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Abstract

Variable stiffness composite laminates show advantageous structural features related to their en-

larged design space. They are attractive candidates for advanced engineering applications where the

assessment of static and dynamic behaviour and strength in presence of cracks is often required. In

the present work, a single-domain extended Ritz formulation is proposed to study the free vibrations

of cracked variable stiffness composite plates. The plate model is based on the first-order shear defor-

mation theory whose primary variable, i.e. displacements and rotations, are approximated via a set of

orthogonal polynomial trial functions enriched with a set of special crack functions. These functions

are able to inherently account for crack opening and crack tip singular fields. The plate governing

equations are deduced by the stationarity of the energy functional and the formulation has been im-

plemented in a computer code. The method has been validated by comparing the present results with

literature solutions for cracked isotropic plates and uncraked variable stiffness plates as, to the best

of author’s knowledge, no data on cracked variable stiffness plates free vibrations are available. An

explicative and representative study on the free vibrations of variable angle tow composite laminates is

finally presented with the aim of illustrating the approach capabilities, providing benchmarck results

and identifying distinctive features and opportunities of the variable stiffness concept for the design

of advanced damage tolerant structures. Keywords: Variable stiffness composites, Cracked plates,

Free vibrations, Extended Ritz method, X-Ritz method.
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1 Introduction

Recent developments in manufacturing technology [1] have made possible the implementation of an in-

novative design concept based on variable stiffness composite structures whose application in aerospace,

automotive and naval applications appears very attractive. Indeed, it is proved that such structures can

exhibit better structural behaviour with respect to the constant stiffness case [2]. This structural per-

formances improvement is strictly associated with the appropriate design of the composite material and

laminate layup. Actually, it is possible to take advantage from the extension of the material design space

obtained through the variability of the fibre deposition angle, as in the variable angle tow technology, or

the variability of material mixtures, as in the functionally graded materials case. Looking at advanced

engineering application, buckling and dynamic structural performances need to be accurately taken into

account in the structural design. Additionally, for fail safe or damage tolerant design requirements the

presence of cracks need often to be considered, as cracks alter the structural response sometimes leading

to unexpected or critical safety issues. Consequently it is crucial to develop appropriate analysis and

design tools for variable stiffness composite plates and shells, which are the usual structural components

in engineering applications. In this framework, due to the complexity of the problem, the development of

numerical models and solutions is mandatory.

Focusing on the structural dynamics of composite variable stiffness plates, the literature survey

returns that the finite element method has been extensively employed to investigate the linear free vibra-

tions problen using the classical lamination theory (CLPT) [3], the first order shear deformation theory

(FSDT) with both equivalent single layer [4, 5, 6, 7, 8] and layerwise [9] approach, the third order shear

deformation theory (TSDT) [10], high order plate theories (HODT) [11] and layerwise 3D models [12].

Finite elements have been also employed for nonlinear free vibrations analysis [13, 14]. For linear free

vibrations analysis, alternative methods have been proposed by Daraei and Hatami [15], who employed

a semi-analytical finite strip method in the framework of the CLPT, and by Nie et al. [16], who used

the CLPT and a complex fourier series solution. Heydarpour and Aghdam [17] investigated the tran-

sient response via 3D differential quadrature. The Ritz method has been also applied to study the free

vibrations of variable stiffness plates modeled by CLPT [18, 19] and by variable kinematics plate theories

[20]. All the works reported in the literature deal with uncracked variable stiffness plates and, to the best

of the author’s knowledge, no methods and solutions for the free vibrations analysis of cracked variable

stiffness composites have been proposed. This represents a gap of insight and know-how in the field of

this emerging structural concept.
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In view of the above described outline and with the aim to contribute to develop alternative tools

useful for the fail safe and damage tolerant design, in this paper the so-called X-Ritz method is proposed

for the free vibrations analysis of cracked, variable stiffness plates. The X-Ritz method has been presented

by the author and co-workers in previous works [21, 22, 23] and it has been successfully applied to variable

stiffness cracked plate buckling analysis [24]. It consists of a single-domain FSDT plate Ritz formulation,

which inherently accounts for the presence of embedded or edge through-the-thickness cracks. This is

achieved by expressing the problem primary variables via a trial functions set consisting of orthogonal

polynomials and special functions, which able to represent crack discontinuity and singular behaviour. The

objectives of the present work are: (i) to validate the X–Ritz method applicability to variable stiffness

plate free vibrations analysis, verifying its accuracy and effectiveness; (ii) to study the effects of cracks

on the free vibrations behaviour of VAT plates; (iii) to provide benchmark results for future works as, to

the best of the author’s knowledge, this is the first time free vibrations of cracked variable stiffness plates

are investigated.

The paper is organised as follows. The cracked plate formulation, the X-Ritz approximation and

the corresponding plate governing equations are briefly presented in Sec.2, referring to previous works for

the derivation details so as to keep the article short. Next, the validation of the proposed method and

original results are presented and discussed in Sec.3, followed by the concluding remarks in Sec.4.

2 Formulation

Consider a variable stiffness quadrilateral plate referred to a Cartesian coordinate system Ox1x2x3 whose

x1 and x2 axes lay in the plate reference plane Ω and the x3 axis is directed along the thickness. The

plate contains a straight, through-the-thickness crack. To deal with general quadrilateral geometries, let

us introduce the natural coordinate system Oξη, which maps the square domain [−1, 1] × [−1, 1] onto

the plate mid-plane coordinates via standard bilinear shape functions [25]. Finally, a polar coordinates

system Orkθk is defined with origin at each crack tip. Fig. 1 shows a sketch of the plate geometry and

the reference systems introduced .

