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Abstract. In this paper, nonlocal Euler-Bernoulli beam theory is applied to investigate the 

dynamical behavior of a single-walled carbon nanotube (SWCNT) with an extra added nanoparticle. 

The SWCNT is assumed to be embedded on a Winkler-type elastic foundation with cantilever 

boundary condition. This configuration can be used as a nano-mass sensor which works on the basis 

of the changing the natural frequencies. The results show that the added mass causes an obvious 

increase in sensitivity of SWCNT-based nano-mass sensor, especially for stiff mediums, small 

nonlocal parameters, and stocky SWCNTs. 

Introduction 

Because of superior mechanical, chemical and thermal properties, carbon nanotubes (CNTs) have 

many new applications in technological and biomedical devices such as nano-sensors, nano-bio 

sensors, and nano-mass sensors [1-3]. Recently, Mass detection based on the resonating 

nanomechanical tools has been subjected of growing interests. The essence of mass sensing in a 

resonator is based on this fact that the vibration behavior of the resonator is related to changing the 

total mass of the system and the attached mass causes the resonant frequency to change. The 

theoretical theories such as elastic continuum mechanics, as well as molecular dynamics 

(MD)simulations are used for simulating vibration behaviors of CNTs. The MD simulation involves 

complex computational processes and is still formidable and expensive, especially for large-scale 

nanostructures. Since, the results of continuum-based modeling show a good agreement with MD 

simulations, continuum elastic theories are widely utilized to simulate the vibration of CNTs [4]. 

For example, the potential of SWCNT as a mass sensor is investigated using continuum mechanics 

theory [5] and the effects of attached buckyballs on the longitudinal vibration of SWCNTs have 

been presented on the basis of a nonlocal continuum model [6]. Moreover, the resonant frequencies 

of a cantilevered and a bridged SWCNT were examined using finite element method (FEM) and as 

a mass sensor, the corresponding shifts of the frequencies is analyzed [7]. 

This paper makes the effort to study the linear transverse vibration of a SWCNT with an attached 

nanoparticle. The Euler-Bernoulli beam and nonlocal elasticity theory are applied to analyze the 

vibrational behavior of the cantilever SWCNT embedded in a Winkler-type medium. The equation 

of motion is solved using the Galerkin method. The Effects of the added mass, stiffness of the 

surrounding medium, aspect ratio of the SWCNT, and the nonlocal parameter on the resonant 

frequency shift are considered and discussed widely. 

Modeling  

Fig. 1 Shows a SWCNT with an attached mass m in location Xm that is modeled as an Euler-

Bernoulli beam . E, ρ, A, L show the Young's modulus, density, cross-section area, and length of the 

SWCNT, respectively while the outer diameter and the thickness of the nanotube are do and h, in 
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that order. The SWCNTs is fixed at one end and free at the other end that known as a clamped-free 

(C-F) or cantilever boundary condition. Furthermore, the surrounding elastic medium is simulated 

as a Winkler-type foundation which represents the stiffness of the medium by Winkler constant K. 

 

Fig. 1.The cantilever SWCNT embedded in an elastic medium with an attached mass. 

By using the Hamilton's principle and based on the nonlocal Euler-Bernoulli beam theory, the 

governing equation of motion can be written in terms of displacement as follows: 
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In the above equation, δ(.) is Dirac-delta function, w(x,t) is the transverse displacement component 

in the x-z plan. x and t define axial coordinate and time, respectively. In addition, e0a represents a 

nonlocal parameter where e0 and a are the material constant and an internal characteristic length, in 

that order. It should be noted that when the nonlocal parameter e0a and the attached mass m are set 

to be zero in Eq. 1, the local equation of motion of an Euler-Bernoulli beam is easily obtained [7]. 

To determine the fundamental frequency of the model, the one-approximation Galerkin method is 

utilized. In modal form, the transverse dynamic displacement of the SWCNT with C-F boundary 

condition is written as follows [8]: 
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Where q and W are unknown time-dependent generalized coordinates and the eigenmodes of an 

undamped different boundary condition beam, respectively. 

Applying Eq. 2 into Eq. 1 and multiplying both sides of the resulting equation with W , then 

integrating it over the interval [0,L] with considering the orthogonally condition and general 

properties of Dirac-delta function [9], the differential equation of the first mode of the generalized 

deflection can be calculated as: 
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Where Kt and Mt are the total equivalent stiffness and total effective mass of the vibrational system, 

respectively. 

