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Abstract A three-dimensional modelling of free

vibrations and static response of functionally graded

material (FGM) sandwich plates is presented. Natural

frequencies and associated mode shapes as well as

displacements and stresses are determined by using

the finite element method within the ABAQUSTM

code. The three-dimensional (3-D) brick graded finite

element is programmed and incorporated into the code

via the user-defined material subroutine UMAT. The

results of modal and static analyses are demonstrated

for square metal-ceramic functionally graded simply

supported plates with a power-law through-the-thick-

ness variation of the volume fraction of the ceramic

constituent. The through-the-thickness distribution of

effective material properties at a point are defined

based on the Mori-Tanaka scheme. First, exact values

of displacements, stresses and natural frequencies

available for FGM sandwich plates in the literature are

used to verify the performance and estimate the

accuracy of the developed 3-D graded finite element.

Then, parametric studies are carried out for the

frequency analysis by varying the volume fraction

profile and value of the ceramic volume fraction.

Keywords Functionally graded materials �

Sandwich plates � 3-D brick graded finite element �
Static analysis � Frequency analysis

1 Introduction

Sandwich panels are promising thin-walled structural

elements combining high performance with light-

weight. This is due to their excellent strength-to-

weight and stiffness-to-weight ratios, acoustic and

thermal insulation, protection against impacts and a

possibility of tailoring properties for optimizing

structural responses [1]. Conventional sandwich plates

are tri-layer structures consisting of two thin, strength

face sheets (skins) and a thick, lightweight core [2].

However, when dissimilar materials are joined, a high

mismatch in material and geometrical properties

between them leads to an inter-laminar stress concen-

tration at the face sheet-to-core interface and as a

result sandwich composites often suffer from prema-

ture failure caused by debonding the face sheet from
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the core. This issue has already become one of major

topics extensively studied over the past several

decades involving static, dynamic and fracture prob-

lems, e.g. recent papers [3–12]. Another important

aspect is that usual sandwich materials have no high

service temperature capabilities. These disadvantages

of the sandwich structure can be reduced or eliminated

by using a functionally graded material (FGM) as

constitutive layers.

FGMs are a new type of composite materials, which

were initially developed as thermal barrier coatings to

minimize thermal and residual stresses as well as to

prevent large deflections under high temperature in

aerospace structures and fusion reactors [13]. The

original idea was to use heat resistant ceramic on a

high-temperature side and, then, to gradually reduce

its volume fraction to metal on the other side.

Nowadays, this FGM concept has received a wide

spreading in automotive, optoelectronic, biomedical

and sport industries. Combining two or more material

phases often with incompatible properties of individ-

ual materials, the specific features desirable for certain

engineering applications are accomplished. Thus, with

spatially varying volume fraction of one of the

constituents from the bottom to top face sheets of the

sandwich material, the bond strength enhancement,

removing interface stress concentration, providing

multi-functionality and ability to control deformation,

dynamic response, etc. can be achieved [14]. Since the

use of FGMs as a branch of advanced composite

materials, in particular functionally graded sandwich

plates, increases, there is a high demand in predictions

of their responses at a design stage to ensure their

reliable exploitation. In this respect, many studies

have been performed to estimate the thermal-mechan-

ical behaviour of FGM plates including fracture, e.g.

[15–20] among of the latest. On the other hand, the

analysis of free vibrations and static response of FGM

plates is of primary importance for their performance

assessment.

A considerable amount of research on free vibra-

tions and static analysis studies of FGM plates and

shells can be found in the literature. Various analytical

(or semi-analytical) and numerical methods have been

developed for this, as recently reviewed in [21]. The

main idea of many of them is to incorporate some new

methodologies into known methods with appropriate

minimal modifications, if needed. In most of analytical

approaches, through-the-thickness assumptions of

two-dimensional (2-D) plate/shell theories such as

classic (CPT), first order shear deformation (FSDT)

and high order shear deformation (HSDT) theories in

conjunction with a given variation of elastic constants

along the thickness direction are used to obtain the

solution, e.g. [22–27] among of the many others. As

concluded in [28], the material gradient along the

thickness direction leads to complex deformations of

the core that require the use at least a HSDT theory. An

improvement of the 2-D FGM theories so-called

quasi-three dimensional (3-D) theories accounting for

the effect of both shear and normal deformations in the

thickness direction to analyse FGM sandwich plates

have been proposed in [29–33]. Analytical 3-D

solutions for FGM sandwich plates have also been

developed, e.g. in [34–39]. Although such approaches

are sophisticated and require much efforts, they

accurately describe complicating effects, do not call

for additional assumptions and are usually used as a

benchmarks for 2-D solutions and numerical results.

Besides, the complexity of analytic solutions for FGM

plates which is associated with their geometry differ-

ent from rectangular, can be successfully overcome by

using semi-analytic approaches. For instance, a

numerical-analytical approach based on R-functions

theory and the Ritz method has been worked out for

studying geometrically nonlinear vibrations of func-

tionally graded shallow shells of complex planform in

[40]. An approach implementing the differential

transform method for free vibration analysis of non-

uniform cross-section of functionally graded beams

has been presented, e.g. in [41, 42].

