MECHANIKA TEORETYCZNA
I STOSOWANA

Journal of Theoretical

and Applied Mechanics

1, 33, 1995

FREE VIBRATIONS OF RIGID MASSIVE RECTANGULAR
FOUNDATIONS EMBEDDED IN A VISCOELASTIC
HALF-SPACE

ZBIGNIEW SIENKIEWICZ

Department of Civil and Environment Engineering

Technical University of Koszalin

A method is presented to analyse the free vibration of a rigid massive
rectangular foundation buried to some extent beneath the surface of the
ground. The response is evaluated using the complex eigenvalue analysis
which is mathematically accurate and emiploys complex, nonclassical vi-
bration modes. Taking the frequency dependence of dynamic impedance
functions for the embedded foundation into account, the dimensionless
damped natural frequency for each mode is obtained as a single real root
of transcendental real frequency equation. 1'he numerical results inclu-
ding the dynamic interaction eflects are compared with those obtained
at neglected radiation damping in the supporting medium and based on
static data. It is shown that the embedment of the foundation and the
state of backfill considerably aflect its complex eigenvalues.

1. Introduction

Free vibrations of real structures undergo a gradual decrcase of amplitude
with time. This characteristic of vibration is referred to as damping. For
a rigid block bonded to a flexible semi-infinite soil medium, the source of
damping is the dissipation of energy by waves propagating away from the
foundation. This damping is termed ’'radiation damping’. To the radiation
damping must be added the material damping which represent the energy
dissipated through friction between the soil grains (Richart, Woods and Ilall
(1970)). The damping due to a dynamic soil-structure interaction does not
satisfy the Caughey-O’Kelly condition of classically damped systems (Caughey
and O’Kelly (1965)). Such systems are said to be non-classically damped.
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Impedances of a supporting soil medium which relate the forces to the
displacements depend upon the frequency of the excitation (Wolf (1985)).
This dependency distinguisles the considered problem from the standard non-
classically damped systems of structural dynamics (Ilurty and Rubinstein
(1964)).

The objective herein is to present the corresponding data for free vibra-
tions of rigid massive rectangular foundations embedded in a viscoelastic half-
space including the frequency-dependent stiffness and damping coellicients of
the unbounded supporting medium. A rigid foundation has six degrees of
freedom that involve three rotations and three displacements. Thercfore, in
general, six coupled differential equations are required to describe completely
the foundation motion. llowever, in practice, the problem is reduced to that
of solving a smaller number of coupled diflferential equations as the knowledge-
able designer capitalizes on symmetry in order to simplily the dynamic design.
Assuming as in a typical problem a symmetry of the vibrating system about
two horizontal axes, the vertical translation mode and tle torsional rotational
mode occur as uncoupled motions while the remaining modes resolve into two
independent coupled motions, i.e. rocking-lateral and pitching-longitudinal.
The damped natural frequency for each mode of vibration can be obtained
as a real root of a transcendental real characteristic equation. If the damped
natural frequency is estimated, the modal damping factor as well as the cor-
responding eigenvector for a coupled mode can be directly obtained from the
closed-form formulas.

2. Statement of the problem

The block is assumed to be rigid and massive being perflectly bonded to
the semi-infinite supporting medium along the interface 7. Furthermore,
the rigid block displays two orthogonal vertical planes of symmetry and has
a rectangular plan 2B X 2L, (L > B), I'ig.1. The origin of the coordinate
system is defined at its centre of mass and the coordinate axes arc oriented
with the principal axes of the rigid body, for which the mass products ol inertia
are equal to zero.

The response of an inert rigid block can be represented by the dimensionless
vector

a(r) = [120 W) 20 6 4) 0,0,0.0]" (2.1)

which involves the normalized translation (u,/B,u,/DB,u,/D) at the point of
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Massive
rigid
-] block

Fig. 1. System considered

reference and the rotation (0., 0,,0;) about the coordinate axes; DB denotes
the hall-width of the rectangular base.

