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This paper deals with the free vibration problem of nanorings/arches. The problem is formulated on

the basis of Eringen’s nonlocal theory of elasticity in order to allow for the small length scale effect.

Exact vibration frequencies are derived for the nanorings/arches and the effects of small length

scale, defects, and elastic boundary conditions are investigated. The small length scale effect lowers

the vibration frequencies. The defects and the use of elastic boundary conditions �instead of fixed

restraints� also significantly reduce the frequencies and alter the vibration mode shapes of circular

rings/arches. The results presented should be useful to engineers who are designing nanorings/

arches for microelectromechanical and nanoelectromechanical devices. © 2008 American Institute

of Physics. �DOI: 10.1063/1.2951642�

I. INTRODUCTION

One-dimensional nanostructures, such as nanotube,
1

nanowires,
2

nanobelts,
3

nanosprings,
4

nanorings,
5

nanobows,
6

and nanohelices
7

have attracted a great deal of

researchers’ attention and spurred extensive studies. Studies

have shown that nanostructures, such as zinc oxide nano-

wires among others, exhibit both semiconducting and piezo-

electric properties that can form the basis for electromechani-

cally coupled sensors and transducers.
8

In addition, zinc

oxide nanowires are relatively biosafe and biocompatible,

and thus they can be used for biomedical applications with

little toxicity. Hence, one of the most important applications

of nanostructures is likely to take advantage of their excep-

tionally mechanical, electrical, and chemical properties to be

used as sensors,
9

resonators,
10

and transducers
11

for nano-

electronic and biotechnology applications.

Recently, vibrations of nanorings/arches have been the

subject of some experimental and molecular dynamics �MD�
simulations.

12–17
As experiments at the nanoscale are ex-

tremely difficult and atomistic computations remain prohibi-

tively expensive for large size atomic systems, continuum

models continue to play an essential role in the study of

nanostructures.
18–24

However, there are strong evidences
25–29

that the small length scale effect �i.e., nonlocal effect� has a

significant influence on the mechanical behavior of nano-

structures. Therefore, classical structural theories need to be

modified to account for the small length scale effect if they

are to be used.

In this paper, an elastic ring/arch model is presented for

free vibration analysis of nanorings/arches. In order to ac-

count for small length scale effect, Eringen
30

nonlocal elas-

ticity theory is adopted. His nonlocal theory has been widely

used to derive bending solutions, buckling loads, vibration

frequencies, and phase velocities of micro- and nanobeams,

rods and tubes �for example, see papers by Peddieson et

al.,
31

, Sudak,
32

Wang et al.,
33

Zhang et al.,
34

Wang and

Varadan,
35

Wang and Liew,
36

Lu et al.,
37,38

Lim et al.,
39

Xu,
40

Wang et al.,
41

Wang,
42

Duan et al.,
43,44

Wang et al.,
45

and Reddy
46�. The effect of defects represented by a hinge

and rotational restraint and elastic boundary conditions on

vibrations of nanorings/arches are also considered. The exact

nonlocal solutions for free vibration of nanorings/arches de-

rived herein should be useful to engineer scientists who are

designing microelectromechanical system �MEMS� and na-

noelectromechanical system �NEMS� devices that make use

of nanorings/arches.

II. GOVERNING EQUATION FOR FLEXURAL
VIBRATIONS OF NONLOCAL CIRCULAR SEGMENT

In this section, we develop a generic governing equation

for the free vibration of a circular segment with allowance

for the small length scale effect. The governing equation will

be used to solve the following vibration problems: �a� a cir-

cular ring with constant cross section, �b� a circular ring

containing a defect, and �c� a circular arch embedded in an

elastic medium. It is assumed that the cross sectional dimen-

sions of the ring/arch are small in comparison with the radius

of the center line of the ring/arch.

Let us consider the in-plane flexural vibration of the ring

as shown in Fig. 1. We denote the radius of the circle formed

by the center line as r. Let � be the angle between the radius

drawn from the center of the circle to a point on it and a

chosen radius. We take the positive displacement w̄ to be

directed radially outwards. The displacement v̄ is directed

along the tangent of the circle in the sense in which � in-

creases. We shall denote the moment of inertia Iz of the cross

section with respect to a principal axis that is parallel to the

z axis.