Nevertheless, the analysis of more general FGM

plate shapes as well as loading and boundary condi-

tions requires the use of numerical tools such as the

finite element method (FEM). Conventional finite

elements are typically formulated assuming constant

elastic properties over the whole element. The mod-

elling of FGM structures with such elements is related

to the presentation of a graded region by a number of

homogeneous strips. This approach requires a fine

enough mesh discretization to accurately capture the

gradient in materials properties as well as the gradients

in calculated strain and stress fields. As a result,

layered models are quite cumbersome in preparation

of the input data and lead to excessive computational

costs, especially in the case of 3-D modelling. Another

approach adopting conventional finite elements for

modelling FGM plates is based on the assumption that
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a FGM plate behaves like a homogenous with

corrected location of the neutral axis, e.g. [43].

However, this technique is suitable only for 2-D

modelling. Alternatively, to improve the efficiency of

the FEM for modelling FGM structures, finite ele-

ments that include the gradient in material properties

at the element level so-called graded elements have

been proposed in literature. There are two approaches

to model the material gradient within the finite

element. In the first one, element material properties

are approximated by using the same interpolation

functions used for the displacement field as done e.g.

in [44, 45], whereas in the second one, the material

parameters are sampled directly at the integration

points of the element, thereby the inhomogeneity is

distributed, e.g. [46].

In recent years, commercially available finite

element code ABAQUSTM[47] has become popular

among engineers and researchers due to its versatility

and high accuracy. However, the package presents a

difficulty in implementation of a spatial variation of

material properties into FEmodels. To solve this issue,

some existing works suggest to use the ABAQUS’

UEL subroutine implementing a material gradation in

FGM plates via a user-developed finite element, e.g.

[48]. While this approach gives a high flexibility in

modelling, it requires the knowledge of an experi-

enced user and extensive benchmarks of the element

performance before simulations. Alternatively, to

assign the gradation of properties in ABAQUS, a

user-defined material subroutine UMAT can be used.

This option allows exploiting conventional finite

elements from ABAQUS’ library that do not need to

be tested, but which are endowed with necessary

properties at the Gauss points. Such approach for

implementation of varying material properties has

been reported for ABAQUS’ 2-D plane strain ele-

ments in [49–51], where the strain-stress state of FGM

pavement and the thermo-mechanical behaviour of

FGM plate have been analysed, respectively. Also,

this modelling technique has been extended on 2-D

plate/shell and 3-D models of FGM plates in [52, 53],

respectively, however only the static bending analysis

has been simulated there.

Despite a substantial volume of works and devel-

oped finite elements for the modelling of FGM

structures, the literature search reveals that 3-D finite

element models are still high required for predictions

of dynamic and static responses of FGM sandwich

plates. This is primarily motivated by the fact that 3-D

solutions are direct outcomes of the analysis and no

any assumptions on through-the-thickness deforma-

tions like in 2-D models are needed. Thus, the

development of 3-D finite elements for high-fidelity

dynamic and static predictions of FGM sandwich

plates is of importance. In the present work, we

propose a simple formulation of the 3-D brick graded

finite element within the ABAQUS code for its

application to modal dynamic and static analyses of

FGM sandwich plates. For this purpose, the user-

defined material subroutine UMAT is programmed to

assign a smooth variation of elastic properties in a

conventional 3-D brick finite element and an averag-

ing procedure is proposed for obtaining the mass

density equivalent to its actual gradation profile within

the element. This modelling technique is simpler than

the UEL option and is efficient compared with

analytical solutions because the FE scheme can be

applied to any complicated configurations and bound-

ary conditions in sandwich plates. The performance of

the 3-D graded element has been demonstrated by the

3-D modelling of free vibrations and static response of

simply supported rectangular metal-ceramic FGM

sandwich plates. The material is assumed to be

linearly isotropic with mechanical properties varying

across the plate thickness in accordance with a power-

law. The accuracy of the graded element has been

validated by comparisons with the results available in

the literature for FGM sandwich plates. Parametric

studies have also been carried out to find out the effect

of varying volume fraction profiles and ceramic

volume fractions on natural frequencies and associ-

ated mode shapes.

2 Problem statement

For the sake of completeness, the standard mechanical

initial boundary value problem is briefly summarized

in the section. Throughout this section we adopt the

notations usual in most of the books on Continuum

Mechanics, to which we address the reader for more

details.
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2.1 Equations of motion

Let us consider a FGM sandwich plate as a 3-D

deformable medium occupying the domain X 2

½0; a� � ½0; b� � ½� h
2
;þ h

2
� bonded by the surface oX �

X at an instant of time t 2 ½0; T �. The plate is defined in
the unstressed reference configuration with respect to

a rectangular Cartesian co-ordinate system xi ¼

ðx; y; zÞ with the z-axis aligned along the plate

thickness and with the plane z ¼ 0 coinciding

with the mid-plane of the sandwich plate. Also, the

planes z ¼ �h=2 refer to the bottom oX
� and

the top oX
þ plate surfaces, respectively, where

oX n ðoX� [ oX
þÞ ¼ ½� h

2
;þ h

2
�, and z 2 ½� h

2
;þ h

2
� as

shown in Fig. 1a.