Making use of dimensionless parameters, the equation of coupled free mo-
tion of the block can be written as

mu = —1(1) (2.2)

where m is a normalized inertia matrix and #(?) is a dimensionless reaction
vector of a supporting medium. They are given by

m = diag{bmbo,bOaBrr,BryyB'rz} (23)

i) < B0 B PQ VD M0 )T
"Elep eB G G G GDB

where
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bo - mass ratio, bop = m/pB3

B, — inertia ratio, By, = I,/pDB%, p=2,7y,2

m — mass of a rigid block

I, ~ principal mass moment of inertia of the block, p=1z,y,z2

P}, M; - reaction forces and moments of the supporting medium
at the point of reference, p=z,y,2

G - dynamic shear modulus of the half-space

! — dimensionless time, = (Vs/D)t

t - time

Vs — shear-wave velocity in the hall-space, V5 = \/G/p
P — mass density of the half-space material
and (') = ﬁ”;-

To solve the equation of motion (2.2) it is necessary to know the reaction
forces and moments of the supporting medium, r(¢), duc to the general displa-
cement mode u(1) of the block. This relation depends upon the mathematical
model of the supporting medium.

3. Model of the supporting medium

The dynamic reactions ol supporting medium are developed both below tle
base [}, and on the sides I, (Iig.1). The embedment couditions of the block
are very complex as excavating and backfilling disturb the soil. I'urthermore,
the soil stiffness decrease in direction to the surface and the block may be
separated from the soil.

It is diflicult to take into account these clfects accurately, then approximate
approaches are justified. In this paper, it is assumed that the medium under
the base of block is modelled as a viscoclastic half-space while the medium
above the base is represented by an independent viscoelastic layer (c¢f Baranov
(1967), Novak (1974)). The assumption allows to distinguisli between the
backfill and the underlying soil.

Distribution of contact stresses results from a solution to mixed boundary-
value problem for a half-space and a sidelayer. Integration of the contact
stresses over the block-medium interface I’ = [, U I, leads to the total
dynamic reaction vector at the point of reference

() =70 +7(0) (3.1)
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where 79(1), #%(1) are the reaction vectors of the half-space and of the sidelayer,
respectively.

3.1. DBase reaction

Distribution of contact stresses at the base of the rectangular foundation
is estimated by discretization of the contact area into smaller subregions. The
contact stresses witlin each subregion were considered to be constant and
interactions between the regions were included by the flexibility concept of
Wong and Luco (1976). Imposing the displaceinent boundary conditions of
rigid body leads to a linear algebraic equation system for tlie contact stres-
ses. More details on the nunerical solution to this problem can be found in
Sienkiewicz (1992). Finally, the reaction vector of the hall-space is given in
the frequency domain by the stiffness relation at the centre of the base of the
block, e.g. at point C(0,0, z.) (Fig.1)

(1) = RS((L())’!_I.C exp(iagl) (3.2)
where
(1) - vector of reaction forces and moments at point C
U, - vector of complex-valued amplitudes of displacements at
point C
l_((c)(ao) — normalized complex impedance matrix
ag — dimensionless frequency factor, ag = wB/V;
w — angular {requency.
The normalized complex-valued impedance matrix can be written in the
form
( ‘[\IQIIHI B 0 0 0 K?IrRy 0 |
0 I\ ?lyl‘ly 0 _[\ ?fynl‘ 0 0
0, | 0 0 oy 0 0 0
Kelao) = 0 K%y, 0 K¥fp O 0 (3.3)
K1, 0 0 0 Kpyny 0
| 0 0 0 0 0 K9 ]

0 0 0 — J0 -0 0 _
The terms ]\ HPHP, 1\ RPRP’ ]\ }Iqu = ]\ Rqu’ ]\ Vv a“d I\']‘T ([),q =2z, y) are
the horizontal, rocking, coupling, vertical and torsional impedance functions,
respectively.
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Eq (3.2) must be transformed to a reference point at the center of mass
(Weaver and Johnston (1987))

(1) = K (ao)wexp(iayl) (3.4)
where o L, .
K™ (a0) = TocK:(a0) To, (3.5)
The dimensionless transformation matrix To. has the form
[ 1 0 0 0 0 017

0 1 0 0 00

- 0 0 1 0 0 0O
Toc = 0 z/B -y/B 1 0 0 (3.6)

—z./B 0 —z./B 0 1 0

where =z, y. and =z, are the scalar components of a position vector rq,
directed from the center of mass to point C(0,0, z.).

