
© 2017 J. Seidi and S. Kamarian, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Curved and Layer. Struct. 2017; 4:21–30

Research Article Open Access

J. Seidi and S. Kamarian*

Free vibrations of non-uniform CNT/fiber/polymer
nanocomposite beams
DOI 10.1515/cls-2017-0003
Received Jun 26, 2016; accepted Sep 28, 2016

Abstract: In this paper, free vibrations of non-uniform
multi-scale nanocomposite beams reinforced by carbon
nanotubes (CNTs) are studied. Mori-Tanaka (MT) tech-
nique is employed to estimate the effective mechanical
properties of three-phase CNT/fiber/polymer composite
(CNTFPC) beam. In order to obtain the natural frequencies
of structure, the governing equation is solved by means of
Generalized Differential Quadrature (GDQ) approach. The
accuracy and efficiency of the appliedmethods are studied
and compared with some experimental data reported in
previous published works. The influences of volume frac-
tion and agglomeration of nanotubes, volume fraction of
long fibers, and different laminate lay-ups on the natural
frequency response of structure are examined.

Keywords: Non-uniform beam; multi-scale nanocompos-
ites; Carbon nanotube; Agglomeration effect; free vibra-
tion

1 Introduction
The outstanding characteristics of CNTs have motivated
many researchers to study the behavior of CNT-reinforced
composite (CNTRC) structures such as beams, shells and
plates [1–10]. Investigations have shown that using CNTs
in polymer matrix can significantly enhance the proper-
ties of composites [11–14]. However, one of the inevitable
and destructive phenomena in CNTRCs is agglomeration
of nanotubes which can extremely influence the proper-
ties of composites and their performance [15–17]. Hence,
mechanical characteristics of CNTRC structures like Young
modulus shouldbepredicted as accurately as possible. For
this reason, MT, as a powerful approach, has been imple-
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mented by many researchers to estimate the mechanical
properties of composite structures reinforced by agglom-
erated nanotubes [18–20].

Due to light weight and high strength-to-mass ratio of
three-phase CNTFPC structures, they have been attracted
by a large number of researchers [21–25]. Refiee et al. [26]
investigated nonlinear free vibration of simply supported
CNTFPC plates with piezoelectric layers. The nanotubes
were assumed to be uniformly distributed and randomly
oriented in the matrix, and Halpin-Tsai model was em-
ployed to predict the material properties of nanocompos-
ite plate. Recently, Kamarian et al. [27] presented natu-
ral frequency analysis and optimization of three-phase
nanocomposite plates using GDQ technique, MT approach
and firefly algorithm. In their work, first, a parametric
study was carried out to investigate the influences of ef-
fective parameters on the natural frequencies of CNTFPC
plates. Then, the fiber orientations of layers were opti-
mized for natural frequency maximization of nanocom-
posite plates.

Non-uniform structures are being widely utilized in
engineering applications especially in aerospace industry
to minimize weigh of components or satisfy the geomet-
rical constraints. Vibrational behavior of non-uniform en-
gineering structures cannot be analyzed straightforwardly
through closed-form or exact solutions. Therefore, many
researchers have applied different numerical methods to
investigate natural frequencies of structures with non-
uniform cross section or inertia [28–34].

The main goal of this paper is to examine natural fre-
quencies of non-uniform CNTFPC beams. The effects of ag-
gregation and volume fraction of nanotubes, volume frac-
tion of E-glass fibers, and various stacking sequences of
layers and boundary conditions on the vibrational behav-
ior of structure are studied in details. Here, MT and GDQ
methods are used to obtain the mechanical properties of
materials and solve the governing equation, respectively.
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Figure 1: Concept of multi-scale reinforcement composites [26].

Figure 2: Hierarchy of the three-phase CNTFPC multi-scale compos-
ites.

2 Multi-scale composite material
model

2.1 Fiber micromechanics model

Consider a three-phase multi-scale composites, as it is
shown in Fig. 1. The flowchart for estimation of material
properties of CNTFPCs is provided in Fig. 2. Micromechan-
ics approach yields [26].