The motion of the plate is described by a displace-

ment field u at time t 2 ½0; T�. Assume that during the

motion the plate experiences only infinitesimal defor-

mations with a strain measure defined by a tensor

e ¼ 1
2
ruþ ðruÞT
� �

, and the stress state associated

with the deformations is described by the Cauchy

stress tensor r. Also, the plate is subjected to

prescribed displacements �u on the boundary oXu and

prescribed surface traction �t on the boundary oXt, the

boundaries are such that oXt [ oXu ¼ oX and

oXt \ oXu ¼ ø. Neglecting the body forces, the

deformations of the sandwich plate during its motion

have to obey the following system of equations [54]:

r � r ¼ q€u; in X� ½0; T�

r � n ¼ �t; on oXt � ½0; T�

u ¼ �u; on oXu � ½0; T �

uðx; 0Þ ¼ u0ðxÞ; in X

_uðx; 0Þ ¼ _u0ðxÞ; in X

ð1Þ

where qðxÞ is the density of material, and the

superscript dot means a time derivative, i.e. _u and €u

stand for a velocity and an acceleration, respectively, n

is an outward unit normal to the boundary surface oX.

Using the dynamic principle of virtual work, the

system of Eq. (1) can be rewritten in weak form as

follows:
Z

X

r : rduþ q€u � duð ÞdV �

Z

oXt

�t � dudA ¼ 0 ð2Þ

for all virtual (kinematically admissible) displacement

fields du.

2.2 Constitutive equations and FGM

Let the plate be made of a functionally graded

material, which, without loss of generality, is a

mixture of two material phases such as metal and

ceramic. The composite material is assumed to be

linearly isotropic with smoothly varying mechanical

properties in the z-direction only, Fig. 1b. The skins

are homogeneous, pure metallic on the bottom side

(a)

(c)(b)

Fig. 1 Sketches of: a geometry of a FGM sandwich panel; b gradation profile through-the-thickness; and c variation of volume fraction

function across the thickness for various values of the power-law index p
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and pure ceramic on the top side with negligible small

thickness in comparison with the thick metallic-

ceramic FGM core. The constitutive equation of the

linear isotropic FGM material is defined by the

generalized Hooke’s law:

r ¼ kðxÞtrðeÞIþ 2lðxÞe ¼ C : e; ð3Þ

where the Lamé constants kðxÞ and lðxÞ of the

elasticity tensorC are point-wise functions of location.

Since the gradient in properties occurs only along the

plate thickness direction, then the material tensor in

(3) in the Voigt notation reads as [54]:

Further, following the homogenization technique, the

two-constituent microscopically inhomogeneous

metallic-ceramic composite material is to be replaced

by an equivalent macroscopically homogeneous FGM

with effective material properties. The effective

mechanical parameters of the FGM are usually

evaluated based on the volume fraction distribution

and the approximate shape of the dispersed phase [34].

It is assumed that the grading of the volume fraction of

ceramic phase from the bottom to top plate surfaces is

determined by a power-law function as follows:

Vc ¼ V�
c þ ðVþ

c � V�
c Þ

1

2
þ

z

h

� �p

; ð5Þ

where V�
c and Vþ

c are the volume fraction of ceramic

on the bottom and top surfaces, respectively. The case

of V�
c ¼ 0 and Vþ

c ¼ 1 refers to the gradation profile

from pure metal on z ¼ �h=2 to pure ceramic on

z ¼ þh=2.
There exist different approaches to estimate the

effective properties of such equivalent FGM. The

Mori-Tanaka homogenization method is the most

popular among others in literature. In this scheme, the

effective Lamé constants are computed from

corresponding effective bulk modulus K and shear

modulus l as follows:

K � Km

Kc � Km

¼ Vc= 1þ ð1� VcÞ
Kc � Km

Km þ ð4=3Þlm

� �

l� lm
lc � lm

¼ Vc= 1þ ð1� VcÞ
lc � lm
lm þ fm

� �

;

ð6Þ

where fm ¼ lmð9Km þ 8lmÞ=6ðKm þ 2lmÞ; the sub-

scripts ’m’ and ’c’ stand for the metallic and ceramic

phases, respectively, and Vm þ Vc ¼ 1. From (5) it

follows that the FGM is ceramic rich when the

parameter p\1 and metal rich when the parameter

p[ 1. Figure 1c shows the volume fraction variation

of the ceramic phase along the plate thickness for

various values of the power-law index p.

Finally, the effective mass density at a point of the

FGM is calculated using the ’rule of mixture’ in the

form:

qðzÞ ¼ qm þ ðqc � qmÞVc ð7Þ

2.3 Finite element solution procedure

A displacement-based FEM framework is used for

solving the problem formulated above. Accordingly to

this method, the actual continuous model of the

sandwich plate is idealized by an assemblage of

arbitrary non-overlapping finite elements X ¼
SN

e¼1 X
ðeÞ interconnected at nodal points. In each a

base element the components of the displacement field

are approximated by suitable interpolation functions

such that a vector of the displacement field u at an

arbitrary point of the element can be written in the

matrix form as follows:

C ¼

2lðzÞ þ kðzÞ kðzÞ kðzÞ

kðzÞ 2lðzÞ þ kðzÞ kðzÞ 0

kðzÞ kðzÞ 2lðzÞ þ kðzÞ

lðzÞ

0 lðzÞ

lðzÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð4Þ
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uðx; tÞ ¼ NðxÞUðeÞðtÞ; ð8Þ

Here, the summation over all nodal points of the base

element is intended. Also, N ¼ ½NIðxÞ� is a matrix of

the shape functions NI for the displacements associ-

ated with a certain node I and U
ðeÞ is a vector of the

nodal unknowns.

With the adopted displacement approximation (8),

the strain-displacement relations can be rewritten

through the nodal unknowns in the matrix notation

as the following: e ¼ BU, whereB ¼ ½BI � is the matrix

of gradients of the shape functions, i.e. BI ¼ NI ;x.