It is of advantage to separate the rcal and imaginary parts of impedance
matrix I_(O(ao) in q (3.4) as follows

(1) = [K°(a0) + ia0e(a0)] @ exp(iavd) = k’(ao)i(T) + €(a0)i(D) (3.7)

where " o
k' (ap) ~ normalized stilfness matrix, k (ap) = ReK (ap)
c®(ap) - normalized damping matrix, €(qg) = (1/a0)ImK(ap)
Re, Im - stand for the rcal and imaginary parts of the quantity

that follows, respectively.

3.2. Side reaction

The disturbed soil adjacent to block sides (backfill) is modelled as an inde-
pendent viscoelastic layer. The dynamic behaviour of the side-layer is gover-
ned by the three dimensional wave equation under the cylindrical plane strain
condition. The corresponding boundary value problem for the rigid cylinder
coupled with this medium has been solved by Novak, Nogami and Aboul-Ella
(1977). The solution is mathematically accurate and the reactions of the me-
dium to the motion of the cylinder are given by mecans of the closed-form
expressions. The results may be used to estimate the reaction vector of the
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side-layer for the rectangular foundation by converting its rectangular base
into an equivalent circular base with appropriate radius for translational and
rotational modes of vibrations (Sienkiewicz (1992)).

The force-displacement relationship for the rigid block coupled with the
side-layer is conveniently to write at point ££(0,0, 2. — 1//2) (Fig.1)

72(1) = K (a)ue exp(iaol) (3.8)
where
ri(1) - vector of reaction forces and moments at point I
T — vector of displacement amplitudes at point E
Kl(ag) - normalized complex-valued impedance matrix
aj — dimensionless frequency factor for the side-layer,
ay =wh/V$
| % - shear-wave velocity in the side-layer, V= /G,/ps
R — radius of an equivalent circular basc due to the mode of
vibration of the rectangular block
G, — dynamic shear modulus of the side-layer
Ps — mass density of the side-layer material.

The complex non-dimensional impedance matrix is as follows

Ko(a§) =
(3.9)
Kin(ag) 0 0 0 0 0 ]
0 K (ad) 0 0 0 0
B 0 0 K¢y (as) 0 0 0
0 0 0 0 Kpypy(ads) 0
L 0 0 0 0 0 Kip(ad,).

Lt . . _ys _—s . .
where the roc.kfng 1mped.ance fun(':tlons ' ki hrn and K}, p, are spe'uﬁed
by a superposition of antisymmetric vertical displacements and non-uniform
horizontal displacements

_ N R ,
K ;‘QIRJ:((Z‘(S)?) =K 1541‘/41‘((['82) + Eh?[\ III:L‘IIJ.'(U'Ol) (310)
K ;?yRy(u&s)S) = K ,‘ZlyAy(GSS) + Eh?]\ ;lyHy((Lgl) (311)

Functions K3, ,, and RityAy are the so called antisymmetric impedance
functions (cf Novak et al. (1977), Sicnkiewicz (1992)) and h = I//D is the
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embedment ratio.
The dimensionless frequency parameters for the side-layer, «§; (7 = 1,2,3,4),
and for the half-space, ag, are related by

ay; = @jao j=1,2,34 (3.12)

where the coellicients «; depend on the mode of vibration and can be writ-

ten as
4rp [16X3 [p
oy = __p ap =\ &\/g
Tg 3r \| g
(3.13)
= f N
Og = 4@\/5 Oy = 4—]6A(]+A)\/E
3r \l g 6 g
in which
v L 5= Ps - Gs
Eq (3.8) one should transform to the working point at the center of mass
(1) = K’ (ad)uexp(iaol) (3.14)
where ) o )
K*(ag) = ToeK(a) To, (3.15)

