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Free vibration of layered circular cylindrical shells of variable thickness is studied using spline
function approximation by applying a point collocation method. The shell is made up of uniform
layers of isotropic or specially orthotropic materials. The equations of motions in longitudinal,
circumferential and transverse displacement components, are derived using extension of Love’s
first approximation theory. The coupled differential equations are solved using Bickley-type
splines of suitable order, which are cubic and quintic, by applying the point collocation method.
This results in the generalized eigenvalue problem by combining the suitable boundary conditions.
The effect of frequency parameters and the corresponding mode shapes of vibration are studied
with different thickness variation coefficients, and other parameters. The thickness variations are
assumed to be linear, exponential, and sinusoidal along the axial direction. The results are given
graphically and comparisons are made with those results obtained using finite element method.

1. Introduction

Circular cylindrical shells are used in various fields like aviation, missiles, ship buildings,
and chemical industries. Shells made of composite materials with variable thickness are used
increasingly, since composite structures are having high specific stiffness, better damping,
and shock absorbing characters over the homogeneous ones. The study of vibrational
behavior of such shells is very important. The effect of variation of thickness on frequency
parameter of the shell, which is made up of different layered materials, has been studied by
very few researchers. Baker and Herrmann [1] analysed three layered (Sandwich) shells,
including the effects of shear deformation, rotary inertia, and initial stress. Sivadas and
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Ganesan [2] studied the vibration of circular cylindrical shells having the thickness variations
of linear and quadratic along the axial direction. A series of studies has been made on
vibration of cylindrical shells by Tonin and Bies [3], Takahashi et al. [4], Suzuki et al. [5]
and Sivadas and Ganesan [6]. Hinton et al. [7] presented free vibration analysis of variable
thickness of plates and curved shells using a finite strip formulation. The fundamental
frequencies of laminated anisotropic circular cylindrical shells are presented by Sun et al.
[8] using finite element method (FEM). Zhang [9] used a propagation approach to analyse
the cross-ply laminated composite cylindrical shells. Hufenbach et al. [10] presented a study
on vibration and damping behaviour of multilayered composite cylindrical shells using
analytic calculation method. Sakiyama et al. [11] and Tsuiji and Sueoka [12] analysed the
vibration of cylindrical panel using the Raleigh-Ritz method. Recently, Tizzi [13] applied the
Ritz procedure for optimization of cylindrical shell profile under a frequency constraint, and
Toorani and Lakis [14] studied the vibrations of nonuniform composite shells applying the
combination of hybrid finite element analysis and shearable shell theory.

Mizusawa andKito [15] applied the spline stripmethod to study the vibration of cross-
ply laminated cylindrical panels. This method involved expressing displacement functions
in a strip element as the product of basic function series in the axial direction and B-spline
functions in the circumferential direction. However, there seems to be no work carried out
so far on vibration of symmetric angle-ply layered cylindrical shells with variable thickness
using Bickley spline function, which is done in the present study.

The present work analyses the flexural free vibration of layered circular cylindrical
shells of variable thickness. The equations of motion are derived using Love’s first
approximation theory for homogeneous shells. The layers are considered to be thin,
elastic, specially orthotropic, or isotropic and assumed to be perfectly bonded together and
move without interface slip. Three different thickness variations (linear, exponential, and
sinusoidal) are considered along the axial direction of the cylinder. The governing coupled
differential equations are obtained in terms of the reference surface displacements which
are in longitudinal, circumferential, and transverse directions. Assuming the displacement
functions in a separable form, they reduce to a system of ordinary differential equations
on a set of displacement functions which are functions of meridional coordinate only. Two
sets of boundary conditions are imposed and two types of materials are used to analyse
the problem. In general, the equations have no closed form solution, so that the numerical
solution techniques have to be resorted to.

The spline function technique is adopted to solve the coupled differential equations
which are in three displacement functions. Bickley [16] successfully tested the spline
collocationmethod over a two-point boundary value problemwith cubic spline. Viswanathan
and Navaneethakrishnan [17] and Viswanathan and Kim [18] have also demonstrated
this, along with its attractive features of elegance in handling and convergence. Recently,
Viswanathan et al. [19] studied the vibration of cross-ply cylindrical shell walls including
shear deformation theory using the spline function techniques. The advantage of this method
is that a chain of lower-order approximations than the global higher order approximation.