Inserting all these matrix relations into the variational

equality (2) and taking into account a linear elastic

material definition (3), we arrive at the system of semi-

discrete equations of motion at the element level as:

M
ðeÞ €U

ðeÞ þ K
ðeÞ
U

ðeÞ ¼ F
ðeÞ; ð9Þ

where M
ðeÞ, KðeÞ and F

ðeÞ are the mass matrix, the

stiffness matrix and the force vector, defined by the

expressions [55]:

M
ðeÞ ¼

Z

X
ðeÞ
qðxÞNT

NdV ðeÞ;KðeÞ ¼

Z

X
ðeÞ
B
T
CðxÞBdV ðeÞ;

F
ðeÞ ¼

Z

oX
ðeÞ
N

T�tdAðeÞ

ð10Þ

Thereafter, the use of the assembly operation ð�Þ ¼

A
N
e¼1ð	Þ over all the finite elements leads us to the

global system of finite element semi-discrete equa-

tions of motion:

M €U þ KU ¼ F; ð11Þ

It should be noted that damping is not included in the

dynamic system of Eq. (11). The governing system of

Eq. (11) can be employed to study the statics and free

vibrations by ignoring the time and excluding the

appropriate terms. For the static (or quasi-static)

analysis, the problem reduces to the system of

algebraic equations:

KU ¼ F ð12Þ

In the case of free vibration analysis, the governing

system of equations should be stated in the form of the

eigenvalue problem as follows:

K � x2
M

� �

/ ¼ 0; ð13Þ

where x is an undamped circular frequency and / is a

vector of mode shape associated with found frequency

x.

3 Three-dimensional graded finite element

The modal analysis for extraction of natural frequen-

cies and associated mode shapes and the static analysis

of FGM sandwich plates are carried out with the

ABAQUS/Standard code using three-dimensional

models. Conventional 3-D finite elements available

in the ABAQUS’ finite element library do not enable

to model variation of mechanical properties within the

element volume. To eliminate this inconvenience, we

have developed within the package environment a

graded 3-D finite element incorporating gradients of

material properties. For this purpose, either eight-node

linear C3D8 or twenty-node quadratic C3D20 brick

isoparametric finite elements can be used as a base

element, Fig. 2. Since the quadratic elements usually

yield better results at less expense than their linear

counterparts [55], C3D20 elements will be used in the

succeeding calculations. Isoparametric interpolation

within the element volume is defined in terms of the

natural coordinates ðn; g; fÞ each spanning the range

from �1 to þ1, as shown in Fig. 2a. The node

numbering convention used for these elements with

either full or reduced integration is also demonstrated

in Fig. 2b, c. The shape functions of both the 8-node

and 20-node brick elements can be presented as

follows:

N
ð8Þ
i ¼

1

8
ð1� niÞð1� giÞð1� fiÞ; for i ¼ 1. . .8

and

N
ð20Þ
i ¼ �ð2þ ni þ gi þ fiÞN

ð8Þ
i ; for i ¼ 1. . .8;

N
ð20Þ
i ¼ 2ð1þ niÞN

ð8Þ
i ; for i ¼ 9; 11;13; 15;

N
ð20Þ
i ¼ 2ð1þ giÞN

ð8Þ
i ; for i ¼ 10; 12;14;16;

N
ð20Þ
i ¼ 2ð1þ fiÞN

ð8Þ
i ; for i ¼ 17. . .20

ð14Þ

The spatial variation of the material parameters

have been achieved by coding the user-defined

material subroutine UMAT. The routine evaluates

the increments of strain and stress vectors and the

material Jacobian to provide an implementation of the

incremental form of a defined mechanical constitutive
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law into the code solver. At the end, it updates the

stress and strain vectors, and other solution dependent

variables over the element volume at the Gauss points,

[47]. Since the material constants depend on the

position within the element, the calculations of the

constitutive material relation will assign the material

parameters directly at different integration points of

the element. Finally, by means of numerical integra-

tion of the tangential stiffness matrix of the finite

element as:

K
ðeÞ ¼

X

N

i¼1

X

N

j¼1

X

N

k¼1

B
T
CBjJijkjwiwjwk ð15Þ

the actual gradient of material properties is completely

specified within the element. In this expression, i, j and

k are the Gauss points, jJijkj is the determinant of the

Jacobian matrix and wi are the Gaussian weights. The

matrix C given in (15) contains the material constants

k and l depending on the position as shown in (4).

To complete the development of the graded finite

element, the mass density, which is also a function of

position for the FGM plate, should be incorporated

into the element formulation. However, there is a

complication in terms of formulating the element mass

matrix with sampling the density values at the Gauss

points similar to (15). The frequency extraction

procedure is a linear perturbation analysis in

ABAQUS. The perturbations are assumed to be about

the base state of a model and ignore any inelastic

effects and any parametric dependencies of the model

on temperature or other field and solution dependent

variables [47]. Moreover, the code does not provide a

direct access to the computation of elements of the

mass matrix. The latter is formed with the conven-

tional homogeneous elements, where the element

volume is simply multiplied by a given constant mass

density. Herein, we suggest a simple ‘‘engineering

solution’’ to account for changes in inertial properties

due to the use of FGMs. A constant value of the mass

density required by ABAQUS can be obtained by

averaging a proper density distribution over the whole

volume of the FGM plate, V as follows:

qavg ¼
1

V

Z

V

qðxÞdV ð16Þ

Although the density in the form of an integrated value

averaged over the volume (16), does not reflect its

actual gradual change, this formula can reasonably

approximate the inertial property of a FGM sandwich

plate, as shown in all the frequency analyses below.