The separation of the real and imaginary part of the matrix K’(a8) in Eq
(3.14) leads to

7 (1) = [k°(a3) + iao€ (a§) | wexp(iaod) = K'(ad)il(l) + ©(a)u(D)  (3.16)

where k’(a) = Re_}_(s(ag) is a normalized stiffness matrix of the side-layer and
& (ag) = (1/ao)ImK’(a3) is the normalized damping matrix.

3.3. Model of material damping

The soil medium is a dissipative material. When strained cyclically, the
medium exhibits a hysteretic stress-strain-time relation and energy is dissipa-
ted in each cycle, being represented by the arca within tle hysteresis loop (cf
Richart, Woods and Ilall (1970); Werno et al. (1985)).

The internal damping of homogeneous isotropic materials in the frequency
domain is taken into account by expressing the elastic shear G and bulk K
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moduli of the materials as complex-valued quantities G*(iw) and K*(iw)
(Nowacki (1963)). The mathematical formulas for the complex moduli can
be based on physical study of a mechanism which removes encrgy from the
oscillating system (cf Solecki and Szymkiewicz (1964), Sorokin (1972)). The
form can also result from a priori assumed viscocelastic models.

In soil dynamics, the two parameter Kelvin-Voigt model is often used
(cf Sawinow (1972), Lipinski (1985)). But the modecl displays linear frequ-
ency dependent increase of damping what is nol supported by measurements.
A mechanism of energy dissipation in the soil generates the damping which
is almost independent of the frequency of vibration over a finite range of fre-
quencies (Richart, Woods and Ifall (1970)). The physical behaviour of soils
can be described using frequency-independent complex moduli. Ilowever, the
constant hysteretic damping model leads to a noncausal behaviour, because
the assumption that the dissipation of energy is [requency independent over
all frequencies is not compatible with the principle ol linearity and causality
(cf Bracwell (1978), Ben-Mcnahem and Singh (1981)).

A more satisfactory model for behaviour of soil which comes under causa-
lity principle is a three paramecter viscoelastic model consisting of a Kelvin-
Voigt model and a linear spring element connected in series (¢f Nowacki (1963);
Ben-Menahem and Singh (1981)). The model gives the most general Jinear
equation in stress, strain and their first time derivatives. It should be noted
that the three parameter model describes the standard test of relaxation and
creep with instantaneous elasticity and displays an asymptotic elastic beha-
viour. This rheological model has been adopted in tle following, using the
results of Gaul et al. (1988). The complex-valued shear G* and bulk K™
moduli are given by

1+ i€
G = gLFiat” (3.17)
1+ iao%;
1 iantN
K* = it (3.18)
1+ i(l0§2—
where
ao - dimensionless frequency factor
G — elastic shear modulus
K - elastic bulk modulus
¢G, ¢ —  non-dimensional damping ratios.

The number of viscous constants can be reduced froin two to one puttling
forward the assumption ¢€¢ = €K = £ It implies that the material is si-
milarly viscoelastic in bulk and shear deformations and the Poisson ratio is



124 Z .SIENKIEWICZ

real-valued, independent of frequency and equal to the Poisson ratio value for
the corresponding elastic material. The simplified assumption ¢ = ¢N = ¢
is frequently used in soil dynamics (Gaul,Klein and Plenge (1988)).

4. Solution to the eigenfrequency problem

The stillness and damping matrices describing the dynamic properties of
the supporting medium in the frequency domain should be taken at a dimen-
sionless frequency a@ with which the rigid block vibrates under the influence

of initial conditions.
Substituting the formulae for interaction forces (3.7) and (3.16) into Eq

(3.1) and (2.2) yields
fi(7) + E(ad)ilD) + k(ad)a(D) = 0 (4.1)

where ¢ is the total damping matrix and k is the total stifness matrix.
The total dynamic stiflness coefficients have been re-scaled to give the static
stiffnesses of an embedded rectangular foundation at the point of reference
when the dimensionless frequency tends to zero.