2.1 Variational statement

In the framework of the first order shear deformation theory [26], assuming that the strain–displacement

relationships, the constitutive relationships and the kinematical boundary conditions are fulfilled, the
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Figure 1: Plate geometry and reference systems.

governing equations for plate vibrations are obtained by the stationarity of the following functional with

respect to the primary variable , namely the translational displacements vector u = {u1 u2 u3}T and

the transverse section rotations vector ψ = {ψ1 ψ2}T [27]

Π =

∫
Ω

1

2

[
(DDDpu)

T
A DDDpu+ (DDDpu)

T
B DDDp LLLψ + (DDDpLLLψ)

T
B DDDpu+

(DDDpLLLψ)
T
D DDDpLLLψ + (DDDnu+LLLψ)

T
G (DDDnu+LLLψ)

]
dΩ−

ω2

∫
Ω

1

2

[
uTJ0u+ uTJ1ψ +ψTJT1 u+ψTJ2ψ

]
dΩ

(1)

where ω is the vibrational natural angular frequency and the strain displacement operators DDDp, DDDn and

LLL are introduced as

DDDp =



∂

∂x
0 0

0
∂

∂y
0

∂

∂y

∂

∂x
0


, DDDn =


0 0

∂

∂x

0 0
∂

∂y

0 0 0

 LLL =


1 0

0 1

0 0

 (2)
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In the Eq. (1), A, B, D and G are the extensional, bending–extension coupling, bending and shear

stiffness matrices, respectively. It is worth nothing that for variable stiffness plate they are function of

the in-plane coordinates x1 and x2. Their definition is given in A, whereas details for their evaluation in

the variable angle tow (VAT) specific case are given in C. Also, in the Eq. (1), J0, J1, J2 are the mass

moments of inertia matrices, whose expressions are given in B.

2.2 X–Ritz model

The solution of the linear vibration problem for cracked plates, defined by the stationarity of the potential

Π in Eq. (1), is achieved by the X–Ritz method [21, 23]. It is based on the primary variable approximation

via a pb2-Ritz scheme [28] enriched by means of special functions able to describe the crack opening and

the crack tip fields [29, 30, 31, 32]. For an embedded crack, at the point of natural coordinates (ξ, η)

and corresponding polar coordinates (r1, θ1) and (r2, θ2), the primary variable χ ∈ {u1, u2, u3, ψ1, ψ2} is

approximated as

χ = fχ(ξ, η)

M∑
m=0

N∑
n=0

Lm(ξ)Ln(η)Cχ
⟨0⟩
mn+

gχ(ξ, η)

Nc∑
m=1

m∑
n=0

{
r1

2m−1
2 cos

(
2n+1

2 θ1
)
Cχ

⟨1⟩
mn + r2

2m−1
2 cos

(
2n+1

2 θ2
)
Cχ

⟨2⟩
mn+√

r23 sin
2

(
θ2
2

)
r

2m−1
2

1 sin
(
2n+1

2 θ1
)
Cχ

⟨3⟩
mn+√

r13 sin
2

(
θ1
2

)
r

2m−1
2

2 sin
(
2n+1

2 θ2
)
Cχ

⟨4⟩
mn

}

(3)

where Lj(ζ) is the j–th order Legendre polynomial of the coordinate ζ and the Cχ
⟨k⟩
mn (k ∈ {0, 1, 2, 3, 4})

are the unknown Ritz coefficients. According to the pb2 Ritz, the functions fχ(ξ, η) and gχ(ξ, η) of Eq.

(3) ensure the fulfillment of the kinematical boundary conditions; they are defined as

fχ(ξ, η) = (1 + ξ)q1(1− ξ)q2(1 + η)q3(1− η)q4 (4)

gχ(ξ, η) = (1− ξ2)(1− η2) (5)

where the exponents qi depend on the plate edges kinematical boundary conditions and are set as indicated

in Table 1. The approximation of Eq. (3) consists of two contributions: i) the first series contains regular

functions able to describe the global plate behaviour disregarding crack opening and crack tip singularities;
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Edge Free Constrained

(1 + ξ) = 0 q1 = q2 = q3 = q4 = 0 q1 = 1; q2 = q3 = q4 = 0
(1− ξ) = 0 q1 = q2 = q3 = q4 = 0 q2 = 1; q1 = q3 = q4 = 0
(1 + η) = 0 q1 = q2 = q3 = q4 = 0 q3 = 1; q1 = q2 = q4 = 0
(1− η) = 0 q1 = q2 = q3 = q4 = 0 q4 = 1; q1 = q2 = q3 = 0

Table 1: Exponents values in Eq.(4) to constrain the primary variable χ ∈ {u1, u2, u3, ψ1, ψ2} .

i) the second series contains enrichment terms, which describe the crack opening and the singular fields at

the crack tips. It is worth noting that the enrichment functions are forced to zero on the plate edges via

the boundary function gχ(ξ, η) and that the plate kinematical conditions are then fullfilled by properly

setting the boundary function fχ(ξ, η). For more details on the characteristics of the enrichment terms

refer to [33, 21, 22].

Similarly, for edge cracks that presents a single tip the X-Ritz approximation is given by

χ = fχ(ξ, η)

M∑
m=0

N∑
n=0

Lm(ξ)Ln(η)Cχ
⟨0⟩
mn+

gχ(ξ, η)

Nc∑
m=1

m∑
n=0

{
r1

2m−1
2 cos

(
2n+ 1

2
θ1

)
Cχ

⟨1⟩
mn+ r1

2m−1
2 sin

(
2n+ 1

2
θ1

)
Cχ

⟨3⟩
mn

} (6)

where, to allow crack opening at the edge, the function gχ is chosen as in Eq. (4) setting to 0 the exponent

qk associated with the edge intersected by the crack and to 1 all of the other exponents. Obviously, the

trial function in Eqs. (3) and (6) can be used for uncracked plates by setting Nc = 0