The three displacement functions are approximated using cubic and quintic splines.
Collocation with these splines yields a set of field equations which, along with the
equations of boundary conditions, reduce to a system of homogeneous simultaneous
algebraic equations on assumed spline coefficients which results in a generalized eigenvalue
problem. This eigenvalue problem is solved using eigensolution technique to obtain as many
frequencies as required, starting from the least. From the eigenvectors, the spline coefficients
can be found to construct the mode shapes.
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Figure 1: Layered circular cylindrical shell of constant thickness: geometry.

2. Formulation of the Problem

The system of differential equations in terms of longitudinal, circumferential, and transverse
displacements components is derived, which characterise the vibration of a thin shell of
revolution. The general line of procedure of Ambartsumyan [20] for the classical theory of
thin shell is adopted. The development is based on the Love’s first approximation theory in
which the rotatory inertia and transverse shear deformation are neglected. Such an approach
results in an analytically simpler procedure, by way of less number of equations of motion
and avoidance of nonlinear terms, thereby conveniencing the application of spline function
method. The coordinate system and the geometric parameters of the laminated cylindrical
shells of constant thickness are shown in Figure 1.

In general, the thickness of the kth layer of the shell is assumed in the form

hk(x) = h0kg(x), (2.1)

where h0k is a constant thickness and

g(x) = 1 + Cℓ
x

ℓ
+ Ce exp

(x

ℓ

)

+ Cs sin
(πx

ℓ

)

. (2.2)

Here ℓ is the length of the cylinder, Cℓ , Ce, and Cs are the coefficients of linear, exponential,
and sinusoidal variations, respectively.

The thickness of the layers is not completely independent. Their dependence is given
by

∑

k

(

z2k − z2k−1

)

ρk = 0, (2.3)

where ρk is the mass density of the kth layer and zk is the distance of the outer boundary of
the kth layer from the reference surface. This may be interpreted as determining one of the zk
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in terms of the rest of zk. If the shell wall has only two layers, in particular, one can obtain

z0(x) = z00g(x),

z1(x) = z0(x) + h1(x) = z01g(x),

z2(x) = z1(x) + h2(x) = z02g(x).

(2.4)

Here z0k = z0k−1 + h0k−1. It may be noted that for linear and sinusoidal variation of thickness
z0k = zk(0).

The stress resultants andmoment resultants are expressed in terms of the longitudinal,
circumferential, and transverse displacements u, v, and w of the reference surface. The
displacements are assumed in a separable form given by

u(x, θ, t) = U(x) cosnθeiωt,

v(r, θ, t) = V (r) sinnθnθeiωt,

w(r, θ, t) = W(r) cosnθeiωt,

(2.5)

where x and θ are the longitudinal and rotational coordinates, t is the time, ω is the
angular frequency of vibration and n is the circumferential node number. Using (2.5) in the
constitutive equations and the resulting expressions for the stress resultants and the moment
resultants in the equilibrium equations, the governing differential equations of motion are
obtained in the form

⎡

⎢

⎢

⎣

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

U

V

W

⎤

⎥

⎥

⎦

= [0]. (2.6)

The operators Lij(i, j = 1, 2, 3) are defined in Appendix A.

3. Method of Solution

The differential equations on the displacement functions of (2.6) contain derivatives of third
order in U, second order in V , and fourth order in W . Therefore, the present form is not
suitable to the solution procedure we propose to adopt. Hence, the equations are combined
within themselves and a modified set of equations is derived. The modified equations now
become as 2nd order in U, 2nd order in V , and 4th order in W , and is given by

⎡

⎢

⎢

⎣

L11 L12 L13

L21 L22 L23

L∗
31 L∗

32 L∗
33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

U

V

W

⎤

⎥

⎥

⎦

= [0]. (3.1)

The new operators L∗
31, L

∗
32, and L∗

33 are given in Appendix B.
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The parameters are nondimensionalised as

λ = ℓλ′, a frequency parameter,

δk =
hk

h
, a relative thickness ratio of the kth layer,

L =
ℓ

r
, a length parameter,

H =
h

r
, ratio of total thickness to radius,

X =
x

ℓ
, 0 ≤ x ≤ ℓ, a distance coordinate and X ∈ [0, 1].