Owing to the displacements w̄ and v̄, the strain � of the

center line of the ring at any point is given by

a�
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� =
w̄

r
+

�v̄

r��
. �1�

Considering flexural vibration without extension, we have

�=0, and thus Eq. �1� gives

w̄ = −
�v̄

��
. �2�

By taking equilibrium conditions of normal forces, tangential

forces as well as the moment about one end of the elemental

segment, as shown in Fig. 1, one obtains the following equi-

librium equations:
47,48

�N̄

��
− Q̄ = mr

�2
v̄

�t2
, �3�

�Q̄

��
+ N̄ = − mr

�2w̄

�t2
, �4�

�M̄

��
+ Q̄r = 0, �5�

where N̄ is the tension, Q̄ is the shear force, M̄ is the bending

moment, and m is the mass of the ring per unit length.

Unlike most classical continuum theories that are based

on hyperelastic constitutive relations, which assumes the

stress at a point in a body is a function of the strain at that

point, Eringen
30

proposed the nonlocal elasticity theory that

allows for the stress at a point to be dependent on strains at

all points in the body. This theory introduces the small length

scale effect through a spatial integral constitutive relation.

For beams, rods, and tubes, the complicated spatial integral

constitutive relation may be reduced to a simple ordinary

differential equation of the form given by
30

� − �e0a�
d2�

dx2
= E� , �6�

where � is the normal stress, � is the normal strain, E is the

Young’s modulus, x is the coordinate along the beam axis

direction, a is the characteristic length �e.g., lattice length or

bond length between atoms�, and e0 is the calibration con-

stant which may be obtained by matching against experi-

ments and MD simulations. Based on Eringen’s nonlocal

constitutive relation given in Eq. �6�, one can derive the non-

local moment-curvature relationship as follows:

M̄ − � e0a

r
�2�2M̄

��2
= −

EIz

r2 � �2w̄

��2
+ w̄� . �7�

By substituting Eq. �14� into Eq. �7� and in view of Eq. �2�,
one obtains the governing equation for flexural vibration of a

circular ring segment as

�6
v̄

��6
+ 2

�4
v̄

��4
+

�2
v̄

��2
=

mr4

EIz

�2

�t2��
�4

v̄

��4
− �1 + ��

�2
v̄

��2
+ v̄� ,

�8�

in which �=e0a /r is the nondimensional small length scale

parameter.

Assume the displacement takes on the separable form

v̄ =
v

r
cos��t + �� , �9�

where � is the resonant frequency of the ring and � is the

phase angle. The substitution of Eq. �9� into Eq. �8� leads to

a homogeneous linear ordinary differential equation:

d6
v

d�6
+ �2 + ���

d4
v

d�4
+ �1 − � − ���

d2
v

d�2
+ �v = 0, �10�

in which �=mr4�2
/EIz is the nondimensional frequency.

Using the following nondimensional terms:

Q̄ =
r2Q

EIz

, N̄ =
r2N

EIz

, and M̄ =
rM

EIz

, �11�

Eqs. �2�–�5� and �7� may be decoupled to furnish explicit

expressions for the tension N, the shear force Q, and the

bending moment M as shown below:

Q = −
1

1 + �2� �4
v

��4
+ �1 + �2��

�2
v

��2
− �2�v� , �12�

N =
1

1 + �2� �5
v

��5
+ �1 + �2��

�3
v

��3
− �1 + 2�2��

�v

��
� , �13�

M =
1

1 + �2��2
�5

v

��5
+ �1 + 2�2 + �4��

�3
v

��3

+ �1 + �2 − �4��
�v

��
� . �14�

Note that by setting �=0 �i.e., neglecting the small length

scale effect�, Eqs. �10� and �12�–�14� reduce to the equations

as derived by Love.
47

In the subsequent sections, Eq. �10� is

applied to determine the resonant circular frequency and the

corresponding mode shape of nanorings/arches with the al-

lowance for the small length scale effect.