The homogeneous equation (4.1) governs the free vibration of a rigid mas-
sive block supported by a semi-infinite flexible medium. The free motion
depends upon the properties of the block and of the supporting medium that
appear in the form of the following dimensionless parameters

— mass ratio bp = m/pD>

— inertia ratios DB, = Lnp/pDB%, p=1,y,2

— aspect ratio A = L/B

— shear modulus ratio ¢ = G,/G

— density ratio p = ps/p

— Poisson ratios v and vy of the hall-space and of the side-layer, respectively

—~ damping ratios € and & of the medium bencath the block base and of the
side-layer, respectively

— embedment ratio h = If/B

— block ratio z. = 2./ B.
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A particular solution to Eq (4.1) is assumed to be of the form

u(1) = ecxp(isol) (4.2)
where e dcnotes a dimensionless complex-valued cigenvector and
50 = af + i6¢ is a normalized complex frequency. The solution conta-

ins an harmonic component of frequency ag (dimensionless damped natural
frequency) and a vibration decay component with dimensionless damping fac-
tor 6.

Substituting the solution (4.2) into the equation of motion (4.1) gives a set
of equations

[—ggrﬁ + i5o&(Redo) + k( Rego)]é =0 (4.3)
The non-trivial solution to q (4.3) requires that
det [—s—gm + i3pc(Resp) + R(Reéo)] =0 (4.4)

This requirement leads to a complex characteristic equation which has coefli-
cients dependent upon a damped natural frequency af = Redp that is to be
searched. Then, the characteristic complex value 3§ may be found only by an
iteration process. Starting with an arbitrary small value of «, one can form
an increasing sequence

al) < a® < ... <alV (4.5)

For each value of a(gj), the coellicients of frequency equation are fixed and
the complex roots of the characteristic cquation may be found using suitable
algorithms. The criterion of selection is

|Resop — a(()j)l <e¢ Im3y > 0 (4.6)

where ¢ is an error tolerance (accuracy tolerance).

However, implementation of this genecral iterative scheme may leads to
some numerical problems and even though the problems might be overcome, it
is desirable to take advantage of the symmetry of the considered block-medium
system. Namely, explicit formulae for the complex characteristic values 3o;
may be established directly from the characteristic equation. Then, the dam-
ped natural frequency of the jth mode, agj, is obtained as the real root of
the following jth real transcendental equation

fj(ag) = Reégj(a.g) - ag =0 (4.7)

Therefore, the problem is to find zero of the real frequency function f;(ad),
what can be done by well established and reliable procedures (cf Dahlquist
and Bjorck (1974), Traub (1982), Stoer and Burlirsch (1983)).
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If the natural frequency of the jth mode is estimated, the modal damping
factor 5gj follows {rom equation

6gj = Ilngoj(agj) (4.8)

For underdamped vibration modes, the characteristic values occur in complex
dual pairs

(4.9)
To the pair of the characteristic values (4.9) corresponds a complex conjugate
pair of characteristic vectors e, e.

For the sake of brevity, the explicit form of corresponding characteristic
equations is presented only for the vertical mode of vibration.

4.1. Vertical mode of vibration

— frequency equation

Ju(ad) = \/ faslef) _ (S g = g (4.10)

— root agv

— modal damping factor 6,

¢ _ C(afy)

Note that the characteristic frequency equations contain stilfness /_fij and
damping ¢&; coeflicients known only approximately what results from the
approximate numerical solution to the corresponding mixed-boundary value
problem in elastodynamics. Despite the fact that the very aim of finding the
exact roots of the equations is meaningless, the approximate rcal roots can be
found to the specified degree of accuracy. Ilowever, il the characteristic equa-
tion no roots within its domain of existence, the considered mode of vibration
is overdamped.
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5. Free vibration