(c)(b)(a)

Fig. 2 Isoparametric 3-D brick finite elements after [47]:

a master elements; b 8-node linear element with reduced and

full integration schemes; and c 20-node quadratic element with

reduced and full integration schemes (Numbering of integration

points for output is shown in the element layer closest to the

face 1, and the integration points in the other layers are

numbered consecutively)
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4 Numerical results

In this section numerical results for studying the static

behaviour and free vibrations of two-constituent

metallic-ceramic functionally graded sandwich plates

are presented. In each the analysis presented below,

first, convergence studies with mesh refinement have

been conducted. An optimal mesh was selected from

the conditions that differences between the results,

namely, a displacement of the central point in the case

of static analysis and a fundamental frequency in the

case of eigenfrequency problem, obtained with current

and finer meshes are no more than 5%, but from the

other hand, the calculations should be the best

compromise between computational cost and solution

accuracy.

4.1 Static analysis

The accuracy of the 3-D graded finite element

programmed via UMAT in the ABAQUS environment

is verified, first, performing the static analysis of a

FGM sandwich plate. A simply supported Al/SiC

square sandwich plate subjected to a normal pressure

given by q0sin
px
a
sin py

b
on the top surface was consid-

ered. We accepted the parameters of (5) as V�
c ¼ 0,

Vþ
c ¼ 1 and p ¼ 2, the plane dimensions and the

thickness-to-length ratio as a ¼ b ¼ 100 mm and
h
a
¼ 0:2, respectively, and q0 ¼ 1 MPa. The material

constants used in the calculations are listed in Table 1.

The numerically calculated results are compared with

those obtained analytically in [34].

A 3-D finite element model of the FGM sandwich

plate considered in the present work is illustrated in

Fig. 3a. The meshes, optimal from the standpoint of

the convergence analysis mentioned above, for both

the developed 3-D FGM elements with six elements

through-the-thickness and the conventional homoge-

neous 3-D elements with ten elements through-the-

thickness are shown in Fig. 3b, c, respectively. It

should be noted that the latter model requires a tedious

and cumbersome procedure for preparing and, then,

introducing the input data different for each the layer

of elements in the mesh, while the former one uses a

simpler pre-processing, i.e. the input data are assigned

on the whole finite element model at once.

The physical quantities compared with the solu-

tions reported in [34] are presented in a dimensionless

form as follows:

�u ¼
100Emh

2

q0a3
u; �w ¼

100Emh
3

q0a4
w

ð�rxx; �rxyÞ ¼
10h2

q0a2
ðrxx; rxyÞ; �rxz ¼

10h

q0a
rxz; �rzz ¼

rzz

q0

The results of comparison between the analytic

solutions in [34] and the results obtained from the

both graded and layered models in the static analysis

are summarized in Table 2, where D;% denotes

relative errors between the reference data and the

results of the model with FGM elements and the

layered model with homogeneous elements, rela-

tively. A good agreement with the analytic solutions

can be seen for both the finite element models.

However, the graded model is superior to the layered

one because it is more accurate and efficient, i.e. gives

better results with less number of the elements and is

more convenient for using. The minor discrepancies

between the results of the model with FGM elements

and the reference values may be addressed to the

problem of non-equivalency between the ways of

applying the boundary conditions to plate edges in 3-D

analytic and FEM models, as discussed elsewhere in

literature, e.g. in [56, 57].

The distributions of the dimensionless deflection

and longitudinal rxx and transverse normal rzz stresses

through-the-thickness of the FGM sandwich plate,

computed at a point ða
2
; b
2
; zÞ using both the FGM

elements in the continuous model and the homoge-

neous elements in the layered model, in comparison

with some known analytic values given in [34] are

Table 1 Material properties of the FGM sandwich plates

FG Material Material Constants

Al/SiC Em ¼ 70GPa; Ec ¼ 427GPa; mm ¼ 0:3; mc ¼ 0:17; qm ¼ 2702 kgm�3;

qc ¼ 3100 kgm�3

Al=ZrO2 Em ¼ 70 GPa; Ec ¼ 200 GPa; mm ¼ mc ¼ 0:3; qm ¼ 2702 kgm�3; qc ¼ 5700 kgm�3
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shown in Fig. 4. One can see that the numerical

models have very close results to the analytic solutions

and they are able to accurately reproduce the through-

the-thickness behaviours. Although both the numeri-

cal models are slightly stiffer than the analytical one

due to the discretized nature of the models, they give

the exact result for the transverse normal stress and the

results which are very close to the exact solution for

the longitudinal stress. In doing so, the layered model

is a bit stiffer compared with the graded elements and

exhibits a stepwise change of the longitudinal stress

(see Fig. 4d). Such a step-type variation with constant

longitudinal stress in each element is inherently

related to homogeneous elements and cannot be

avoided in modelling with layered models. In contrast

to this, the graded model provides a continuous stress

variation through the plate thickness.