E1 = VFEF1 + VNCMENCM (1)
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υ12 = VFυF + VNCMυNCM (4)

ρ = VFρF + VNCMρNCM (5)

where F and NCM stand for E-glass fibers and CNT-
reinforced epoxy materials. Also, E, G12, υ, ρ and V in-
dicate the Young’s moduli, shear modulus, Poisson’s ra-
tio, mass density and volume fraction ofmaterials, respec-
tively. Now, in section 2.2, mechanical properties of the
epoxy reinforcedbynanotubes aremodeled employingMT
method.
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Figure 3: Representative Volume Element (RVE) with Eshelby cluster
model of agglomeration of CNTs.

2.2 Material properties of CNT-reinforced
matrix

Here, the equivalent material properties of epoxy resin re-
inforced by agglomerated CNTs are calculated based on
Ref. [35]. In Fig. 3, it is observed that a number of nan-
otubes are uniformly dispersed in the epoxy and the other
CNTs are agglomerated in the clusters. The following pa-
rameters are introduced

µ = VclusterV* 0 ≤ µ ≤ 1 (6)

η = V
r
cluster
V r 0 ≤ η ≤ 1 (7)

Where V* denotes volume of RVE, V r shows the total vol-
ume of nanotubes, Vcluster represents volume of all clus-
ters, and V rcluster indicates the volume of those CNTswhich
are included by clusters. According to Eqs. (6, 7), µ = η = 1
shows the case that nanotubs are uniformly distributed
through the epoxy resin. The bulk and shear modulus of
clusters (Kin and Gin), and the bulk and shear modulus of
CNT-reinforced resin outside the clusters (Kout and Gout)
can be obtained using Eqs. (8–11).

Kin = Km + V r η (δr − 3Kmαr)
3 (µ − V r η + V r ηαr)

(8)

Kout = Km + V r (1 − η) (δr − 3Kmαr)
3 [1 − µ − V r (1 − η) + V r (1 − η) αr]

(9)

Gin = Gm + V rη (ηr − 2Gmβr)
2 (µ − V rη + V rηβr)

(10)

Gout = Gm + V r (1 − η) (ηr − 2Gmβr)
2 [1 − µ − V r (1 − η) + V r (1 − η) βr]

(11)

Figure 4: Geometry of a non-uniform CNTFPC beam.

in which the subscriptsm and r stand for the quantities of
the resin and nanotubes, and the other parameters can be
defined in Ref. [36]. Using MT model, the bulk and shear
modulus of nanocmposite matrix can be obtained as

KNCM = Kout

⎡⎣1 + µ
(︁
Kin
Kout − 1

)︁
1 + α (1 − µ)

(︁
Kin
Kout − 1

)︁
⎤⎦ (12)

GNCM = Gout

⎡⎣1 + µ
(︁
Gin
Gout − 1

)︁
1 + β (1 − µ)

(︁
Gin
Gout − 1

)︁
⎤⎦ (13)

where α and β are defined in Ref. [36]. After calculating the
bulk and shear modulus, the final Young’s modulus and
Poisson’s ratio of the CNT-reinforced resin are obtained us-
ing the following relations

ENCM = 9KNCMGNCM
3KNCM + GNCM (14)

υNCM = 3KNCM − 2GNCM
6KNCM + 2GNCM (15)

3 Governing equations
Consider a non-uniform CNTFPC beam, as it is observed
from Fig. 4. In this figure L and h denote the length and
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thickness of structure, respectively. Parameter δ, which is
called non-uniformity parameter, is defined here to indi-
cate the variations of width of beam in the length direc-
tion. In the presentwork, thewidth of beam is presumed to
vary exponentially versus parameter δ according to b(x) =
b0eδx and the non-uniformity parameter can vary from −2
to +2, in this paper. It is obvious that the case δ = 0 refers
to a beam with uniform section. Based on Euler-Bernoulli
beam theory, the governing equation of motion is derived
by applying Hamilton’s principle

δ *
t∫︁

0

(T − Π)dt = 0 (16)

where δ* indicates variational symbol, and T andΠ are de-
fined as kinetic energy and potential energy of the CNTFPC
beam respectively