(3.2)

Here r is the radius of the cylinder and h is the total thickness of the shell. Also we define
δ = δ1 and δ2 = 1 − δ1, since we consider only two layers.

The displacement functions U(X), V (X), and W(X) are approximated by the cubic
and quintic spline functions U∗(X), V ∗(X), and W∗(X) as stated below

U∗(X) =
2
∑

i=0

aiX
i +

N−1
∑

j=0

bj
(

X −Xj

)3
H
(

X −Xj

)

,

V ∗(X) =
2
∑

i=0

ciX
i +

N−1
∑

j=0

dj

(

X −Xj

)3
H
(

X −Xj

)

,

W∗(X) =
4
∑

i=0

eiX
i +

N−1
∑

j=0

fj
(

X −Xj

)5
H
(

X −Xj

)

.

(3.3)

The boundary conditions are used as follows: (i) both the edges are clamped (C–C) and (ii)
both the edges are hinged (H–H). The resulting field and boundary conditions give rise to
the generalized eigenvalue problem of the form

[M]
{

q
}

= λ2[P]
{

q
}

, (3.4)

where [M] and [P] arematrices of order (3N+7)×(3N+7), {q} is a matrix of order (3N+7)×1,
and N + 1 is the number of knots of the splines on axial direction. The parameter λ is the
eigenparameter and {q} the eigenvector whose elements are the spline coefficients. Only two-
layer shells are considered with δ = ratio of thickness of the first mentioned layer to the total
thickness, at the one edge of the cylinder.

4. Results and Discussion

Convergence study is made for the frequency parameter value to fix the number of knots N
of the spline function. As mentioned earlier, only two-layered shells are considered and it
is tested for High strength graphite (HSG) and S-glass epoxy (SGE) material combinations.
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Table 1:Material properties of HSG and SGE.

Material
Density Young’s Modulus Young’s Modulus Shear Modulus Poisson Ratio

ρ × 103 N − s2/m4 Ex × 1010 N/m2 Eθ × 1010 N/m2 ×1010 N/m2 υxθ

HSG 1.5892 12.40 1.03 0.54933 0.27

SGE 2.0431 5.17 1.17 0.55060 0.25

Table 2: Comparison of natural frequencies for free vibration of cylindrical shell of exponential variation
in thickness under C–C boundary condition; h = h0e

−kX and n = 2.

k Length parameter, L Takahashi et al. [4] Sivadas and Ganesan [2] Present value

0.4 0.6768 1.2 1.2652 1.1522

0.6 0.6608 1.2 1.2606 1.1632

0.8 0.6460 1.2 1.2564 1.1816

1.0 0.6321 1.2 1.2528 1.2037

Table 1 shows the material properties of High strength graphite (HSG) and S-glass epoxy
(SGE).

After a number of trials, it is found that the number of knots N could be taken as 14,
since for the next value of N the percent change in values of λ are very low, the maximum
being 0.35%. The results are not furnished here due to space constraints.

Comparative studies are next made for homogeneous cylindrical shells of exponential
variation in thickness. Table 2 presents the natural frequencies obtained for the shell with C–
C boundary conditions and compared with the results obtained by Takahashi et al. [4] and

Sivadas and Ganesan [2]. The present frequency parameter λ = ωℓ
√

R0/A
c
11 converted into

the parameter α that has been given by Sivadas and Ganesan [2], where α4 = ρa2(1−v2)ω2/E.
The percentage changes between the present results and Sivadas and Ganesan [2] for k = 0.4,
0.6, 0.8, and 1.0 are 9.8%, 8.4%, 6.3%, and 4%, respectively. It shows that, when the value of k
increases the difference in percentage decreases. This may be due to the method we adopted.
In this paper the value of k is taken as 1 in all the cases since the difference in percentage
is minimum for k = 1 when compared with results obtained by Sivadas and Ganesan [2].
This indicates that the correctness of the analysis and accuracy of the results by using spline
function techniques.

In this work, asymmetric free vibration of layered circular cylindrical shells of variable
thickness is studied. Only two-layered materials with HSG and SGE combinations are used
in this analysis, and the first three meridional modes are considered in all the analyses that
follow.

