of the present FEM 

code is established.  

Parametric study

Several examples of stiffened plates are considered to study 

the influence on the fundamental frequency with respect 

to type, orientation and number of stiffeners, boundary 

conditions and aspect ratio of plates, and stiffener depth to 

plate thickness ratio. Thereafter, the influence of stiffeners 

on mode shapes has also been studied. Finally, typical design 

charts of clamped plates with cross-stiffeners in non-dimen-

sional form are also presented which can be used by the 

designers to find the fundamental frequency of the stiffened 

plates directly from the charts.

Types, orientations and numbers of sti�eners

To study the influence of number, types and orientations 

of stiffeners on square and rectangular clamped stiffened 

Table 1  Natural frequencies 

(Hz) of square clamped plate 

stiffened with one central 

stiffener (Fig. 1)

Ref. A—Olson and Hazell (1977), Ref. B—Koko and Olson(1992), Ref. C—Hamedani et al.(2012), N8, 

N9—elements with 8 and 9 nodes, respectively; S8, S12—super elements with 8 and 12 nodes, respectively

Mode no Ref. A Ref. B Ref. C Present result

Test FEM N8 N9 S8 S12

1 689 718.1 736.8 725.5 724.5 707.2 690.8 728.8

2 725 751.4 769.4 763.3 762.7 748.2 727.7 749.4

3 961 997.4 1020 994.7 987.6 961.0 939.8 993.0

4 986 1007.1 1032 1005.2 998.0 971.9 949.8 1000.0

5 1376 1419.8 1484 1422.5 1402.7 1360.6 1329.3 1409.1

6 1413 1424.3 1488 1427.0 1407.0 1365.2 1333.4 1411.7

7 1512 1631.5 – 1872.5 1876.3 1828.8 1744.4 1634.7

8 1770 1853.9 – 1907.3 1916.1 1916.3 1786.6 1893.7

9 1995 2022.8 – 2032.4 1995.4 1930.9 1878.2 1997.8

10 2069 2025.0 – 2034.6 1997.5 1933.1 1880.1 1999.0

Fig. 3  Square clamped plate 

with two stiffeners along 

y-direction

0.2032m

0. 2032 m

A A

0. 00127 m

0. 01778 m

0. 002286 m

0. 06773 m 0. 06773 m

E = 68.7 GPa, 

= 0.29, =2823 kg/m3ν ρ

Table 2  Natural frequencies 

(Hz) of square clamped plate 

stiffened with double stiffeners 

(Fig. 3)

Ref. A—Olson and Hazell (1977), Ref. B—Mukherjee and Mukhopadhyay (1988), Ref. C—Bhimaraddi 

et al.(1989), Ref. D—Harik and Guo (1993), Ref. E—Chen et al. (1994), Ref. F—Hamedani et al. (2012)

CFEM compound finite element method, SCSEM spline compound strip element method

Mode no. Ref. A Ref. B Ref. C Ref. D Ref. E Ref. F Present result

Test FEM FEM FEM CFEM SCSEM FEM N9

1 909 965.3 966.4 917.8 964.7 917.8 1121.6 987.7

2 1204 1272.3 1247.7 123.1 1249.8 123.1 1326.7 1256.5

3 1319 1364.3 1396.4 1305.3 1328.8 1305.3 1389.8 1336.1

4 1506 1418.1 1481.0 – – – 1533.3 1350.3

5 1560 1602.9 1629.9 1522.4 1507.9 1522.4 1626.2 1552.7
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plates, the non-dimensional parameters considered here are 

as follows:

where a, b and h are length, breadth and thickness of the 

plate, respectively, bst and dst are breadth and depth of stiff-

eners, respectively, and ν is Poisson’s ratio of the material.

The non-dimensional fundamental frequency of the stiff-

ened plate, � , is expressed as follows:

where a, b, h, bst, dst, ν and ω are defined earlier. E and 

ρ are Young’s modulus and density of the stiffened plate, 

respectively.

The values of � of stiffened plates have been obtained for 

various types of stiffeners, i.e., concentric and eccentric, dif-

ferent orientations, i.e., along x-/y-/both x- and y-directions 

and for increasing number of stiffeners, i.e., 0–10 numbers 

which are presented in Figs. 4, 5 and 6 for clamped stiffened 

plates with aspect ratios of 1.0, 1.5 and 2.0, respectively. In 

case of the plates, other than the square plates, x-directional 

stiffeners are considered as the stiffeners placed along the 

longer span while the y-directional stiffeners are considered 

as the stiffeners placed along the shorter span of the plate.