Π = 1
2

L∫︁
0

h/2∫︁
−h/2

b(x)σxεx dzdx (17a)

T = 1
2
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∂w
∂t
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in which, σx = Q11 εx and εx = ∂u
∂x = ∂

∂x (−z
∂w
∂x ) = −z

∂2w
∂x2

represent axial stress and axial strain, respectively. By
combining Eqs. (16) and (17), after some simplifications,
the governing equation is obtained as follow:

D11(x)
∂4w
∂x4 + 2∂D11(x)

∂x
∂3w
∂x3 + ∂

2D11(x)
∂x2

∂2w
∂x2 (18)

+ m(x)∂
2w
∂t2 = 0

where D11(x) is the transformed bending stiffness coeffi-
cient, defined as

D11(x) =
h/2∫︁

−h/2

b(x) Q̄k11z2dz = b0 eδx
NL∑︁
k=1

zk∫︁
zk−1

Q̄k11z2dz (19)

where Q̄kij are defined as the plane stress-reduced stiffness
and NL is the number of layers. In order to attain the fun-
damental frequencies of nanocomposite beam, Eq. (18) is
formulated as an eigenvalue problembyusing the periodic
functionw(x, t) = W(x) e−iωt, in which ω andW(x) are nat-
ural frequency and mode shape of the transverse motion
of the CNTFPC beam. Hence, the eigenvalue problem is de-
rived as:

D11(x)
∂4W
∂x4 + 2∂D11(x)

∂x
∂3W
∂x3 + ∂

2D11(x)
∂x2

∂2W
∂x2 (20)

+ (−m (x)ω2)W = 0

4 GDQ method
GDQ technique, as an efficient numerical technique, is im-
plemented for solving partial differential equations, espe-
cially in the field of solid mechanics [37–41]. Here, this
method is utilized to obtain the natural frequencies of
non-uniform CNTFPC beam. In this approach, the spatial
derivative of a function of given grid point is estimated as
a weighted linear sum of all the functional value at all grid
point in the whole domain [37]:

∂f n(xi ,z)
∂xn =

N∑︁
k=1

cnik f (xik , z) (21)

(i = 1, 2, N , n = 1, . . . , n − 1)

InwhichN denotes the number of grid points, and cnij is the
xi dependent weight coefficients. The fundamental princi-
ples of GDQ method can be found in Refs. [37, 38].

5 Results and discussion
To verify the efficiency of employed techniques (GDQ and
MT), two examples are carried out for comparisons. In the
first one, Young modulus of CNT-reinforced epoxy is pre-
dicted using MT model and compared with the results re-
ported in Ref. [17] through experiments. For this compari-
son, the material properties of applied epoxy and CNT are
provided in Table 1. Experimental Young modulus of the
nanocomposite versus different CN volume fraction at the
state η = 1 and µ = 0.4 is depicted in Fig. 5. The predicted
Young modulus by MT method is also shown in this figure
for different values of CNT volume fraction, η and µ. The
comparison shows that the just a little difference between
experimental data and MT results exist.

As the second example, a comparison is made be-
tween the frequency parameters of a symmetrical twenty-

Figure 5: Comparison of the Young’s moduli of CNTRCs at different
degree of agglomeration with the experimental data [17].
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Table 1: Parameters used in the calculation of effective elastic properties of CNT-reinforced polymer composite for comparison of the em-
ployed MT model and the experimental data.

Mechanical properties Matrix phase [42] CNT [43]
Isotropic Young’s modulus (E) 0.85 GPa –

Poisson’s ratio (υ) 0.4 –
Longitudinal Young’s modulus (E11) – 1.06 TPa

Transverse bulk modulus (K23) – 271 GPa
Transverse shear modulus (G23) – 17 GPa
In plane shear modulus (G12) – 442 GPa
In plane Poisson’s ratio (υ12) – 0.162

Table 2:Material properties of glass/epoxy composite beam [44].