In compact matrix form the introduced X-Ritz approximation is written as

uψ
 =



u1

u2

u3

ψ1

ψ2


=



φ 0 0 0 0

0 φ 0 0 0

0 0 φ 0 0

0 0 0 φ 0

0 0 0 0 φ





Xu1

Xu2

Xu3

Xψ1

Xψ2


=

 Φu 0

0 Φψ

X = ΦX (7)

where φ is a row vector collecting the employed trial functions and Xχ is the column vector collecting

the unknown Ritz coefficients Cχ
⟨j⟩
mn being j ∈ {0, 1, 2, 3, 4} for embedded cracks and j ∈ {0, 1, 3} for edge

cracks, respectively

By substituting the primary variable approximations Eq. (7) into Eq. (1), the discretized form of

the functional Π is obtained. Its stationarity condition with respect to the unknown Ritz coefficients
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[21, 22] provides the following plate free vibrations governing equations

(
K − ω2M

)
X = 0 (8)

where

K =

∫
Ω

 (DDDpΦu)
T
ADDDpΦu + (DDDnΦu)

T
GDDDnΦu (DDDpΦu)

T
BDDDpLLLΦψ + (DDDnΦu)

T
GLLLΦψ

(DDDpLLLΦψ)
T
BDDDpΦu + (LLLΦψ)

T
G DDDnΦu (DDDpLLLΦψ)

T
D (DDDpLLLΦψ) + (LLLΦψ)

T
G (LLLΦψ)

 dΩ
(9)

M =

∫
Ω

ΦT
uJ0Φu ΦT

uJ1Φu

ΦT
ψJ

T
1 Φu ΦT

ψJ2Φψ

 dΩ (10)

The Eq. (8) is an homogeneous linear algebraic system whose eigenvalues provide the plate natural

circular frequency ω and the corresponding eigenvectors describe the modal shapes in terms of the Ritz

coefficients.

3 Numerical Results

A computer code based on the formulation outlined in Sec. 2 has been implemented. With reference to

the numerical implementation of the method, it is remarked that the evaluation of theK andM matrices

requires the computation of domain integrals whose integrand functions exhibit high gradients near the

crack tips; considering that the method effectiveness relies on the accurate evaluation of the resolving

system matrices, appropriate numerical integration schemes has been implemented as proposed in [23].

3.1 Convergence analysis and validation

Convergence analyses have been carried out to ascertain the behaviour of the proposed approach. To this

aim, square plates having edge length a = b = 1m and two different thickness ratio, namely h/a = 0.01 and

h/a = 0.1, have been considered assuming simply-supported and clamped boundary conditions applied

to all of the edges (see Fig. 2 for plate geometry definition). Referring to the notation described in C,

the plates have a [⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩] VAT layup with plies exhibiting the following properties in

the orthotropic material reference system: E1 = 173.0GPa, E2 = E3 = 7.2GPa, G13 = G12 = G23 =
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Figure 2: Cracked plate geometry.

3.76GPa, ν12 = 0.29 and ρ = 1540 kgm−3, being Ei the Young’s moduli, Gij the shear moduli, νij the

Poisson’s coefficients and ρ the material density. The approximation employed in the analyses consists of

N ×N regular trial functions and Nc enrichment functions for the modelization of the crack. Table 2 lists

the results obtained for the first three nondimensional natural frequencies λ = ω
a2

h

√
ρ

E1
of the uncracked

simply supported and clamped plates as the number N of the regular trial functions grows. In Table 2,

available literature results [10, 16] are also reported for comparison and error appraisal. The obtained

results show the capability of the approach to describe efficiently variable uncracked stiffness plate free

vibrations as converged values are rapidly attained showing errors with respect to the literature data that

not exceed 2%. Then, the case of cracked plates has been investigated and Table 3 lists the results for

Table 2: Nondimensional frequency parameter λ for the [⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩/] VAT square laminate.

Simply-supported Clamped

h/a = 0.01 h/a = 0.1 h/a = 0.01 h/a = 0.1

N Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

4 3.32 8.19 13.78 2.74 5.02 7.25 7.20 48.65 52.50 4.09 6.64 8.08

6 3.18 5.59 9.39 2.64 4.27 6.69 6.88 9.90 16.53 3.97 5.42 7.43

8 3.13 5.21 8.47 2.60 4.19 6.56 6.77 8.84 13.23 3.95 5.35 7.38

10 3.11 5.12 8.35 2.58 4.16 6.51 6.71 8.67 12.73 3.95 5.34 7.38

12 3.10 5.09 8.33 2.58 4.15 6.50 6.70 8.63 12.63 3.95 5.33 7.38

14 3.09 5.07 8.32 2.57 4.14 6.49 6.69 8.62 12.60 3.94 5.33 7.38

16 3.09 5.06 8.32 2.57 4.14 6.49 6.69 8.61 12.59 3.94 5.33 7.38

Ref. [10] 3.11 5.09 8.36 2.59 4.15 6.53 6.71 8.61 12.60 3.94 5.32 7.38

Ref. [16] 3.12 5.14 8.47 — — — 6.75 8.64 12.72 — — —

simply supported square plates containing a central horizontal crack, namely c/a = e/b = 0.5 and α = 0◦,

with length d/a = 0.5. The results show good convergence properties of the enrichment contribution

evidencing also that the accuracy depends on the appropriate description of the plate global behaviour
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via the regular trial functions contribution. It is remarked that no results have been found in the literature

for the cracked variable stiffness plates free vibrations problem in order to extend the validation comparison

also to this case. Generally, the data suggest that the method convergence properties appear insensitive

Table 3: Nondimensional frequency parameter λ for the simply supported square
[⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩/] VAT laminate with central horizontal crack (c/a = e/a = 0.5, d/a = 0.5,
α = 0◦).