From Figs. 4, 5, 6, it is clearly seen that the values of 

ϖ of clamped stiffened plates increase with the addition of 

number of stiffeners. This increase is considerable at the 

early stage with stiffeners of all orientations and types of 

stiffeners. However, it becomes insignificant gradually after 

a∕b = 1.0, 1.5, and 2.0; b∕h = 200;

dst∕h = 5, bst∕h = 1.5 and n = 0.15

(7)� = � b
2

[

12 �
(

1 − �
2
)

E h2

]
1

2

a specific number of stiffeners. It is worthy to mention that 

further addition of stiffeners may also reduce the fundamen-

tal frequency of stiffened plates as observed in Figs. 4, 5, 6 

for nine number of stiffeners along x-, y-, and both x- and 

y-orientations. Both stiffness and mass of the stiffened plates 

influence the natural frequencies in an interactive manner as 

expressed in Eq. (6). The addition of stiffeners to the plate 

increases both mass and stiffness. In some cases, the extra 

mass due to addition of stiffeners influences more on the 

natural frequencies than the additional stiffness developed 

so that the fundamental frequency of the stiffened plates 

decreases.
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Fig. 5  Variation of non-dimensional fundamental frequency of a 

clamped stiffened plate of a/b = 1.5 with different types of stiffeners 

along different orientations
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Figures 4, 5 and 6 reveal that the eccentric stiffeners in 

any orientation are showing superior performance in increas-

ing the values of ϖ of clamped stiffened plates in compari-

son to that of the concentric ones. This may be due to the 

fact that the first and second moments of area of the stiffen-

ers of plates stiffened with eccentric stiffeners are more than 

those with concentric stiffeners because of eccentricity of 

the stiffeners. Therefore, the stiffness of the stiffened plates 

increases without increase of eccentricity. The eccentric at 

top and bottom stiffeners has yielded the same result ofϖ.

To compare the performance of plates stiffened with 

eccentric stiffeners in different orientations, various prob-

lems of eccentrically stiffened plates with aspect ratio (a/b) 

of 1, 1.5 and 2 are considered keeping other non-dimensional 

parameters constant. The percentage of increase in ϖ of stiff-

ened plates with respect to that of unstiffened plate of same 

dimension has been obtained and furnished in Table 3. This 

table reveals that for the aspect ratio 1, the cross-stiffened 

plates show superior performance to the stiffened plates with 

equal number of stiffeners along other two orientations with 

respect to percentage increase in fundamental frequency due 

to addition of stiffeners. For example, cross-stiffened plates 

with nx × ny = 1 × 1 or 2 × 2 or 3 × 3 have higher ϖ than stiff-

ened plates with nx or ny equals to 2 or 4 or 6, respectively. 

Here, nx, ny and nx x ny are number of stiffeners along x-, y- 

and both x- and y-directions, respectively. For aspect ratios 

1.5 and 2, stiffened plates with eccentric stiffeners along 

x-direction show poor performance in comparison to other 

two orientations. Further, 1 × 1 cross-stiffened plate shows 

better performance than the y-directional stiffened plate with 

two numbers of stiffeners. When the number of stiffeners 

increases, y-directional stiffened plates have higher increase 

in fundamental frequency than the cross-stiffened plates with 

equal number of stiffeners.

The above discussion clearly establishes the better per-

formance of the orthogonal stiffeners for square stiffened 

plates and the y-directional stiffeners (stiffeners along short 

span) for rectangular stiffened plates. Hence, other paramet-

ric studies are taken up for both orthogonal and y-directional 

stiffeners.

Boundary condition and aspect ratio

The non-dimensional fundamental frequencies (ϖ) for rec-

tangular and square stiffened plates are obtained for both 

simple supported and clamped boundary conditions for three 

different aspect ratios (a/b), i.e., 1, 1.5 and 2 and presented 

in Figs. 7 and 8 for orthogonal and y-directional stiffeners, 

respectively.

The values of ϖ shown in Figs. 7 and 8 clearly establish 

the superiority of clamped plates when compared to the sim-

ply supported ones for different aspect ratios and for any par-

ticular number of stiffeners considered here with two differ-

ent orientations (i.e., along y- and both x- and y-directions). 