III. SMALL LENGTH SCALE EFFECT AND VIBRATIONS
OF NONLOCAL CIRCULAR RING

In the investigation of the small length scale effect using

the nonlocal rings/arches model, it is crucial to know the

magnitude of the parameter e0 �i.e., ��. So far, no experi-

FIG. 1. �Color online� Geometry of circular arch �a� plan view, �b� side

view, and �c� free body diagram of an elemental segment.
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ments have been conducted to predict the magnitude of e0 for

nanostructures. In the open literature, Wang and Hu,
49

who

adopted the second-order strain gradient constitutive relation,

proposed e0=0.288 for the flexural wave propagation study

in a single walled carbon nanotube through the use of the

nonlocal Timoshenko beam model and MD simulations.

Eringen
50

himself proposed e0 as 0.39 based on the matching

of the dispersion curves via nonlocal theory for plane wave

and Born–Karman model of lattice dynamics at the end of

the Brillouin zone, ka=�, where a is the distance between

atoms and k is the wave number in the phonon analysis. On

the other hand, Eringen proposed e0=0.31 by comparing the

Rayleigh surface wave via nonlocal continuum mechanics

and lattice dynamics. Zhang et al.
34

estimated e0	0.82 from

the buckling analysis of single walled carbon nanotubes via

the Donnell shell theory and MD simulations. The varied

values of e0 prompted Wang
42

to state that the adopted value

of the scaling parameter e0 depends on the crystal structure

in lattice dynamics and the nature of physics under investi-

gation. He also estimated that the scale coefficient e0a

	2.0 nm for a single walled carbon nanotubes if the mea-

sured wave propagation frequency value is assessed to be

greater than 10 THz. By calibrating the small scaling param-

eter e0 in the nonlocal Timoshenko beam theory using MD

simulations results, Duan and Wang
43

found that the values

of e0 vary between 0 and 19 depending on the length-to-

diameter ratio, boundary conditions, and mode shapes of

nanostructures instead of a fixed value. In the present work,

we adopt the same scale effect parameter �, i.e., �=0 to �
=0.4 as in Ref. 41 in the investigation of the small length

scale effect on the vibration behavior of nanorings/arches.

Using the abovementioned small scale effect parameter,

the free vibration of a full circular nanoring, as shown in Fig.

2, is investigated. First of all, the general solutions of Eq.

�10� can be assumed to be of the form,

v = 

k=1−3

�Ak cos nk� + Bk sin nk�� , �15�

where n1, n2, and n3 are the roots of the equation

n2�n2 − 1�2 = �n2 + 1���2n2 + 1�� . �16�

If the ring is complete and defect-free, n must be an integer,

and hence the frequency is given by

� =
n2�n2 − 1�2

�n2 + 1���2n2 + 1�
. �17�

It can be clearly seen that n=1 yields a trivial resonant fre-

quency value. Thus the resonant frequencies � are associ-

ated with n
2. In Table I, the first five frequency parameters

� obtained from Eq. �17� are presented for various scaling

effect parameters �=0, 0.2, and 0.4. Note that the results

associated with �=0 correspond to those of the local theory

where the small scale effect is ignored. The fundamental

resonant frequency �=7.2 is the same as the value given by

Timoshenko
48

and Love.
47

The nonlocal results are smaller

than the corresponding local results and the percentage dif-

ferences are more significant for higher vibration modes. For

example, for the fundamental mode and the fifth mode, the

percentage differences ��local−�nonlocal /�local��100% in

the frequency parameters are 39% and 85% with �=0.4,

respectively. The vibration mode shape of the nonlocal cir-

cular nanoring with two full waves �n=2� is shown in Fig. 3.

It can be seen from Eq. �15� that the vibration modes do not

FIG. 2. �Color online� Geometry of circular ring.

TABLE I. First five frequency parameters � for full circular ring and cir-

cular ring with a defect with various small scale parameters �.