h/a = 0.01 h/a = 0.1

N = 8 N = 16 N = 8 N = 16

Nc Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

1 2.93 5.09 8.44 2.83 4.96 8.30 1.84 3.50 3.94 1.78 3.40 3.89

2 2.68 4.77 5.36 2.55 4.57 5.20 1.79 3.24 3.91 1.76 3.20 3.87

3 2.07 4.57 5.02 2.01 4.47 4.92 1.77 3.19 3.88 1.74 3.18 3.85

4 2.02 4.49 4.68 1.98 4.42 4.61 1.76 3.19 3.87 1.74 3.17 3.85

5 2.01 4.44 4.66 1.97 4.40 4.60 1.76 3.18 3.87 1.73 3.17 3.84

6 2.01 4.41 4.64 1.97 4.38 4.60 1.76 3.18 3.87 1.73 3.17 3.84

7 2.00 4.40 4.64 1.97 4.37 4.60 1.75 3.18 3.86 1.73 3.17 3.84

8 2.00 4.38 4.64 1.97 4.37 4.60 1.75 3.18 3.86 1.73 3.17 3.84

to the thickness ratio. It is worth noting that the illustrated convergence studies are representative of the

approach convergence features and they are supported and confirmed by an extensive validation numerical

campaign whose results are not provided here for the sake of brevity.

Accuracy of the method has been investigated by comparing its solutions with results available in

the literature or obtained by finite elements. Accordingly with the performed convergence analyses, the

following results by the present method have been obtained by setting N = 16 and Nc = 6. Firstly, the

free vibrations of uncracked VAT plates with the same geometrical characteristics and material properties

as those used for the preceding convergence studies have been considered and the corresponding results

compared with those of Ref. [10], which are based on a third order kinematic plate model. Tables 4 and 5

list the nondimensional natural frequencies λ for the [⟨0, 45⟩/⟨−45,−60⟩/⟨0, 45⟩], [⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩]

and [⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩] VAT layups and different thickness ratios for simply-supported and clamped

boundary conditions, respectively. There is good agreement between present and literature results; some

appreciable differences appear for the higher modes of thick plates (however contained within 3%), which

can be ascribed to the different kinematic models. As stated above, for cracked variable stiffness plates no

free vibrations results are available and then the method accuracy and potentiality have been validated

through its application to isotropic and orthotropic constant stiffness plates. An isotropic square plate
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Table 4: Nondimensional frequency parameter λ for uncracked simply-supported square VAT laminates.

[⟨0, 45⟩/⟨−45,−60⟩/⟨0, 45⟩] [⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩] [⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩]

h/a = 0.01 h/a = 0.1 h/a = 0.01 h/a = 0.1 h/a = 0.01 h/a = 0.1

Mode Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10]

1 3.36 3.38 2.74 2.77 2.91 2.91 2.45 2.47 3.09 3.11 2.57 2.59

2 5.55 5.57 4.41 4.42 4.76 4.75 3.96 3.99 5.06 5.09 4.14 4.15

3 9.06 9.06 6.52 6.61 7.99 7.98 6.26 6.33 8.32 8.36 6.49 6.53

4 10.11 10.14 6.91 6.91 10.67 10.67 6.65 6.72 10.19 10.30 6.62 6.66

5 12.44 12.53 7.90 7.99 12.06 12.08 7.82 7.91 11.93 12.08 7.73 7.79

6 13.83 13.91 9.87 9.86 12.33 12.34 8.66 8.79 13.16 13.23 9.01 9.08

7 16.17 16.29 10.17 10.29 16.02 16.05 10.27 10.45 15.73 16.56 10.31 10.53

8 19.63 20.16 10.73 10.99 16.47 16.60 10.86 11.10 16.82 17.08 10.69 10.84

9 20.98 21.35 11.81 12.09 21.49 22.10 11.22 11.47 20.35 20.91 11.52 11.68

Table 5: Nondimensional frequency parameter λ for uncracked clamped square VAT laminates.

[⟨0, 45⟩/⟨−45,−60⟩/⟨0, 45⟩] [⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩] [⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩]

h/a = 0.01 h/a = 0.1 h/a = 0.01 h/a = 0.1 h/a = 0.01 h/a = 0.1

Mode Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10]

1 5.46 5.47 3.55 3.64 6.28 6.29 3.80 3.91 6.69 6.71 3.94 4.04

2 7.75 7.75 5.30 5.39 8.14 8.14 5.24 5.37 8.61 8.61 5.30 5.44

3 11.57 11.57 7.04 7.31 11.66 11.65 7.38 7.71 12.59 12.60 7.38 7.73

4 14.07 14.09 7.82 7.93 16.05 16.05 7.48 7.75 15.86 15.94 7.53 7.78

5 16.26 16.29 8.53 8.80 16.75 16.75 8.63 9.02 17.27 17.33 8.37 8.69

6 16.75 16.75 10.46 10.66 17.94 17.95 9.78 10.19 18.69 18.75 9.76 10.16

7 20.10 20.15 11.11 11.45 21.40 21.42 11.06 11.53 21.10 21.49 10.93 11.38

8 23.04 23.05 11.18 11.65 21.78 21.80 11.23 12.00 23.14 23.27 11.22 11.80

9 25.46 25.54 12.21 12.75 27.07 27.17 12.16 12.79 27.25 27.55 11.84 11.86
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with Poisson’s ratio ν = 0.3 and thickness ratio h/a = 0.1 has been considered containing a central crack

(c/a = e/a = 0.5) with different length ratios d/a and inclination α (see Fig 2a); two boundary conditions

have been investigated, namely simply supported and cantilevered along the side orthogonal to the crack.

The results obtained for the first five natural frequencies are listed in Table 6 where comparison with

results from Ref. [32] is proposed. Also a rectangular simply supported rectangular plate with a/b = 2,

h/b = 0.1 and the same isotropic material properties as above has been analyzed considering an edge

crack of different lengths d/b, inclination α and position c/a (see Fig. 2b). The corresponding results

are listed in Table 7 where they are again compared with those presented in Ref [32]. Good agreement is

observed between present and literature results for these benchmark cases. Finally, the case of through-

Table 6: Nondimensional frequency parameter λ for isotropic square plates with a central crack.