For such clamped plates, the preference of the aspect ratio 

is 1.0, 1.5 and 2.0 for higher enhancement of fundamental 

frequency. It is evident from the above figures that for the 

same aspect ratio, the value of ϖ in case of simply supported 

boundary conditions is much less than that of the same 

number of stiffeners placed on the clamped plates. Hence, 

the clamped plates are preferred over the simply supported 

plates with/without placing any number of stiffeners with 

any type of orientation. Comparing the aspect ratios, it is 

observed that the square plates with aspect ratio 1 are more 

efficient than the rectangular plates having aspect ratios 1.5 

Table 3  Comparison of increase in percentage of non-dimensional fundamental frequencies of stiffened plate of various dimensions with stiffen-

ers along different directions with the fundamental frequencies of unstiffened plates

The non-dimensional fundamental frequencies of unstiffened plates of different aspect ratios of 1, 1.5 and 2 are 35.96, 26.99 and 24.57, respec-

tively

Stiffeners along x-direction Stiffeners along y-direction Stiffeners along both x- and y-direction

No of 

stiffeners
Percentage increase of ϖ No of 

stiffeners
Percentage increase of ϖ No of stiffeners Percentage increase of ϖ

a/b = 1 a/b = 1.5 a/b = 2 a/b = 1 a/b = 1.5 a/b = 2 a/b = 1 a/b = 1.5 a/b = 2

2 161.29 85.44 37.89 2 161.29 136.75 83.19 1, 1 190.46 165.13 130.76

4 225.77 112.93 50.79 4 225.77 272.76 239.96 2, 2 246.30 217.48 183.67

6 248.88 126.41 57.79 6 248.88 313.48 314.73 3, 3 266.26 238.27 204.27

8 269.13 136.60 62.59 8 269.13 346.35 352.74 4, 4 306.95 281.17 250.06

10 260.48 133.27 61.25 10 260.48 316.41 283.02 5, 5 314.57 290.29 258.77

12 259.15 131.67 60.44 12 259.15 323.41 315.67 6, 6 326.39 304.07 273.78

14 258.34 130.67 59.83 14 258.34 328.45 332.03 7, 7 323.02 301.03 268.45

16 271.05 136.34 62.39 16 271.05 347.61 350.38 8, 8 344.91 325.60 297.31

18 264.62 133.97 61.37 18 264.62 330.86 312.49 9, 9 335.15 312.70 279.40

20 262.15 132.56 60.68 20 262.15 331.08 328.49 10, 10 340.48 319.59 289.66
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and 2.0. Hence, the non-dimensional fundamental frequen-

cies (ϖ) decrease with the increase in aspect ratios.

Sti�ener depth to plate thickness ratio

As mentioned earlier, the y-directional stiffeners are pro-

vided along the shorter span of the plate while x-directional 

stiffeners are provided along the longer span of the plate. 

Further, it is found from the study that the plate stiffened 

along the shorter span shows superior performance with 

respect to ϖ in comparison to the plate stiffened along the 

longer span. Hence, the non-dimensional fundamental fre-

quencies (ϖ) for rectangular and square stiffened clamped 

plates are obtained for different values of stiffener depth to 

plate thickness ratios (dst/h) for increasing number of eccen-

tric stiffeners along y-direction and presented in Figs. 9, 

10, 11 for aspect ratios 1, 1.5 and 2.0, respectively. From 

the figures, it is clearly seen that, for a specific plate thick-

ness, the depth of stiffeners does not have significant role 
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particularly for lower number of stiffeners. However, with 

increasing number of stiffeners, the depth of stiffeners plays 

an important role. It is also evident from the figures that the 

increase ofϖ, though appreciable initially with the increase 

of the number of stiffeners, is not significant with the further 

increase after 8 number of stiffeners. It is also seen that the 

value of ϖ decreases with further increase of the number of 

stiffeners beyond 8 due to the same reason as discussed in 

the previous section.

Further, it is found that ϖ increases initially with the 

increase in dst/h up to certain value of dst/h and thereafter, 

there is marginal or no increase in ϖ with further increase of 

dst/h. However, ϖ increases with further increase in dst/h, if 

the number of stiffeners is increased. The above figures are 

useful in deciding the corresponding depth of stiffeners for 

a specific and thickness of the plate. Moreover, for specific 

values of both dst and h, the optimum number of stiffeners 

can be determined in order to attain the desired value of ϖ, 

if any.