To show the efficiency of the developed graded 3-D

finite element for studying FGM sandwich plates, the

influence of the gradation profile on the static response

of the simply supported square FGM sandwich plate is

further analysed. Figure 5 depicts the through-the-

thickness variations of normalized deflection, �w, and

longitudinal �rxx and transverse normal �rzz stresses,

calculated at the centre point of the sandwich plate, for

different values of the power index p. For the sake of

clarity, the behaviour of these quantities at bottom,

middle and top layers of the plate with increasing the

exponent p are illustrated there as well. From the plots

(b)

(a) (c)

Fig. 3 Finite element model of the FGM sandwich plate: a general view of the FE mesh; b half of model discretized with FGM

elements; and c half of model discretized with homogeneous elements

Table 2 The comparison of the results of static analysis

between the present calculations and the analytic solution in

[34]

[34] Present models D;%

Graded Layered

�uð0; b
2
;þ h

2
Þ - 1.7421 - 1.7051 - 1.6624 2.13 4.57

�wða
2
; b
2
; 0Þ 1.8699 1.8299 1.8198 2.14 2.68

�wða
2
; b
2
;þ h

2
Þ 1.8767 1.8338 1.7292 2.29 7.86

�rxxð
a
2
; b
2
;þ h

2
Þ 4.1042 3.8989 3.8449 5.0 6.32

�rxyð0; 0;þ
h
2
Þ - 2.8534 - 2.6378 - 2.6142 7.56 8.38

�rxzð0;
b
2
; 0Þ 2.1805 2.2541 2.2514 3.38 3.25

�rzzð
a
2
; b
2
;þ h

4
Þ 0.7623 0.7645 0.8327 0.29 8.05
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it is clearly seen that the deflections of the FGM

sandwich plates are not symmetrical with respect to

the plate midplane and this non-symmetry is larger

when more aluminum phase is in the graded material.

The stresses have also nonlinear patterns across the

thickness. These conclusions are in a compliance with

the results in [29, 36]. With increasing the exponent

p the deflections of the bottom, middle and top layers

are reduced smoothly and same manner to the values

close to deflections of the metallic plate (Fig. 5d),

whereas the longitudinal stress on those layers varies

in a more complicated way (Fig. 5e). The tensile

longitudinal stress �rxx at the bottom layer first a bit

reduces with increasing the metal phase and, then, its

value smoothly rises with growing the index p and,

finally, tends to the magnitude of stress in the metallic

plate. In contrast to this, the compressive longitudinal

stress �rxx at the top layer first remarkably increases

with increasing the metal phase and, then, it gradually

decreases with increasing the exponent p nearly to the

stress of the metallic plate. The transverse normal

stress �rzz at bottom and top layers almost does not

depend on the gradation profile, and its behaviour at

the midplane is similar to the longitudinal stress at this

layer, i.e., first, increases and, then, slowly tends to the

stress of the metal plate, as seen in Fig. 5e, f.

4.2 Free vibration analysis

The correctness of the developed 3-D graded finite

element in conjunction with the proposed procedure of

the mass density averaging for finite element mod-

elling of free vibrations has been verified by compar-

ing the fundamental frequency, displacements and

stresses of a simply supported square Al=ZrO2 sand-

wich plate with the results available in [36]. The

material properties of the FGM plate studied are listed

in Table 1. The dimensions and the parameters of the

power-law given by (5) for this FGM sandwich plate

are taken the same as the previous static analysis.

Table 3 shows the comparisons between the reference

values and the results obtained with the 3-D FGM

elements model and the layered model with the

conventional homogeneous 3-D elements.

It is known that besides standard flexural and in-

plane predominant modes resulted from 2-Dmodels of

FGM sandwich panels, the 3-D solution predicts

additionally thickness-stretching predominant modes

(a) (b)

(c) (d)

Fig. 4 The distributions of the dimensionless quantities through-the-thickness of the FGM sandwich plate at a point ða
2
; b
2
; zÞ:

a deflection; b transverse normal stress rzz; c longitudinal stress rxx; and d zoom of the longitudinal stress rxx
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(a) (d)

(b) (e)

(c) (f)

Fig. 5 The distributions of the dimensionless quantities

through-the-thickness of the FGM sandwich plate at a point

ða
2
; b
2
; zÞ: a deflection; b longitudinal stress rxx; c transverse

normal stress rzz; and the variations of the dimensionless

quantities at bottom z ¼ � h
2
, middle z ¼ 0 and top z ¼ þ h

2

layers with increasing the power index p: d deflection;

e longitudinal stress rxx; and f transverse normal stress rzz

Table 3 The comparison

of the results of free

vibration analysis between

the present calculations and

the analytic solution in [36]

�x �uð0; b
2
;þ h

2
Þ rxxð

a
2
; b
2
;þ h

2
Þ rxzð0;

b
2
; 0Þ rzzð

a
2
; b
2
; 0Þ

[36] 5.1915 �1.0099 1.2950 0.8235 1.3597

Present:

� graded model 5.6547 �1.0788 1.3679 0.9572 1.5920

� layered model 5.6558 �1.0637 1.3645 0.8683 1.5703

D;% 8.92 6.82 5.63 16.2 15.7

8.94 6.33 5.37 5.44 15.5
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[35]. Thus, to validate the ability of the proposed

graded element for producing such response, the

deflection and stresses at several points of the thick-

ness have also been considered for comparison with

analytical values in [36]. All the compared quantities

have been nondimensionalized by the formulae:

A glance at the values in Table 3 reveals that the

computed results are in satisfactory agreement with

those presented in [36]. The finite element solutions of

the both models with FGM and homogeneous ele-

ments are almost the same, and they slightly overes-

timate the analytical reference values. The sources of

these discrepancies could be, first, the normalization

formulae involve a deflection which is not exact value

itself, but being calculated. Second, not actual distri-

bution of the mass density, but its average value is

implemented into the model. Finally, because of an

incompatibility between the ways of applying bound-

ary conditions in the FEM and analytical techniques. It

should be noted that for the sake of simplicity, needed

to carry out a large number of computations, the

simply supported conditions in the present research

have been realised using the nodal displacement

constraints applied over each a whole edge of the

sandwich plate.