Simply-supported Cantilevered

d/a = 0.2 d/a = 0.4 d/a = 0.6 d/a = 0.2 d/a = 0.4 d/a = 0.6

α Mode Present Ref. [32] Present Ref. [32] Present Ref. [32] Present Ref. [32] Present Ref. [32] Present Ref. [32]

0◦

1 5.58 5.58 5.23 5.23 4.91 4.91 1.04 1.04 1.04 1.04 1.03 1.03

2 13.58 13.57 12.32 12.30 9.59 9.58 2.42 2.42 2.40 2.40 2.38 2.38

3 13.75 13.74 13.64 13.62 13.36 13.35 6.08 6.08 6.08 6.07 5.89 6.01

4 20.99 20.97 20.67 20.64 19.44 19.42 7.44 7.44 6.88 6.87 6.28 6.27

5 24.15 24.12 22.08 22.05 20.83 20.81 8.53 8.52 8.39 8.39 7.91 7.90

15◦

1 5.51 5.58 5.15 5.22 4.85 4.88 1.03 1.04 1.03 1.03 1.03 1.03

2 13.45 13.57 12.32 12.30 9.52 9.58 2.39 2.42 2.37 2.39 2.34 2.35

3 13.54 13.74 13.52 13.61 13.23 13.29 6.02 6.07 6.02 6.06 5.99 6.03

4 20.65 20.94 20.25 20.40 19.21 19.30 7.32 7.46 6.68 6.91 6.18 6.31

5 24.08 24.23 22.32 22.43 21.08 21.15 8.38 8.52 8.31 8.40 7.92 7.96

30◦

1 5.52 5.58 5.18 5.21 4.80 4.82 1.03 1.04 1.02 1.03 1.01 1.02

2 13.54 13.57 12.29 12.30 9.59 9.59 2.40 2.42 2.36 2.37 2.28 2.29

3 13.59 13.74 13.50 13.58 13.11 13.16 6.02 6.04 5.98 5.99 5.83 5.93

4 20.76 20.88 20.08 20.11 19.11 19.11 7.42 7.49 7.00 6.98 6.52 6.54

5 24.41 24.39 23.12 23.15 21.07 21.05 8.47 8.53 8.40 8.44 8.10 8.73

45◦

1 5.58 5.58 5.20 5.20 4.79 4.78 1.03 1.03 1.02 1.02 0.99 0.99

2 13.58 13.57 12.31 12.29 9.61 9.59 2.42 2.42 2.36 2.36 2.26 2.24

3 13.75 13.74 13.58 13.57 13.10 13.09 6.00 6.00 5.86 5.86 5.66 5.64

4 20.87 20.85 20.01 19.99 19.05 19.03 7.54 7.55 7.21 7.22 6.86 6.80

5 24.51 24.49 23.59 23.57 20.97 20.94 8.54 8.53 8.49 8.49 8.32 8.29

the-thickness cracked laminates is analyzed considering a square, clamped plate having thickness ratio

h/a = 0.1 and central cracks (c/a = e/a = 0.5) with different length ratios d/a and inclination α. The

[0/90/45/ − 45/ − 45/45/90/0] and [0/90/45/ − 45/45/ − 45/0/90] layups have been considered with

straight fiber laminas exhibiting the same orthotropic material properties used in the preceding analyses.

Table 8 lists the natural frequencies resulting from the analyses carried out, using the implemented code
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Table 7: Nondimensional frequency parameter λ for isotropic rectangular plate (a/b = 2) with edge crack.

d/b = 0.2 d/b = 0.4 d/b = 0.6

α c/a Mode Present Ref. [32] Present Ref. [32] Present Ref. [32]

90◦ 0.5

1 14.56 14.59 14.42 14.48 14.12 14.20

2 22.93 22.97 22.73 22.75 21.64 21.63

3 36.52 36.65 35.42 35.77 33.45 33.86

4 46.83 47.24 46.30 46.91 40.84 41.82

5 54.67 54.68 51.83 52.08 46.37 46.84

90◦ 0.25

1 14.58 14.58 14.49 14.50 14.24 14.24

2 23.00 23.03 22.58 22.65 21.66 21.75

3 36.54 36.62 35.80 35.86 32.58 32.53

4 47.18 47.12 46.70 46.91 42.40 42.97

5 54.62 54.53 53.01 53.05 47.62 47.60

135◦ 0.25

1 14.55 14.55 14.28 14.27 13.66 13.66

2 23.05 23.05 22.91 22.90 22.43 22.42

3 36.62 36.62 36.00 35.98 33.71 3.42

4 47.04 47.03 45.47 45.45 43.83 43.82

5 54.67 54.65 53.31 53.29 49.97 49.93

with variable stiffness computing capabilities, and their comparison with results obtained by converged

models in MSC Nastran® finite element code. Also for these analyses the comparison of present and

reference results show very good agreement.

In conclusion, the presented convergence and accuracy studies allow to consider the proposed method

and its computational implementation validated. The combination of its capabilities and features, verified

by the analysis of uncracked variable stiffness plates and cracked constant stiffness plates, allows to be

confident that the method can be successfully applied to investigate also cracked variable stiffness plates

free vibrations that, to the best of the author’s knowledge, have not been yet investigated and for which

no data are available in the literature.

3.2 Application to cracked variable angle tow laminated plates

A general and comprehensive parametric study of cracked variable stiffness composite laminates is not fea-

sible due to the huge number of different configurations that arise by considering the involved parameters

(fiber deposition law, layup, crack position, crack length, crack inclination). On the basis of this observa-

tion, in this section an example study is presented to show the potentiality of the proposed approach and

highlight some features of variable stiffness plates that can be useful in structural design. In particular, the

VAT laminate configuration just used for some buckling studies in Refs. [34] and [24] is here investigated.