Mode shapes

To study the influence of stiffeners on the mode shapes of 

clamped plates with different number and orientation of 

stiffeners at equal spacing, eccentric stiffeners are taken with 

two different values of the stiffener depth to plate thickness 

ratio. One value of dst/h is taken in lower range, i.e., 2 and 

other value is taken in higher range, i.e., 10 to observe the 

influence of stiffeners on mode shapes and the correspond-

ing fundamental frequency. The above stiffened plates have 

the following dimensions:

Mode shape for the first mode of vibration of clamped 

square plate without stiffener is prepared and presented in 

Fig. 12. It is worth mentioning that the variation of funda-

mental frequency has been studied for the plates stiffened 

with number of stiffeners 1–10 in each direction, i.e., in 

x-, y- and x- and y-directions, which gives 30 cases. In 

order to make this paper compact by avoiding repeating 

trends, out of 30 cases, only 9 typical cases are considered 

to study the behaviour of mode shape with lower range of 

dst/h = 2 and higher range of dst/h = 10. The mode shapes 

of clamped square stiffened plate having dst/h values of 

2 and 10 are plotted for these typical cases and are fur-

nished in Figs. 13 and 14, respectively.  

For unstiffened plate, symmetric modes of vibration 

(one half sine curve) are seen along both x- and y-axes 

(Fig. 12) with maximum displacements along the cen-

tral lines parallel to x- and y-axes. The mode shapes for 

nine cases of clamped stiffened square plate with varying 

number and orientations of stiffeners having dst/h equal 

to 2, i.e., with one x-directional, one x-directional and 

one y-directional, two x-directional, two x-directional and 

two y-directional, three x-directional, three x-directional 

and three y-directional, five x-directional, five x-direc-

tional and five y-directional, and ten x-directional and ten 

y-directional stiffeners are presented in Fig. 13a–i. The 

mode shapes of all the above stiffened plates are similar 

to that of unstiffened plate, i.e., symmetric (one half sine 

curve) modes of vibration along both axes. The effect of 

stiffeners is not seen on the mode shapes of the above 

stiffened plates though there is significant enhancement of 

the fundamental frequency of these plates due to addition 

a∕b = 1, b∕h = 100, bst∕h = 2, dst∕h = 2 and 10 ,

b = 20.0 m, � = 0.15, � = 2500 kg∕m3,

E = 22.36 GPa and � =
[

wb
2{12�(1 − �

2)∕
(

Eh
2
)

}1∕2
]
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of stiffeners (31–115%) in comparison with that of uns-

tiffened plate (Fig. 13a–i). On the other hand, the mode 

shapes of the above nine stiffened plates having dst/h 

equal to 10 show different trend as shown in Fig. 14. It 

is worth mentioning that the mode shapes of the stiffened 

plates with one x-directional, one x-directional and one 

y-directional, two x-directional, two x-directional and two 

y-directional, three x-directional and three x-directional 

and three y-directional stiffeners having dst/h equal to 10 

show complete different pattern of mode shapes in com-

parison to that of unstiffened plate and the enhancement 

of the fundamental frequency varies from 126 to 667% 

due to the addition of stiffeners. Thus, the effects of stiff-

eners are clearly observed on the mode shapes of these 

plates (Fig. 14a–f). The plate stiffened with one central 

stiffener along x-direction produces symmetric mode 

(one half sine curve) and anti-symmetric mode (two half 

sine curves) along x- and y-directions, respectively, and 

increase in fundamental frequency is more than 126% 

(Fig. 14a). Similarly for other cases, different mode shape 

patterns are produced. However, these plates with higher 

number of stiffeners, i.e., with five x-directional, five 

x-directional and five y-directional and ten x-directional 

and ten y-directional stiffeners having dst/h equal to 10, 

as shown in Fig. 14g–i show the same pattern as in case 

of the unstiffened one and the presence of stiffeners is not 

visible on the mode shapes of these stiffened plates though 

there is very significant enhancement in the fundamental 

frequency (up to 667%).

From the above results of the mode shape, it is inferred 

that the stiffened plate having any number and orientation of 

stiffeners at equal spacing, and lower dst/h such as 2 behaves 

as equivalent plate of higher thickness and produces the 

same mode shape as in case of unstiffened one (Figs. 12, 13). 