Numerical results 

In the present study, the fundamental frequency of a cantilever nano-mass sensor ttn MKf )21( π=  

is obtained according to the nonlocal Euler-Bernoulli beam model. Kt and Mt for Xm=L are written 

as: 
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The Heaviside (x) is the step function that is known as the anti-derivative of Dirac (x). According to 

the function definition, Heaviside (L) is equal to unit because the Length of SWCNT L larger than 

zero. 

The mass of the attached nanoparticle can influence the resonant frequency efficiently and is 

considered here as a key parameter consequently. The geometrical and mechanical properties of the 

nanotube are assumed approximately corresponds to a (16, 12) SWCNT [10]. Moreover, the 

Winkler medium constant, nonlocal parameter, and aspect ratio are taken as: K=1 Mpa, e0a=2 nm, 

L/do=20 [11]. 

The fundamental frequency of a cantilever SWCNT with a tip mass (Xm/L=1) is given as a function 

of mass ratio (MR =m/mr)in Fig. 2, where mr is the mass of a carbon nucleus. Since increasing the 

mass of the attached nanoparticle increases the total mass of the system Mt, the fundamental 

frequency decreases as it is shown and this frequency reduction exaggrates for nanoparticles with 

lagrer MR. 

 

Fig. 2.The fundamental frequency of SWCNT fn against the mass ratio MR 

As previously mentioned, the mass sensing with a SWCNT-based mass sensor is based on the fact 

that the added mass causes a shift to the resonant frequency of the resonator. To gain a better 

understanding of this fact and to explore the net effect of the attached mass on the resonant 

frequency of the mass sensor, the shift of frequency (SF) is defined as a parameter that indicates the 

changes of frequency for the SWCNT with no added mass (m=0) in comparison to the SWCNT 

containing the attached mass (m≠0) as follow: 

(6) 
)0()0( ≠= −= mnmn ffSF 

Figs. 3-5 show the shift of frequency SF as a function of the mass ratio MR, while the impacts of a 

single specific parameter have been studied in each figure. It can be seen from all these figures that 

SF increases with increasing the MR. Therefore, a high mass sensitivity is revealed for high attached 

masses. Moreover, It should be noted that for a very large mass (more than 10
4
 times greater than 

the mass of carbon nucleus) do not need a nanotube to be sensed because these masses are larger 

than the mass of the nanotube. 

Fig. 3 shows the influence of the surrounding elastic medium on the SF versus the MR. Results 

demonstrate that with increasing the stiffness medium, due to the Winkler modulus K, the shift of 

frequencies significantly increase. This indicates that as the nanotube vibrates in a stiffer medium, 

the total stiffness of the system Kt is increased and the higher mass sensitivity occurred.  
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The SF parameter is highly sensitive to the dimensions of the SWCNT. It is clear from the Fig. 4 

that for long and slender SWCNTs with a high aspect ratio L/do, the SF declines and the effects of 

attached mass on the rise of frequency are reduced.  

 
Fig. 3. The shift of frequency SF against the mass ratio MR for different values of the Winkler 

modulus K. 

 

Fig. 4. The shift of frequency SF against the mass ratio MR for different values of the aspect ratio L/do. 

As the size of SWCNTs is very small, it is significant to regard the small-scale effect. The local or 

classical continuum mechanic cannot predict accurately the behavior of nanoscale materials. Unlike 

the local theory, the nonlocal elasticity observes that the stress at a given point in a body depends 

not only on the strain at that point but also on those at all points of the body[12]. Fig. 5 illustrates 

the importance of the nonlocal elasticity and nanoscale effects in the SF. The nonlocal elasticity 

theory causes the SWCNT becomes more flexible and reduce the stiffness of this structure. 

Therefore, with an increase in SWCNT stiffness by increasing the nonlocal parameter e0a, the SF 

decreases consequently. It can be seen that the larger shift of frequency occurred at the lower values 

of nonlocal parameter and the nonlocal theory predicts a lower sensitivity for the nano-mass sensor 

compared to the local ones.  
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Fig. 5. The shift of frequency SF against the mass ratio MR for different values of the nonlocal 

parameter e0a. 

Conclusion 

Based on the nonlocal continuum theory, the dynamical behavior of an embedded cantilever 

SWCNT carrying a nanoparticle was performed. The obtained governing equation of motion is 

solved using the Glerkin method, and the natural frequency was calculated. The results indicate that 

the resonant frequencies increase by an increase in the mass of the nanoparticle. This shift of 

frequency illustrated the sensitivity of the SWCNT-based mass sensor and was characterized as a 

parameter. Detailed results demonstrated that the sensor sensitivity rises by increasing the mass 

ratio, especially for stocky SWCNT, with stiff foundation and the small values of the nonlocal 

coefficient. 
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