Material properties value
Glass Elasticity modulus EF1 = EF2 = 76GPa
Fiber Density ρF = 2056kg/m3

Poisson’s coeflcient υF = 0.22
Fiber volume fraction VF = 60%

Epoxy Elasticity modulus Em = 4GPa
Resin Density ρm = 1300kg/m3

Poisson’s coeflcient υm = 0.4
Resin volume

fraction
Vm = 40%

layer [0∘/90∘/0∘/90∘/0∘/90∘/0∘/90∘/0∘/90∘]s laminate
beams obtained from present study (by setting V r = 0 and
δ = 0) and the experimental data available in Ref. [44].
The mechanical properties of materials are shown in Ta-
ble 2. Results in Table 3 represent that GDQ can obtain the
natural frequency of composite beamswith high accuracy.

Now, the natural frequency response of non-uniform
CNTFPC beams is characterized. The mechanical proper-
ties of beams are presented in Table 4 and unless other-
wise stated, the length and height of beam are assumed
to be 1m and 0.01m, respectively and b0 is taken 0.05m.
For the analysis, a non-dimensional natural frequency is
defined as Ω = ω

√︁
ρm
Emh2 which E

m and ρm denote Young’s
modulus and density ratio of epoxy resin, respectively. It is
also mentioned that simply supported, clamped and free
boundary conditions are specified by S, C and F letters
symbols, respectively.

Table 5 illustrates the influence of CNT volume frac-
tion (V r) and E-glass fiber volume fraction

(︀
VF

)︀
on the

non-dimensional natural frequency of a [90∘/0∘/0∘/90∘]
non-uniform CNTFPC beam for the case η = µ = 1. It
is clear that with increase of V r or VF, fundamental fre-
quency parameter of nanocomposite beam increases. Ta-
ble 5 also reveals that the influence of nanotubes on nat-

ural frequencies becomes lower in composite structures
with higher fiber volume fraction. For example, it is evi-
dent that adding 5% CNT in the resin improves the natural
frequency parameters of simply supported non-uniform
CNTFPC beams about 15.3% when VF = 50% while this
improvement is 12.4% if VF = 70%.

The effect of stacking sequence of layers on the free
vibration of non-uniform nanocomposite beams is shown
in Table 6 for various CNT volume fraction and boundary
conditions. By focusing on the results of this table, it can
be inferred that orientation of fibers has an effective role in
free vibrations of CNTFPC beams. It is resulted that the in-
fluence of CNT volume fraction is more significant in com-
posite beams with more 90∘ layers. This is due to the fact
that in the layers with angle 0∘, CNTs do not lead to seri-
ous variations inD11(x) in Eq. (20), as the stiffness of struc-
ture. In otherwords, in0∘ layers, the effect of longfibers on
D11(x) is more dominant compared to the effect of CNTs.

Here, the role of agglomeration parameters (µ and η)
in vibrational behavior of non-uniform CNTFPC beams is
investigated. The fundamental frequencies of beam are
tabulated in Table 7 for different nanotube volume frac-
tion, aggregation states and boundary conditions. Table 7
demonstrates that the agglomeration influence of CNTs on
natural frequencies of CNTFPC beams is more prominent
at high values of nanotube volume fraction. Table 7 and
Fig. 6 also confirms that the effect of volume fraction of
nanotubes on thenatural frequency of structure is reduced
if more discrepancy between µ and η is observed.

In Table 8 and Fig. 7, the effects of non-uniformity pa-
rameters δ and boundary conditions on the first three fre-
quency parameters of non-uniform nanocomposite beams
are illustrated for the case η = µ = 1. Results indicate
that the edge conditions and non-uniformity parameter
δ have crucial roles in the vibrational characteristics of
the structure. As it is obvious from Table 8, increase in δ
has different effects on the vibrational behavior of CNTFPC
beams. It is observed that with increase of δ, natural fre-
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Table 3: Comparison of natural frequencies of a twenty-layer composite beam
(︁
Ω = ω

√︁
E2 I
ρAL4

)︁
.