However, the stiffened plate having less number of stiffeners, 

i.e., up to three numbers in any orientation, and higher dst/h, 

such as 10, produces different mode shape indicating the 

clear presence of stiffeners (Figs. 12, 14). On the other hand, 

when the stiffeners having higher dst/h are closely spaced, 

i.e., more numbers of stiffeners such as five or more are 
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Fig. 13  First mode of vibration of square clamped plates with varying number and orientation of stiffeners having dst/h = 2
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provided with higher dst/h in any orientation, the stiffened 

plate also behaves like an equivalent plate of higher thick-

ness and produces the same mode shape as produced in the 

plate without stiffeners (Figs. 12, 14). In all the above cases, 

the fundamental frequency of the stiffened plate is higher 

than that of unstiffened one (Figs. 12, 13, 14).

Design charts for clamped sti�ened plates

To propose design charts, a number of clamped stiffened 

plates of commonly adopted dimensions with cross-stiff-

eners having eccentricity at bottom with various combi-

nations of the non-dimensional parameters are considered 

to obtain the non-dimensional fundamental frequency 

[ϖ = ωb2{12ρ(1 − ν2)/(Eh2)}1/2]. The constant non-dimen-

sional parameters are bst/h and ν which are taken as 2.0 and 

0.15, respectively. The varying non-dimensional parameters 

are a/b assigned with values of 1.0, 1.5 and 2.0 and b/h with 

values of 100, 200 and 300 to include the varying range 

of thickness of plate and span of plate from practical con-

sideration. The non-dimensional fundamental frequencies 

(ϖ) are obtained for these problems for dst/h ratio up to 10. 
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Fig. 14  First mode of vibration of square clamped plates with varying number and orientation of stiffeners having dst/h = 10
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Figures 15, 16, 17, 18, 19, 20, 21, 22, and 23 show the val-

ues of the non-dimensional fundamental frequency (ϖ) for 

these problems.

The usefulness of Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23 

is established by selecting six typical problems of clamped 

stiffened plates with eccentric cross-stiffeners at bottom. The 

plates taken up are made of three isotropic materials, such 

as concrete (four examples having different modulus of elas-

ticity, density and Poisson’s ratio), steel (one example) and 

aluminium (one example). The plate parameters such as, a, 

b, h, dst and nx, ny are chosen from practical consideration 

to cover commonly adopted dimensions of such plates and 

indicated in Table 4. The values of bst/h for all examples 

are kept constant that is equal to 2.0. At first, the dimension 

parameters of the given practical examples are converted to 

non-dimensional parameters. The values of ϖ are obtained 

directly from the design charts (Figs. 15, 16, 17, 18, 19, 20, 

21, 22, 23) with linear interpolation for these plates of these 

non-dimensional values of a/b, b/h, dst/h and (nx, ny) without 

using the present mathematical formulation. Then, the fun-

damental frequency (ω) of these example is obtained from 
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Fig. 16  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-II)
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Fig. 17  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-III)
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Fig. 18  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-IV)
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the corresponding non-dimensional fundamental frequency 

(ϖ) by putting the values of the dimension parameters of 

these stiffened plates in the relation ϖ = ωb2{12ρ(1 − ν2)/

(Eh2)}1/2. Further, the fundamental frequencies of these 

examples are obtained from the present code using present 

mathematical formulation. The fundamental frequencies of 

these examples obtained from both the sources are presented 

in Tables 4 along with the percentage of deviations between 

these two sets of results. It is found that the above percent-

ages of deviation are within 6%, which are acceptable for 

engineering point of view. It is worth mentioning that though 

the design charts are prepared for the concrete material hav-

ing Poisson’s ratio as 0.15, the fundamental frequency of 

other materials such as steel and aluminium having Pois-

son’s ratio as 0.3 and 0.33, respectively, has been obtained 

from these charts limiting to the error within 6%. It is worth 

mentioning that since the design charts (Figs. 15, 16, 17, 

18, 19, 20, 21, 22, 23) are presented in non-dimensional 

form and the non-dimensional fundamental frequency can be 

obtained from these charts for the stiffened clamped plates 

of any dimension and material properties. Therefore, the 
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Fig. 20  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-VI)
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Fig. 21  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-VII)
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Fig. 22  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-VIII)
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Fig. 23  Variation of the non-dimensional fundamental frequency of 

eccentric cross-stiffened clamped plate with stiffener depth to plate 

thickness ratio (case-IX)
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fundamental frequency of the plate can be found out using 

the dimensions and material properties using the relation 

mentioned above. Therefore, Figs. 15, 16, 17, 18, 19, 20, 21, 

22 and 23 can be used as design charts by the designers to 

determine the fundamental frequency for clamped stiffened 

plates of different isotropic materials easily without the help 

of any computer code or any cumbersome computations. 