12



Table 8: Nondimensional frequency parameter λ for clamped cracked square laminates.

[0/90/45/− 45/− 45/45/90/0] [0/90/45/− 45/45/− 45/0/90]

d/a = 0.2 d/a = 0.4 d/a = 0.6 d/a = 0.2 d/a = 0.4 d/a = 0.6

α Mode Present FEM Present FEM Present FEM Present FEM Present FEM Present FEM

0◦

1 4.30 4.30 4.17 4.17 4.07 4.07 4.26 4.22 4.10 4.06 3.99 3.95

2 6.77 6.78 5.99 6.01 4.93 4.94 7.10 7.00 6.03 5.96 4.83 4.79

3 7.77 7.77 7.73 7.73 7.66 7.66 7.35 7.24 7.30 7.20 7.22 7.12

4 9.53 9.53 9.34 9.35 8.92 8.93 9.52 9.38 9.34 9.21 8.67 8.56

5 9.99 9.99 9.51 9.52 9.13 9.14 10.69 10.53 10.09 9.95 9.76 9.62

30◦

1 4.26 4.28 4.09 4.11 3.97 3.98 4.24 4.20 4.05 4.02 3.93 3.89

2 6.75 6.80 5.97 5.99 4.86 4.88 7.10 7.00 5.97 5.92 4.80 4.76

3 7.65 7.72 7.49 7.53 7.28 7.31 7.24 7.24 7.22 7.15 7.04 6.96

4 9.39 9.51 9.23 9.27 8.96 8.97 9.13 9.37 9.31 9.23 8.81 8.71

5 9.99 10.10 9.67 9.76 9.04 9.11 10.61 10.60 10.20 10.10 9.45 9.32

45◦

1 4.27 4.27 4.07 4.07 3.94 3.94 4.25 4.20 4.05 4.01 3.92 3.88

2 6.82 6.83 5.97 5.99 4.84 4.85 7.09 7.00 5.97 5.91 4.80 4.76

3 7.64 7.64 7.29 7.30 7.04 7.04 7.34 7.23 7.23 7.13 7.01 6.92

4 9.50 9.50 9.27 9.27 8.82 8.83 9.51 9.37 9.37 9.24 9.10 8.97

5 10.18 10.19 9.96 9.96 9.35 9.36 10.79 10.63 10.27 10.14 9.12 9.01

60◦

1 4.25 4.26 4.06 4.06 3.92 3.93 4.24 4.20 4.06 4.02 3.93 3.90

2 6.86 6.87 5.98 6.01 4.79 4.81 7.07 7.00 5.97 5.92 4.79 4.76

3 7.52 7.56 7.07 7.09 6.85 6.87 7.29 7.24 7.24 7.15 7.03 6.96

4 9.45 9.51 9.24 9.28 8.58 8.62 9.42 9.37 9.35 9.23 8.79 8.72

5 10.25 10.28 10.12 10.17 9.76 9.78 10.70 10.60 10.23 10.10 9.44 9.32

90◦

1 4.25 4.25 4.06 4.06 3.93 3.93 4.26 4.22 4.10 4.06 3.99 3.95

2 6.94 6.94 6.01 6.03 4.73 4.75 7.10 7.00 6.03 5.96 4.83 4.79

3 7.41 7.43 6.89 6.89 6.77 6.77 7.35 7.24 7.30 7.20 7.22 7.12

4 9.53 9.53 9.28 9.29 8.36 8.38 9.52 9.38 9.34 9.21 8.67 8.56

5 10.35 10.35 10.28 10.28 10.25 10.26 10.69 10.53 10.09 9.95 9.76 9.62
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It is a square plate having a = b = 0.24m and [0 ± ⟨ϑA/ϑB⟩]3S layup (see C for VAT laminate notation

and fiber pattern definition). Each fibre reinforced ply is 0.127mm thick and presents a linear variation

of the fiber deposition angle as per Eq. (19) where ϑA and ϑB are evaluated at the center and at the

edge of the ply, respectively. The plies have the following material properties in the orthotropic reference

system: E1 = 181.0GPa, E2 = 10.3GPa, G31 = 7.0GPa, G32 = 3.0GPa, G12 = 7.17GPa, ν12 = 0.28

and ρ = 1540.0 kgm−3. Two sets of boundary conditions have been considered, namely simply-supported

and clamped edges. Furthermore, analyses for both an embedded crack (Fig. 2a) and an edge crack (Fig.

2b) have been carried out assuming different lengths d and inclination α. The results presented in the

following have been obtained by setting N = 16 and Nc = 5 in the approximation scheme, that provides

converged results as per preliminary convergence analyses. In the discussion, the focus is on the first

vibration mode, nevertheless the developed tool is obviously able to provide results and to enable similar

investigations also for the other vibrations modes.

3.3 Embedded central crack

In this subsection the case of an embedded central crack (c/a = e/a = 0.5 as defined in Fig. 2a) is

discussed considering different values of the crack length d and inclination α. Figs. 3 and 4 show the

first mode nondimensional frequency variation with respect to the laminate fiber deposition characteristic

angles, namely ϑA and ϑB , for the simply supported and clamped boundary conditions, respectively.