As expected, the 3-D finite element frequency

analysis has been able to reveal the existence of

peculiar mode shapes associated with the natural

frequencies of the thick sandwich plate. That is apart

from the usual bending or flexural mode shapes, one

has been observed the following additional modes: the

pumping or thickness-stretching mode, where the

deflections are predominant and are symmetric with

respect to the mid-plane; the in-plane or extensional

modes, where one of longitudinal displacements

prevails; and finally so-called bi-inplane modes or

extensional modes, where two longitudinal displace-

ments act simultaneously and either symmetrically or

anti-symmetrically. Such mode shapes have been

mentioned, but not exhibited in [35]. These types of

the mode shapes and the differences between them for

metallic, Al=ZrO2 sandwich and ceramic plates are

illustrated in Fig. 6. One can clearly see that those

peculiar mode shapes are different between the two

homogeneous plates and they, in turn, differ from the

functionally graded plate. The latter has the configu-

rations of the mode shapes which are intermediate

between the metallic and ceramic plates. Herewith, the

influence of the material gradation is more evident on

thickness-stretching and bi-inplane extensional mode

shapes than on in-plane extensional ones.

The ability of the developed 3-D graded element to

properly capture the gradation profile across the plate

thickness for the frequency analysis has also been

examined. The fundamental frequency of the simply

supported Al=ZrO2 square thick sandwich plate con-

sidered above is calculated for different values of the

power index p. The results of calculations are com-

pared with those known in [29]. The values of the

frequencies normalized by �x ¼ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qm=Em

p

are

exhibited in Table 4, where the numerical results

obtained by using both the FGM elements and the

homogeneous elements in the layered model are

compared with the analytic solutions.

It is obviously that the numerical results show a

good agreement with the analytic solutions. This

confirms the accurate performance of the developed

3-D graded finite element. Moreover, it should be

mentioned that due to the convergence requirement,

the element size of the layered model was smaller than

the size of the graded element as 1 mm and 2.5 mm,

respectively. As a result, the total CPU time of

calculations with homogeneous elements was about 3

�x ¼ x
a2

h

ffiffiffiffiffiffi

qm
Em

r

; �uðzÞ ¼
a

wð
a

2
;
b

2
; 0Þh

u; �rxx ¼
a2

10Emwð
a

2
;
b

2
; 0Þh

rxx;

�rxz ¼
a3

10Emwð
a

2
;
b

2
; 0Þh2

rxz; �rzz ¼
a4

10Emwð
a

2
;
b

2
; 0Þh3

rzz
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times longer than the computations with the graded

elements. This demonstrates the efficiency of the 3-D

graded element in the predictions. For this FGM

sandwich plate, the first sixteen dimensionless natural

frequencies depending on the power index p are

computed and summarized in Table 5.

For the sake of better illustration of the power-index

dependence of the natural frequencies of the Al=ZrO2

sandwich plate, the evolutions of four frequencies with

increasing the metal phase are depicted in Fig. 7. One

can see that, first, quantitatively the natural frequen-

cies of the FGM sandwich plate are between those of

the same metallic and ceramic plates. Second, the

power-index or an assumption about the material

phase distribution through-the-thickness of the FGM

sandwich plate affects its natural frequencies such that

with increasing p the frequencies tend to values close

to those of the metallic plate. However, the rate of this

trend is different for the lower frequencies, as

illustrated in Fig. 7a, b and for the higher ones, as

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 6 In-plane, pumping and bi-inplane mode shapes of square thick: a–cmetallic plate; d–fAl=ZrO2 sandwich plate; and g–i ceramic

plate

Table 4 The dimensionless fundamental frequencies of the

Al=ZrO2 simply supported thick square sandwich plate ðh=a ¼
0:2Þ depending on the power index p

Power index, p [29] Layered Graded D,%

0.5 � 0.2293 0.2341 � �

1.0 0.2192 0.2268 0.2282 3.46 4.11

2.0 0.2197 0.2262 0.2262 2.97 2.95

3.0 0.2211 0.2273 0.2269 2.81 2.63

5.0 0.2225 0.2291 0.2281 2.98 2.52

10. – 0.2304 0.2273 � �
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shown in Fig. 7c, d. The former ones are slightly

changed at the small p and, then, slowly are reduced to

the frequencies of the metallic plate with growing the

exponent to infinity. In contrast to this, the latter ones

decrease quickly enough with increasing the metal

phase and tend to the frequencies of the metal plate.