In Figure 2, the variation of frequency parameter λm(m = 1, 2, 3) with respect to
the increase of the relative thickness ratio δ for the layered cylindrical shells under linear
variation in thickness (Cℓ /= , Ce = Cs = 0) is displayed. In this case, it can be assumed that
Cℓ = 1/η − 1, where η is the taper ratio hk(0)/hk(1). The values of the ratio of the shell’s
constant thickness to radius (H) and the ratio of the shell length to the radius (L) are fixed as
0.02 and 1.5, respectively. The value of taper ratio is fixed as η = 0.75. The two layers of the
shell are arranged in the order of HSG and SGE materials. Thus, when δ = 0, the inner layer
disappears, and the shell is homogeneous, which is made of SGE material. When δ = 1, the
outer layer disappears, again the shell is homogeneous, made of HSG material. Figures 2(a)
and 2(b) correspond to the node number n = 4, with C–C and H–H boundary conditions,
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Figure 2: Variation of frequency parameter with relative layer thickness: linear variation in thickness of
layers.

respectively. It is clearly seen that as δ increase, λm decreases for a m = 1, 2 for all values of
δ and λm(m = 3) decrease for δ ≤ 0.8 and a small increase for δ > 0.8. If the order of the
materials are inverted (SGE-HSG) then the frequency parameter λm increases as δ increase
for all m = 1, 2, 3.

The results are not shown here for want of space. For the extreme values of δ, equal to
0 or 1, the shell becomes homogeneous, with the material of either of the two layers. It is seen
that it is possible to attain a desired frequency, between these two extreme values by suitably
choosing the value of δ. This is interesting from a design point of view.

Figure 3 presents the variation of frequency parameters with relative thickness of layer
δ for HSG-SGE materials by fixing H = 0.02 and L = 1.5 under C–C and H–H boundary
conditions. The thickness varies exponentially (Cℓ = Cs = 0; Ce /= 0) and coefficient Ce is
fixed as 0.2. Figures 3(a) and 3(b) correspond to the node number n = 4, with C–C and H–
H boundary conditions, respectively. In Figure 4, the nature of the frequency parameter for
sinusoidal variation in thickness (Cℓ = Ce = 0; Cs /= 0) is depicted. The other parameters H
and L are fixed with Cs = 0.25. The effect of frequency parameters presented in Figures 3 and
4 almost has the similar pattern as discussed in Figure 2 (linear variation).

Figures 5(a)–5(f) show the manner of variation of the frequency parameter with
reference to the circumferential node number n. The range of n is considered between 0 and
10. A shell of HSG-SGE lamination under C–C and H–H boundary conditions is considered
with H = 0.02, L = 1.5, and δ = 0.4. Figures 5(a)–5(c) show the effect of n on λm for C–
C conditions and Figures 5(d)–5(f) show the effect of n on λm for H–H conditions. All the
three types of variation in thickness of layers are considered, as indicated in the diagrams.
It is seen that all the frequency parameter values decrease upto n = 5 and then increase.
The curvature at the turning points seems to be greater for lower modes. The absolute and
relative differences between the maximum and minimum values of λm, caused in the range
of values of n considered, is more in the case of C–C boundary conditions than with that of
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Figure 3: Variation of frequency parameter with relative layer thickness: exponential variation in thickness
of layers.
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Figure 4: Variation of frequency parameter with relative layer thickness: sinusoidal variation in thickness
of layers.

H–H boundary conditions. The kind of thickness variation in layers does not seem to greatly
affect the nature of variation of λm with n.

The frequency parameter λm is explicitly a function of the length ℓ of the cylinder.
Hence, when studying the influence of the length of the cylinder on its vibrational behaviour,
the actual frequency ωm(m = 1, 2, 3), and not λm, is considered. Figures 6(a)–6(c) depict
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Figure 5: Effect of circumferential node number on frequency parameter for different types of variation in
thickness of layers.

the manner of variation of the actual frequency ωm (in 103 Hz) with respect to the length
parameter L for HSG-SGE layered cylinders under C–C boundary conditions with H =

0.02, δ = 0.4, and n = 4. All the three types of variation in thickness of layers are considered.
As L increases, ωm is observed to decrease, in general. The decrease is fast for very short
shells (for 0.5 < L < 0.75 herein), the rate of decrease increasing with higher modes and then
the decrease is very low for L > 0.9. The percent changes in ω1 over the range of 0.5 < L < 2.0
for three cases (linear, exponential and sinusoidal variations) depicted are, respectively:
(a) 452.034%, (b) 450.476%, and (c) 453.573% for C–C conditions. Similar phenomenon is
observed in the case of layered cylindrical shells of variable thickness under H–H boundary
conditions shown in Figure 7. The percent changes in ω1 over the range of L considered,
for three different variations, are (a) 272.268%, (b) 270.533%, and (c) 273.858% for H–H
conditions.