Each figure reports by columns the plots for fixed crack length and by rows the plots for fixed crack

inclinations. Analysis of the results returns the following general considerations. As expected, the plate

natural frequency decreases for the presence of the crack as this reduces the plate stiffness; this effect

is more and more pronounced as the crack length grows. The crack inclination determines variations in

the vibration frequency that are stronger for the lower and higher values of ϑA and ϑB , as shown by

the exemplificative curves of Fig. 5, whereas fibre patterns with intermediate values of the characteristics

angles have lesser sensitivity with respect to this parameter. Moreover, for a given crack configuration, the

modal shape is influenced by the fibres pattern; this effect is not marked at global level but concentrates

in the crack zone where different crack opening arise evidencing possible modifications in the crack mode

mixing. To illustrate this occurrence, Fig. 6 reports the first mode transverse displacement distributions

corresponding to different fibre path angles ϑA and ϑB when a central crack with d/a = 0.4 and α = 45◦

is considered. To better detail with an example, Fig. 7 compares the deformed modal shapes of the
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Figure 3: First mode nondimensional frequency λ for the [0± ⟨ϑA/ϑB⟩]3S VAT simply supported square
laminate containing a central crack (c/a = e/a = 0.5) with different lengths d and inclinations alpha.
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Figure 4: First mode nondimensional frequency λ for the [0± ⟨ϑA/ϑB⟩]3S VAT clamped square laminate
containing a central crack (c/a = e/a = 0.5) with different lengths d and inclinations alpha.
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Figure 5: First mode nondimensional frequency λ variation with respect to crack inclination α for the
[0± ⟨ϑA/ϑB⟩]3S VAT laminate with a central crack (c/a = e/a = 0.5) having d/a = 0.6.

laminates with (ϑA, ϑB) = (90◦, 60◦) and (ϑA, ϑB) = (45◦, 0◦).

A useful investigation for design concerns the sensitivity of the cracked plate vibration frequencies

as the fiber deposition path varies. Figs. 8 and 9 show the percentage variation of the plate fundamental

frequency, denoted by ∆λ%, with respect to that of the corresponding straight fibres (ϑA = ϑB) cracked

plate for the simply supported and clamped laminates, respectively. In particular, each plot of the figures

refers to a given crack configuration in terms of length and inclination and reports ∆λ% as function of

the fiber path angle ϑB , assuming that the fiber path angle ϑA is fixed. Data analysis evidences that for

a given crack configuration it could be possible to find fibres paths with ∆λ% > 0, which then enable the

possibility to keep down the plate stiffness loss with respect to the straight fibres case. Some explanatory

examples are provided for the simply supported plate case (refer to Fig. 8):

– if d/a = 0.6 and α = 30◦, for ϑA = 90◦ all the VAT fibres pattern reduce the loss in stiffness with

respect to the straight fiber case, whereas for ϑA = 45◦ the straight fibres laminate provides the higher

stiffness;

– if d/a = 0.4 and α = 45◦, assuming ϑA = 60◦ there is a slight stiffness improvement for 20◦ < ϑB < 65◦,

whereas for ϑA < 0◦ all the fibres paths provide higher vibration frequency than the straight fibres case;

– if d/a = 0.2 and α = 30◦, assuming ϑB = 75◦, values 30◦<̃ϑA < 75◦ determine loss in stiffness greater

than straight fibers.
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Figure 6: First mode shape for the [0±⟨ϑA/ϑB⟩]3S VAT clamped square laminates containing an embedded
crack with d/a = 0.6, c/a = e/a = 0.5 and α = 45◦. Color fringes represent constant values of u3/u3max.
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(a) [0± ⟨45◦/0◦⟩]3S VAT laminate (b) [0± ⟨90◦/60◦⟩]3S VAT laminate

Figure 7: First mode deformation for VAT clamped square laminates containing an embedded crack
with d/a = 0.6, c/a = e/a = 0.5 and α = 45◦. Color fringes represent constant values of transverse
displacement.

Similarly, other examples are provided for the clamped boundary conditions (refer to Fig. 9):

– if d/a = 0.4 and α = 60◦, if ϑB < ϑA there is a gain in the sense that the frequency reduction is lower

than that of the straight fiber case;

– if d/a = 0.2 and α = 45◦, for a given ϑB angles ϑA > ϑB determines vibration frequency higher than

the corresponding straight fiber laminate.

As showed by the previous examples, the stiffness loss and then the natural frequency variation for cracked

VAT plates depend on crack parameters, fibres patterns and boundary conditions. For damage tolerant

design, this makes crucial the detailed investigations of free vibrations for which the present approach

propose itself as an efficient and versatile analysis tool.

3.4 Edge crack

To complete the illustration of the proposed approach the case of edge cracks is briefly examined in this

subsection. Supported by many analyses carried out, not fully reported here for the sake of brevity,

observations and conclusions similar to those presented in the preceding subsection for the embedded

crack hold. In the following, some exemplifying results for laminates with the same characteristics as

those of the preceding section but containing an edge crack with c/a = 0.5 and different lengths d and

inclinations α (see Fig. 2b) are given to support the method capabilities. For the simply supported

boundary conditions case, Fig. 10 shows the first mode nondimensional frequency distribution with
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Figure 8: Percentage first mode nondimensional frequency λ reduction for the [0±⟨ϑA/ϑB⟩]3S VAT simply
supported square laminate containing a central crack with different lengths and inclinations.
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Figure 9: Percentage first mode nondimensional frequency λ reduction for the [0 ± ⟨ϑA/ϑB⟩]3S VAT
clamped square laminate containing a central crack with different lengths and inclinations.
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respect to the fiber deposition path characteristic angles ϑA and ϑB . Fig. 6 illustrates the modal shape

variations for the laminate containing an edge crack with d/a = 0.4 and α = 120◦.

4 Conclusions

A single-domain, meshless method for the free vibrations analysis of cracked variable stiffness composite

plates and corresponding results have been presented. Known in the literature as eXtended Ritz or X–

Ritz method, this approach is based on the pb2 Ritz method coupled with the employement as trial

functions of both standard orthogonal polynomials and special functions, which are able to inherently

account for displacement discontinuity and crack tip singular fields. Considering that, to the best of

the author’s knowledge, this is the first study on free vibrations of variable stiffness cracked composite

plates, an extensive validation activity has been carried out and convergence characteristics and accuracy

of the method have been ascertained by comparison with literature data on cracked isotropic plates

and uncracked variable stiffness plates. Representative case studies for variable angle tow laminated

plates, with different crack lengths, inclinations and plate boundary conditions, have been presented and

discussed. The obtained results evidence the effects of the fibre patterns on the vibration frequency and

modal shapes of variable angle tow laminates. They indicate that the stiffness loss due to the crack

presence can be reduced to a certain extent by properly choosing the fibre path. This opens to alternative

and viable solutions in the framework of damage tolerant design of composite structures.
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[17] Y. Heydarpour and M.M. Aghdam. A hybrid bézier based multi-step method and differential quadra-

ture for 3d transient response of variable stiffness composite plates. Composite Structures, 154:344–

359, 2016.