Hence, the above charts (Figs. 15, 16, 17, 18, 19, 20, 21, 

22 and 23) are recommended as “Design-aids” for the use 

in the design of clamped stiffened plates of any isotropic 

material. Similar design charts can be prepared for other 

boundary conditions, such as simply supported and canti-

lever, and for stiffened plates of other orientations, such as 

x- and y-directional stiffeners. Similarly, the design charts 

can also be prepared for different bst/h and, hence, the values 

of bst can be chosen suitably by linear interpolation as per 

the requirement of the designers.

Conclusions

Free vibration characteristics, such as fundamental fre-

quency and mode shapes, of stiffened plate are investigated 

to study the effect of stiffeners employing standard finite 

element method. Moreover, design charts with non-dimen-

sional parameters are also proposed which will be used by 

the designers in practice. From the above study, following 

conclusions are made:

The study of the effects of aspect ratio on the fundamental 

frequency leads to infer that the increase of the fundamental 

frequency is maximum for the square plate (a/b = 1) followed 

by the rectangular and long and narrow plates (a/b = 1.5 and 

2) considering the value of ϖ for both simply supported and 

clamped boundary condition. The clamped boundary condi-

tion, however, shows its superiority to the simply supported 

one for the free vibration behaviour of the stiffened plates.

The fundamental frequency increases with the increase in 

number of stiffeners. However, the rate of increase of the fun-

damental frequency, though considerable at the early stage, 

gradually diminishes with the increase of the number of stiff-

eners beyond some specific number depending on the plate 

form and orientations, type and depth to thickness ratio of the 

stiffeners. At higher number of stiffeners, fundamental fre-

quency may decrease with further addition of stiffeners.

The clamped square plate with cross-stiffeners is seen to 

be superior to that with equal number of stiffeners along x- 

or y-direction. However, in rectangular clamped square plate, 

cross-stiffeners with lower number of stiffeners and y-direc-

tional stiffeners with higher numbers show the superior per-

formance in comparison to other two orientations in increasing 

the fundamental frequency of the clamped stiffened plates.

The detailed study of the effects of the values of dst/h on 

the free vibration characteristics reveals that the fundamental 

frequency increases with increase in the value of dst/h up to 

certain value and increase in number of stiffeners up to certain 

number beyond which there may be marginal increase or no 

increase or even marginal decrease of fundamental frequency.

The clamped square stiffened plate having any number 

and orientation of stiffeners at equal spacing, and lower dst/h, 

or having more numbers of stiffeners in any orientation and 

higher dst/h, behaves as equivalent plate of higher thickness 

and produces the same mode shape as in case of unstiffened 

one. However, the stiffened plate having less number of stiffen-

ers and higher dst/h produces different mode shape indicating 

the clear presence of stiffeners. In all the cases, the fundamen-

tal frequency of the stiffened plate is higher than that of the 

plate without stiffeners.

The recommended design-aids in non-dimensional param-

eters (Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23) predict the values 

of the fundamental frequencies of six typical clamped cross-

stiffened plates of different materials, which are fairly close 

to those obtained from the numerical computation using the 

computer program (Table 4). These design charts can be used 

for the designers to determine the fundamental frequency of 

clamped stiffened plates of any isotropic materials having 

dimensions from practical consideration.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

Table 4  Fundamental frequencies (ω) of clamped plates with eccentric cross-stiffeners obtained from the design charts and computer code

Sl. no. a (m) b (m) h (m) bst (m) dst (m) E (GPa) ρ (kg/m3) ν nx, ny ω from code (r/s) ω from charts (r/s) Percentage 

of deviation

1 13.5 10.0 0.080 0.16 0.44 22.36 2500 0.15 5, 5 89.32 91.50 2.44

2 36.0 30.0 0.110 0.22 0.88 25.00 2550 0.15 8, 8 22.70 23.69 4.36

3 27.0 16.0 0.100 0.20 0.60 29.50 2650 0.17 4, 4 42.76 44.20 3.37

4 40.5 22.5 0.125 0.25 1.00 31.62 2700 0.20 10, 10 38.86 40.60 4.48

5 4.0 3.0 0.020 0.04 0.14 200.00 7800 0.30 3, 3 458.74 485.24 5.78

6 3.15 2.1 0.015 0.03 0.06 69.00 2700 0.33 2, 2 349.91 360.72 3.09
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