In Figure 8, the influence of the nature of variation of thickness of the layers of the
shell on its vibrational behaviour is studied. A HSG-SGE shell held under C–C boundary
conditions with the three types of variation in thickness of layers is considered, with H =

0.02, L = 1.5, δ = 0.4, and n = 4. Figure 8(a) relates to linear variation in thickness of layers.
The thickness is constant when the taper ratio η = 1. Variation of λm(m = 1, 2, 3) with respect
to η for 0.5 ≤ η ≤ 2.1 is studied. It is seen that λm is almost constant for all the values of η. The
effect of exponential variation in thickness of layers is analysed in Figure 8(b). When Ce = 0,
the thickness is uniform. The thickness at the end x = ℓ of the cylinder is higher or lower than
the thickness at the other end x = 0 according to Ce ≶ 0. The effect of sinusoidal variation in
thickness of layers on frequency parameters is studied in Figure 8(c). These effects are almost
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Figure 6: Effect of length of the shell on frequency parameter for different types of variation in thickness
of layers under C–C boundary conditions.
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Figure 7: Effect of length of the shell on frequency parameter for different types of variation in thickness
of layers under H–H boundary conditions.

similar to those due to the exponential variation discussed above. Here, the coefficient of
thickness variation is considered over the range [−0.5, 0.5]. The thickness of the shell is the
same at x =0 and x = ℓ; the surface of the shell is convex or concave for 0 < x < ℓ.

In Figure 9, the influence of the taper ratio η, the coefficient of exponential variation
of thickness Ce and the coefficient of sinusoidal variation Cs on λm are depicted, along with
the effect of the H–H boundary conditions. The effect of λm is almost same for all the cases of
linear and exponential variation, as described in Figure 8. In this variation, the C–C boundary
conditions contribute slightly higher values to the influence of the coefficients of thickness
variation on frequencies than the H–H conditions contributing values to the influence of the
coefficients of thickness variation on frequencies.
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Figure 8: Effect of taper ratio, coefficient of exponential variation, and coefficient of sinusoidal variation
on frequency parameter under C–C boundary conditions.
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Figure 9: Effect of taper ratio, coefficient of exponential variation and coefficient of sinusoidal variation on
frequency parameter under H–H boundary conditions.

5. Conclusion

The influence of the natural frequencies of the vibration of layered cylindrical shells of
variable thickness has been analysed. The materials of the layers, length of the shell, and
coefficients of variable thickness affect the frequency. A desired frequency of vibration may
be obtained by a proper choice of the relative thickness of the layers, length parameter, and
the coefficient of thickness variations. The clamped-clamped (C–C) boundary conditions give
rise to higher frequencies in comparison with hinged-hinged (H–H) boundary conditions.
The nature of variation in thickness of layers considerably affects the natural frequencies.
When the circumferential node number is increased, the frequencies initially decrease and
then increase. The effect of increasing the length of the cylinder is a decrease in frequencies,
for all kinds of variation in thickness of layers. This study also shows the elegance and
usefulness of the spline functions with application of the collocation method for boundary
value problems.
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Appendices

A. The operators Lij(i, j = 1, 2, 3) are:

The differential operators Lij(i, j = 1, 2, 3) appearing in (2.6) are
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d2

dx2
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g ′

g

d

dx
− s10

n2

r2
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r
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1
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(A.1)

where
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s2 =
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11
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11
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is a frequency parameter,

R0 =
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k

ρ(k)[zk(0) − zk−1(0)] =
∑

k

ρkhk(0) is the inertial coefficient,

(A.2)

and Ac
ij , B

c
ij , and Dc

ij are the elastic coefficients of constant thickness, which are extensional

rigidities, the bending-stretching coupling rigidities and the bending rigidities, respectively.

B. The operators L3j(j = 1, 2, 3) are:

The differential operators L∗
31, L

∗
32, and L∗

33 appearing in (3.1) are
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(B.1)
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