Mode number �=0 �=0.2 �=0.4

Full circular ring

1 7.2 6.2 4.4

2 57.6 42.4 23.6

3 211.7 129.1 59.5

4 553.8 276.9 110.8

5 1191.8 488.5 176.3

Circular ring with a defect �K=5�
1 6.8 5.9 4.2

2 54.6 40.8 23.1

3 201.2 125.0 58.6

4 527.5 270.0 109.6

5 1137.6 478.6 174.9

FIG. 3. �Color online� Mode shape of free vibration of a circular nanoring.
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include any scale effect parameter. Thus, the vibration mode

shapes for nonlocal circular ring are the same as the corre-

sponding mode shapes for local circular ring, but their fre-

quencies are affected by the small length scale effect param-

eter as shown in Eq. �17�.

IV. VIBRATION OF NONLOCAL CIRCULAR
NANORINGS WITH A DEFECT

In this section, the effect of defects on vibration proper-

ties of nanorings/arches accounting for the small scale effect

is investigated. From the viewpoint of continuum modeling,

it is reasonable to model the defects due to the reduction of

cross section of nanostructures as a hinge with a rotational

restraint. The mechanical model for the nonlocal circular

ring with a defect is shown in Fig. 4. The governing equation

for the free vibration of the defected nanorings/arches is

given by Eq. �10�. Considering symmetric vibration mode

shapes, its general solution is given by

v = 

k=1−3

Ak sin nk� , �18�

where n1, n2, and n3 are the roots of Eq. �15�. There are three

integration constants A1, A2, and A3 in Eq. �18�. Therefore

we need three conditions to solve this boundary value prob-

lem. The first two conditions are that there are no vertical

displacements v and shear force Q at �=�. These conditions

require

v = 0 and Q = 0 at � = � . �19�

The third condition is that the moment at the hinge with a

rotational restraint is equal to the product of the rotational

spring constant K and the change in angle, i.e.,

�M��=� = K��d2
v

d�2�
�=−�

− �d2
v

d�2�
�=�

� , �20�

where the stiffness of rotational restraint K represents the

scale of defects, which has to be calibrated by experiments.

In this study, K=0 to K=20 is adopted arising from the ob-

served mode shapes. By substituting Eqs. �12�, �14�, and �18�
into Eqs. �19� and �20�, one obtains the following character-

istic equation:

�A�3�3 = 0, �21�

where


A1i = ni

A2i = �ni
2�ni

2 − 1� − �ni
2 + 1���2�ni

A3i = �ni
2�ni

2 − 1� − �ni
2 + 1���2�tan−1 ni� + 2�1 + �2�Kni

3 �i = 1,2,3. �22�

The roots n1, n2, and n3 of Eq. �15� are functions of the

resonant frequency �. By substituting these roots into Eq.

�21�, one obtains an equation to determine �, and hence the

frequency �. Sample frequency parameters obtained from

Eq. �21� are given in Table I. All frequency parameters are

slightly smaller than the corresponding results for the case of

the full circular ring. For example, the fundamental resonant

frequencies for the case of the circular ring with a defect, i.e.,

6.8 ��=0�, 5.9 ��=0.2�, and 4.2 ��=0.4�, are slightly

smaller than those parameters for the case of the full circular

ring, i.e., 7.2, 6.2, and 4.4, respectively. This is because the

defect �due to the loss of cross sectional area� reduces the

stiffness of the nanorings. In addition, the nonlocal results

are smaller than the corresponding local results and the per-

centage differences are more significant for higher vibration

modes. For example, for the fundamental mode and the fifth

mode, the percentage differences ��local−�nonlocal /�local�
�100% in the frequency parameters are 38% and 85% with

FIG. 5. �Color online� Resonant frequency of circular nanoring with a

defect.

FIG. 4. �Color online� Mechanical model of circular nanoring with a defect.
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�=0.4, respectively.