[18] Shinya Honda, Yoshihiro Narita, and Katsuhiko Sasaki. Maximizing the fundamental frequency of

laminated composite plates with optimally shaped curvilinear fibers. Journal of System Design and

Dynamics, 3(6):867–876, 2009.
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A Plate section stiffness properties

Assuming a plane stress state, namely σ33 = 0, the material behaviour at the plate point of coordinates

(x1, x2, x3) is given by the generalized orthotropic constitutive law

σ =

 σp

σn

 =



σ11

σ22

σ12

σ31

σ32


=



Q11 Q12 Q13 0 0

Q12 Q22 Q23 0 0

Q13 Q23 Q33 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55





ε11

ε22

ε12

ε31

ε32


=

Qp 0

0 Qn


 εp

εn

 = Qε (11)

where σij are the stresses and εij are the strains. Accordingly, the plate section stiffness matrices appearing

in Eq. (1) are defined as

A(x1, x2) =

∫
h

Qp(x1, x2, x3) dx3 (12)

B(x1, x2) =

∫
h

x3 Qp(x1, x2, x3) dx3 (13)

D(x1, x2) =

∫
h

x23 Qp(x1, x2, x3) dx3 (14)

G(x1, x2) = F

∫
h

Qn(x1, x2, x3) dx3 (15)

where h = h(x1, x2) is the plate thickness and F is a 2× 2 matrix containing the shear correction factors

[35].

B Plate section inertia properties

The plate section inertia properties appearing in Eq. (1) are defined as

J0 =

∫
h

ρ I3 dx3 (16)

J1 =

∫
h

ρ x3 LLL dx3 (17)

J2 =

∫
h

ρ x23 I2 dx3 (18)

where ρ is the mass mass density and Ik denotes the k × k identity matrix.
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C VAT laminates

Variable angle tow (VAT) laminates are plates obtained by stacking fiber-reinforced composite plies having

fibres laid at a variable angle in the lamina plane. For VAT plies, the fibre orientation angle ϑ varies as

a function of the in-plane coordinates, namely ϑ = ϑ(x1, x2). Consequently, in VAT laminates the

extensional stiffness matrix A, the bending–extensional stiffness matrix B, the bending stiffness matrix

D and the shear stiffness matrix G are function of the plate in-plane coordinates x1 and x2; thus, VAT

laminates are variable stiffness plates.

Referring to Fig.12, for the VAT plies considered in the present work, the angle ϑ varies according

to the following law holding along the baseline r

ϑ = ϑ0 +
ϑArB − ϑBrA
rB − rA

+ |r| ϑB − ϑA
rB − rA

(19)

where ϑ0 is the inclination of the baseline with respect to the x1 axis, ϑA and ϑB are the fibre angles

with respect to the baseline at the distances rA and rB from the projection O′ of the plate center on the

baseline. According to Gurdal [34], assuming that the point A corresponds to the origin of r, namely

rA = 0, and fixing rB − rA = rB = d, such a fiber path is denoted by ϑ0 + ⟨ϑA|ϑB⟩. For a point of a VAT

ϑA

ϑB

r

O′ rB

rA

x1

ϑ0

r θ

A

B

Figure 12: VAT parameter definitions.

ply having fibre deposition angle ϑ the stiffness properties are expressed as

Q11 = Q̄11 cos
4 ϑ+ 2

(
Q̄12 + 2Q̄66

)
sin2 ϑ cos2 ϑ+ Q̄22 sin

4 ϑ (20a)

29



Q12 = Q̄12 cos
4 ϑ+

(
Q̄11 +Q22 − 4Q̄66

)
sin2 ϑ cos2 ϑ+ Q̄12 sin

4 ϑ (20b)

Q22 = Q̄11 sin
4 ϑ+ 2

(
Q̄12 + 2Q̄66

)
sin2 ϑ cos2 ϑ+ Q̄22 cos

4 ϑ (20c)

Q16 =
(
Q̄11 −Q12 − 2Q̄66

)
sinϑ cos3 ϑ+

(
Q̄12 −Q22 + 2Q̄66

)
sin3 ϑ cosϑ (20d)

Q26 =
(
Q̄11 −Q12 − 2Q̄66

)
sin3 ϑ cosϑ+

(
Q̄12 −Q22 + 2Q̄66

)
sinϑ cos3 ϑ (20e)

Q66 =
(
Q̄11 +Q22 − 2Q̄12 − 2Q̄66

)
sin2 ϑ cos2 ϑ+ Q̄66

(
sin4 ϑ+ cos4 ϑ

)
cosϑ (20f)

Q44 = Q̄44 cos
2 ϑ+ Q̄55 sin

2 ϑ (20g)

Q45 =
(
Q̄55 − Q̄44

)
cosϑ sinϑ (20h)

Q55 = Q̄44 sin
2 ϑ+ Q̄55 cos

2 ϑ (20i)

where

Q̄11 =
E1

1− ν12ν21
(21a)

Q̄22 =
E2

1− ν12ν21
(21b)

Q̄12 =
ν12E2

1− ν12ν21
(21c)

Q̄66 = G12 (21d)

Q̄44 = G23 (21e)

Q̄44 = G13 (21f)

being Ei the Young moduli, Gij the shear moduli and νij the Poisson’s coefficients measured in the

material orthotropic reference frame .
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