Table 5 The dimensionless

natural frequencies of the

Al=ZrO2 simply supported

thick square sandwich plate

ðh=a ¼ 0:2Þ depending on

the power index p

Mode Cer. FGM Met.

p ¼ 0:5 p ¼ 1:0 p ¼ 2:0 p ¼ 3:0 p ¼ 5:0 p ¼ 10:0

(1,1) 0.2469 0.2339 0.2282 0.2262 0.2269 0.2281 0.2283 0.2121

2�In-plane 0.4535 0.4417 0.4333 0.4227 0.4162 0.4089 0.4011 0.3897

(1,2)/(2,1) 0.5421 0.5165 0.5038 0.4961 0.4947 0.4940 0.4951 0.4658

Bi-inplane 0.6413 0.6242 0.6118 0.5963 0.5873 0.5772 0.5697 0.5511

(2,2) 0.7859 0.7516 0.7331 0.7192 0.7144 0.7105 0.7097 0.6753

2�In-plane 0.9070 0.8815 0.8624 0.8394 0.8267 0.8134 0.8050 0.7793

(3,1)/(1,3) 0.9297 0.8908 0.8690 0.8510 0.8437 0.8374 0.8311 0.7989

2�Bi-inplane 1.0140 0.9848 0.9627 0.9364 0.9222 0.9078 0.8937 0.8713

Pumping 1.0770 1.0473 1.0241 0.9954 0.9795 0.9631 0.9546 0.9255

(3,2)/(2,3) 1.1251 1.0806 1.0543 1.0303 1.0193 1.0091 1.0047 0.9668

(a) (b)

(c) (d)

Fig. 7 The variations of the dimensionless natural frequencies with increasing the power-index p: a mode (1,1); b mode (1,2); c in-

plane mode no. 9; and d pumping mode no. 14

cFig. 8 The variations of the dimensionless natural frequencies

with increasing the power-index p and the volume fraction Vc:

a mode (1,1); c mode (2,2); e in-plane mode no. 9; and

g pumping mode no. 14
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Finally, the influence of both the ceramic volume

fraction on the top surface and the metal phase in the

sandwich core on the modal dynamics of FGM

sandwich plates have been studied. The same

Al=ZrO2 sandwich plate as considered above was

modeled. Different values of Vþ
c such as 0.0, 0.3, 0.5,

0.7 and 1.0 at a zero-value of V�
c were used in the

simulations. The variations of four natural frequencies

depending on the both parameters of Vþ
c and p are

shown in Fig. 8 as 2-D and 3-D plots. As is evident

from these plots, the natural frequencies of the simply

supported Al=ZrO2 square thick sandwich plate

regardless the position in the frequency spectrum

become less sensitive to increasing the metallic phase

in the gradation profile with decreasing the volume

fraction of ceramic on the top surface. Thus, the

concentration of the ceramic constituent is an impor-

tant factor for the dynamic design of FGM sandwich

plates. More detailed studies of the role of different

constituents on the modal dynamics of FGM sandwich

plates are still needed, but they are out of the scope of

this work.

5 Conclusions

The static response and free vibrations of simply

supported metal-ceramic FGM square thick sandwich

plates have been analyzed by using the three-dimen-

sional finite element modelling with the ABAQUS

code. The effective material properties at a plate point

were assumed to be defined in accordance with the

Mori-Tanaka approach. A power-law variation of the

volume fraction of the ceramic phase through-the-

thickness of the sandwich plate was adopted. The 3-D

brick graded finite element incorporating the variation

of material properties in direction of the plate thick-

ness was programmed and, then, was implemented

into ABAQUS via the user-defined material subrou-

tine UMAT (the code can be downloaded from http://

polonez.pollub.pl/deliverables/). A simple procedure

was proposed to estimate an average constant value of

the mass density within the graded finite element. The

use of this element in predictions turned out to be

accurate and very efficient since the graded element

unlike the layered model with conventional homoge-

neous elements neither requires extensive procedure

of input data preparation nor fine enough mesh, but it

allowed one using the whole power of the ABAQUS

code.

With the 3-D graded finite element developed and

implemented into ABAQUS, the calculated displace-

ments and stresses in the static analysis and the

computed natural frequencies in the free vibration

analysis of the FGM sandwich plates have been found

to match well the analytic solutions reported in

literature. The minor discrepancies between the results

of the finite element models and the reference values

could be addressed to the problem of non-equivalency

of boundary conditions applied to the plate edges

between analytic and numerical 3-D modelling pro-

cedures. Also, the predictions showed that the deflec-

tions and the values of natural frequencies of the FGM

sandwich plates are between those for pure ceramic

and pure metallic plates. However, the stresses have a

nonlinear pattern across the sandwich plate thickness

and their variations with increasing the metallic phase

have more sophisticated character, especially for the

longitudinal stress. The gradients in the material

properties affect the natural frequencies of a simply

supported square FGM sandwich plate. The values of

the natural frequencies with growing the metallic

phase tend to those of a pure metallic plate. However,

the lower frequencies are less sensitive to the power-

law index than the higher ones. It was also found that

the mode shapes associated with the frequencies of the

thick sandwich plates exhibit not only flexural dom-

inant deformations, but thickness-stretching dominant

and extensional dominant deformations as well. Yet, it

was found out that the volume fraction of ceramic on

the top surface is an important factor for dynamic

design of FGM sandwich plates. The predictions

demonstrated that the less is the ceramic concentration

on the top surface, the less sensitive are the frequen-

cies to increasing the metallic phase in the sandwich

core. Finally, it needs to mention that although the

present results are demonstrated only for the simply

supported metallic-ceramic FGM square sandwich

plate, the graded 3-D element developed in this work

can be used for the 3-D modelling of sandwich plates

with any other geometry, gradation profile and

boundary conditions. Thus, the results presented in

this paper may provide a benchmark for studying

statics and modal dynamics of the FGM sandwich

plate by other methods and models.
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