Figure 5 shows the variation of the fundamental resonant

frequency parameter � with respect to the rotational stiffness

K for various small length scale parameters �. For �=0, the

problem reduces to the free vibration problem of a local

nanoring, i.e., no small effect and the results correspond to

those obtained by Love.
47

The resonant frequency � in-

creases from 4.1 to 7.1 as the rotational stiffness increases

from K=0 to K=20. For k→�, the characteristic Eq. �21�
reduces to Eq. �17�, i.e., the nanoring becomes a complete

ring without a hinge. It is seen that the defects can reduce the

value of resonant frequency by as much as 43% from 7.2

�K→�, no defect� to 4.1 �K=0, defect is modeled as a hinge

without rotational constraint�. Moreover, it can be seen from

Fig. 5 that the resonant frequencies based on the nonlocal

theory is lower than their local counterparts and they de-

crease as the small length scale parameter increases. For K

=20, the resonant frequency � decreases from 7.1 to 4.3 as �
increases from 0 to 0.4. It is reasonable from Eq. �6� that the

small length scale effect lowers the stress to achieve the

same strain as compared to those associated with the local

theory.

Figure 6�a� compares the vibration mode shapes associ-

ated with the fundamental resonant frequency of a nanoring

containing a hinge with various rotational stiffnesses, where

the small length scale parameter is set to be �=0. When the

rotational stiffness is relatively small �i.e., K	1�, the mode

shape of the ring has a kink at the hinge location. The

changes in the mode shapes can be clearly observed as the

rotational stiffness changes. The mode shapes, however, are

almost identical at large values of rotational stiffness �i.e.,

K
10�. In these cases, the kink disappears and the nanoring

vibrates in a similar manner as a complete ring �i.e., without

a hinge�. Figure 6�b� compares the vibration mode shapes of

a nanoring containing a hinge with various � values, where

the stiffness of rotational constraint is set to be K=5. When

the small length scale parameter is varied from �=0 to �
=0.4, the vibration mode shapes are almost identical. Hence

unlike the resonant frequency �, the vibration mode shape is

not influenced by the small length scale effect.

V. VIBRATION OF NONLOCAL CIRCULAR
NANOARCHES EMBEDDED IN ELASTIC MEDIUM

In the research on nanostructures, the assumption that

the boundary conditions are clamped at the ends of

nanorings/arches may not be always true especially under the

case of relatively soft surrounding elastic matrix for embed-

ded nanostructures. Hence it is necessary to consider elastic

boundary conditions. The embedded ends will be modeled as

a hinge with rotational restraint instead of clamped ends. The

rotational restraints at both ends are assumed herein to be

identical, as shown in Fig. 7. The general solution of this

problem remains the same as in Eq. �15�. The nanoarch may

vibrate either symmetrically �sinusoidal function� or asym-

metrically �cosinusoid function�. Thus, three conditions are

FIG. 6. �Color online� Vibration mode shapes for a nonlocal circular nano-

ring with a defect �a� variation of spring stiffness K and �b� variation of

small length scale parameter.

FIG. 7. �Color online� Geometry of circular nanoring embedded in elastic

medium.
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needed to solve for the vibration problem. The symmetrical

rotational restraints at both ends require that there are no

displacements v, w at �=, i.e.,

v = 0 and w = 0 at � =  , �23�

where 2 is the opening angle of nanoarches. The third con-

dition is that the moment at the hinge with a rotational re-

straint is equal to the product of the rotational spring con-

stant K and the change in angle, i.e.,

�M��= = − K�d2
v

d�2�
�=

. �24�

By substituting Eqs. �12�, �14�, and �15� into Eqs. �23� and

�24�, one obtains the following characteristic equation.