Mode ANSYS [44] Experimental [44] Present
1st flexural mode 5.5 5 5.7889
2nd flexural mode 34.7 28 36.2781

Vibration (plane 1-2) 91.0(*) - -
3rd flexural mode 97.1 84 101.5798
1st Torsional mode 108.0 - -
4th flexural mode 190.0 155 199.559
5th flexural mode 313.7 272 329.0537
2nd Torsional mode 327.0 - -

Table 4:Material Properties of CNT/fibereopxy beam [27].

Material Properties Value
CNT Longitudinal Young’s modulus (GPa) 649.12

Transverse Young’s modulus (GPa) 11.27
Longitudinal Shear modulus (GPa) 5.13

Poisson’s ratio 0.284
Density (kg/m3) 1400

Epoxy Resin Isotropic Young’s modulus 10
Poisson’s ratio 0.3
Density (kg/m3) 1150

Glass Fiber Elasticity modulus (GPa) 69
Density (kg/m3) 1200

Poisson’s coeflcient 0.2

Table 5: Fundamental frequency parameters of a four-layer [90∘/0∘/0∘/90∘] non-uniform CNTFPC beams with various CNT volume fractions
and fiber volume fractions (η = 1 µ = 1 δ = −2).

Boundary conditions VF V r

0% 1% 2% 5%
SS 50% 3.938 4.074 4.201 4.541

60% 4.248 4.384 4.510 4.842
70% 4.626 4.760 4.882 5.199

SC 50% 5.539 5.730 5.909 6.387
60% 5.975 6.166 6.344 6.811
70% 6.506 6.694 6.867 7.313

CS 50% 7.356 7.609 7.846 8.481
60% 7.935 8.188 8.424 9.045
70% 8.640 8.890 9.119 9.711

CC 50% 9.522 9.850 10.157 10.979
60% 10.271 10.599 10.904 11.708
70% 11.184 11.507 11.804 12.570

CF 50% 2.600 2.689 2.773 2.997
60% 2.804 2.894 2.977 3.197
70% 3.054 3.142 3.223 3.432
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Table 6: Fundamental natural frequencies of non-uniform CNTFPC beam versus different stacking sequence of layers (δ = −2 VF = 60%
µ = η = 1).

Stacking sequence V r Boundary conditions
SS SC CS CC CF

[90∘/90∘/90∘/90∘] 0% 3.986 5.606 7.444 9.636 2.631
1% 4.145 5.830 7.742 10.022 2.736
2% 4.292 6.037 8.017 10.377 2.833
5% 4.675 6.575 8.731 11.302 3.086

[90∘/0∘/0∘/90∘] 0% 4.248 5.975 7.935 10.271 2.804
1% 4.384 6.166 8.188 10.599 2.894
2% 4.510 6.344 8.424 10.904 2.977
5% 4.842 6.811 9.045 11.708 3.197

[0∘/90∘/90∘/0∘] 0% 5.570 7.834 10.404 13.467 3.677
1% 5.607 7.887 10.473 13.557 3.701
2% 5.644 7.938 10.541 13.645 3.725
5% 5.748 8.085 10.736 13.897 3.794

[0∘/0∘/0∘/0∘] 0% 5.761 8.103 10.760 13.928 3.803
1% 5.786 8.138 10.807 13.989 3.819
2% 5.811 8.173 10.854 14.050 3.836
5% 5.885 8.278 10.993 14.229 3.885

Figure 6: Variations of fundamental frequency of [90∘/0∘/0∘/90∘]
cantilever nanocomposite beam versus CNT volume fraction at dif-
ferent degree of agglomeration (VF = 60% δ = −2).