• Symmetric mode

�B�3�3 = 0, �25�

where


B1i = ni

B2i = ni
2 tan−1 ni

B3i = �ni
2�ni

2 − 1� − ��2�ni
2 + 1��tan−1 ni + �1 + �2�Kni

3 �i = 1,2,3. �26�

• Asymmetric mode

�C�3�3 = 0, �27�

where


C1i = ni

C2i = n2
2 tan n2

C3i = �ni
2�ni

2 − 1� − ��2�ni
2 + 1��tan ni − �1 + �2�Kni

3 �i = 1,2,3. �28�

The roots n1, n2, and n3 of Eq. �15� are functions of the

resonant frequency �. The substitution of these roots into

Eqs. �25� and �27� gives the equation for determining �, and

hence the frequency �. The frequency parameters obtained

from Eqs. �25� and �27� are presented in Table II. Again the

nonlocal results are smaller than the corresponding local re-

sults and the percentage differences are more significant for

higher vibration modes. For example, for the fundamental

mode and the third asymmetric mode, the percentage differ-

ences ��local−�nonlocal /�local��100% in the frequency pa-

rameters are 21% and 75% with �=0.4, respectively, while

for the fundamental mode and the third symmetric mode, the

percentage differences are 42% and 81%, respectively.

Consider a nanoarch with an opening angle 2=2� /3.

Figure 8 shows the relationship between the first resonant

frequencies � for symmetric and asymmetric modes and the

rotational stiffness K for various small length scale param-

eters �. As it can be seen, the results are rather similar to

those shown in Fig. 5 for a nanoring with a rotational con-

straint at the hinge location. The elastic end stiffness as well

as the small length scale effect can significantly alter the

value of resonant frequency. For �=0, the resonant fre-

quency � increases from 0.8 to 3.8 for asymmetric mode and

from 11.0 to 21.1 for the symmetric mode as the rotational

stiffness increases from K=0 to K=20. Moreover, the reso-

nant frequencies based on the nonlocal theory are lower than

their local counterparts and they decrease as the small scale

parameter increases. For K=20, the resonant frequency � for

the asymmetric mode decreases from 3.8 to 2.9 as � in-

creases from 0 to 0.4 while the resonant frequency � for the

symmetric mode decreases from 21.1 to 12.2.

The variations of the first resonant frequencies � with

respect to the opening angle 2 are depicted in Fig. 9 for

various small scale parameters �, where the stiffness of ro-

tational constraint is set as K=5. The resonant frequencies �

decreases sharply as the opening angle increases for both the

symmetric mode and the asymmetric mode. The nanoarch

with an opening angle 2=2� is virtually a circular nanoring

containing a rotational spring at the hinge location discussed

in the previous section. Again, it is observed that the reso-

nant frequencies � is lowered by the small length scale ef-

fect. Moreover, the alteration of the resonant frequency due

to small length scale effect is larger for relatively small open-

ing angles than for larger opening angles. For example, for

TABLE II. First three frequency parameters � for circular arch �2

=4� /3 and K=5� embedded in elastic medium with various small scale

parameters �. asym denotes asymmetric mode while sym denotes symmetric

mode.

Mode number

�=0 �=0.2 �=0.4

asym sym asym sym asym sym

1 2.9 17.5 2.7 14.8 2.3 10.1

2 66.0 172.0 49.8 113.0 28.7 55.3

3 371.5 703.9 211.6 345.0 92.0 135.5
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2=5� /3 the resonant frequencies of the asymmetric and

the symmetric modes decrease by 14% and 32%, respec-

tively, as � increases from 0 to 0.4 while for 2=4� /3 the

resonant frequencies of the asymmetric and the symmetric

modes decrease by 21% and 42%, respectively.

VI. CONCLUDING REMARKS

Derived herein are the governing equations for the free

vibration of circular nanorings/arches based on Eringen’s

nonlocal theory of elasticity. In addition to the small length

scale effect, the effect of the defects due to reduction of cross

section of nanostructures and elastic boundary conditions on

the frequencies and vibration mode shapes are investigated.

The nonlocal free vibration equations for a vibrating circular

arch segment are specialized for the cases of a full circular

ring, a circular ring with a defect and a circular arch embed-

ded in elastic medium. It can be seen that the defects and

elastic boundary will alter the resonant frequency values sig-

nificantly as well as the vibration modes shapes. The small

length scale effect lowers the resonant frequency but it does

not affect the vibration modes shape. Work is underway to

calibrate the small scale coefficient e0 by using MD simula-

tions in view to develop simple frequency formulas for en-

gineers who are designing nanorings and nanoarches for ap-

plications in MEMS and NEMS devices.
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