quencies of the C-S and C-F beams decrease while they in-
crease for S-C boundary conditions. For S-S and C-C beam,
due to the symmetry of boundary conditions, the varia-
tions of frequencies are different and symmetrical behav-
iors are expected. Fig 7 and Table 8 reveal that with in-
crease of δ, fundamental natural frequency of the struc-
ture with C-C boundary conditions first decrease to a min-
imum value (at δ = 0 where the cross-section profile is
uniform) and then increase. Similar behaviors can be ob-
served for the second and third natural frequencies. For
the CNTFPC beam with simply supported boundary con-
ditions, it is apparent that the uniform cross section has
maximumfrequencyparameters at thefirstmodeandmin-
imum values at highermodes. According thosementioned

about Table 8 and Fig. 7, it can be concluded that us-
ing suitable non-uniformity parameter can be considered
as an effective parameter for engineering designs. From
Fig. 7, another important conclusion can be made regard-
ing the non-uniformity of beam. Results represent that the
role of parameter δ is more effective at first modes com-
pared to other modes. Take C-C boundary conditions in
this figure for example.Variations of δ from−2 to0, leads to
variations of first natural frequency from 10.904 to 10.636
(difference between the frequencies is about 2.46%) while
the variations of third natural frequency of structure is less
than 0.68% (from 57.865 to 57.476).

6 Conclusion
In this research work, natural frequency response of non-
uniformmulti-scale CNTFPCbeamswas studied taking ag-
gregation of nanotubes into account and using Hamilton’
principle, GDQ approach and MTmodel. From the present
work, some conclusions can be made:

• Results show that CNT volume fraction does not
have any significant influences on the natural fre-
quencies of orthotropic beams with 0∘ layers.

• Variations of natural frequencies against non-
uniformity parameter δ at different modes for var-
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Table 7: Fundamental natural frequencies of [90∘/0∘/0∘/90∘] non-uniform CNTFPC beams with various values of CNT volume fractions,
agglomeration parameters and boundary conditions (δ = −2 VF = 60%).

V r Boundary Conditions
SS CS SC CC CF

0% - 4.248 5.975 7.935 10.271 2.804
1% η = 1 µ = 1* 4.384 6.166 8.188 10.599 2.894

η = 1 µ = 0.5 4.377 6.157 8.176 10.583 2.890
η = 1 µ = 0.1 4.341 6.106 8.108 10.495 2.865

2% η = 1 µ = 1* 4.510 6.344 8.424 10.904 2.977
η = 1 µ = 0.5 4.486 6.310 8.380 10.847 2.962
η = 1 µ = 0.1 4.386 6.169 8.192 10.603 2.895

5% η = 1 µ = 1* 4.842 6.811 9.045 11.708 3.197
η = 1 µ = 0.5 4.732 6.656 8.838 11.441 3.124
η = 1 µ = 0.1 4.440 6.244 8.292 10.734 2.931

Figure 7: The first three natural frequencies of non-uniform [90∘/0∘/0∘/90∘] CNTRC beams with various non-uniformity parameters and
boundary conditions (VF = 60% V r = 2% η = 1 µ = 1).
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Table 8: The first three natural frequencies of non-uniform [90∘/0∘/0∘/90∘] CNTRC beams with various non-uniformity parameters and
boundary conditions (VF = 60% V r = 2% η = 1 µ = 1).

δ Mode No. Boundary Conditions
S-S S-C C-S C-C C-F

−2 1 4.510 6.344 8.424 10.904 2.977
2 18.945 23.069 24.970 29.675 12.637
3 42.502 48.940 50.841 57.865 31.553

−1 1 4.646 6.835 7.849 10.702 2.251
2 18.811 23.344 24.293 29.407 11.505
3 42.295 49.165 50.116 57.573 30.360

0 1 4.692 7.330 7.330 10.636 1.671
2 18.767 23.753 23.753 29.318 10.475
3 42.227 49.558 49.558 57.476 29.330

1 1 4.646 7.849 6.835 10.702 1.220
2 18.811 24.293 23.344 29.407 9.526
3 42.295 50.116 49.165 57.573 28.462

2 1 4.510 8.424 6.344 10.904 0.875
2 18.945 24.970 23.069 29.675 8.639
3 42.502 50.841 48.940 57.865 27.757

ious boundary conditions can be considered as an
important factor for structures design.

• Due to the agglomeration of nanotubes in resin, us-
ing only low percent of CNTs (about 2%) leads to im-
provement in the stiffness of structure.

• The effects of CNTs on vibrational behavior of
CNTFPC beams are more prominent for structures
with less E-glass fibers.
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