Solution for the jth oscillating vibration mode is given by
1_1._7'(1_) = /ijéj eX[)(iEOJ'D + /TJ'(__BJ' CXp(ig()jD (5.1)

in which A; is a complex-valued constant and /T]- is its complex conjugate.
The response of the block-medium system in coupled lateral and rocking
motion to an arbitrary initial excitation is given by the superposition of two

modal solutions
2

a(D) = 23" Re[A; exp(is; )] (5.2)

i=t

Using the following decomposition
24;8; = B, + iv; (5.3)

and the well-known identity between exponential and trigonometric functions,
Eq (5.2) may be written as

2
(D) = Y exp(~08;1) [B; cos(a; ) — ; sin(ad;D)] (5.4)
=1
where
B; = Re(24,é;) (5.5)
;= Im(Qijéj) (5.6)

The real-valued dimensionless vectors B; and «; arc expressed in terms of
the real and imaginary parts of the complex-valued characteristic vector e;
and the complex-valued participation factor A;.

The characteristic vector e; can be normalized such that its first element
has a unit real part and the corresponding imaginary part is zcro

5’1=[ ! J J=12 (5.7)

€2
where
~ €51 + g2 _ €53 + 1654
€jp = ————— or gjp = —L—— (5.8)
£53 +1€54 E55 +1€58
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and

€51 = Ell(“gj) - bo[(“gj)2 - (5dj)2] - 531'511(“3]')

d
2 = (lUJC“((LOJ) 21)0(101(5

€43 = kls(“gj) - 50jC15(“gj)
€j4 = ‘131515(0&') (5.9)
€55 = l_c55(ag]-) - ry[(“gj)2 - (5gj)2] - 561]'555(“3]‘)

d
£j6 = a0]c55(a0]) 2Bry(10]6

It can be shown that the complex-valued dimensionless participation factor
A; is given by

— 1 . .
A; = o [%1“1( ) + bot1(0) + aj2u2(0) + Bryej2u2(0)] (5.10)
J
where
Qajp = (laoJ 5o])bo+611(ao])+812015 aO])
ajo = (1a0] 6 )e]r_)Bry + clg(ao]-) + €j2C55((l$j) (5.11)
Q53 = (1(‘0] 50])(170 + B?yeﬂ) + a1 + @j2€2

and @;(0), u2(0) are the presummed initial dimensionless displacements and
u1(0), u2(0) are the corresponding initial dimensionless velocities in coupled
lateral and rocking free vibration (two degrees of frecdom).

For uncoupled modes of vibration (one degree of freedom), the response of
the system to presummed initial excitation is given by

a(1) = exp(—821)[A; cos(all) — Agsin(adl)] (5.12)
where N .
A1 = 2(0) 4y = MO+ Eu(0) (5.13)
4o

6. Numerical results

Vertical and coupled lateral and rocking modes ol vibration of a rigid
rectangular massive foundation embedded in a viscoclastic hall-space have
been selected to make a parametric study.
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Natural frequency of an underdamped mode af; is scarched for as a single
real root of the corresponding real transcendental equation. The process of
finding the root consists of two stages:

e Establishing the possible smallest interval containing the root
e Reducing the interval to the specified degree of accuracy.

In the developed computer procedure, the selection of interval in which the
function changes sign is done by the user and then the refining of the root is
carried out by the bisection method combined with the secant method and the
inverse quadratic interpolation (Forsythe, Malcolm and Moler (1977)) what
gives the efficient and reliable algorithm. The length of the interval of uncer-
tainty of the zero of the transcendental function was assumed as 1076.

It is claimed that the modelling of the embedment of the foundation by
means of a local boundary gives results which are remarkably close to the
results obtained by rigorous approaches. To verify this claim, the vertical
vibration mode of a rigid massive square [oundation embedded in a uniform
elastic half-space was analysed by use the impedance functious resulting from
the approach adopted in this study as well as obtained by a hybrid appro-
ach of Mita and Luco (1987). The hybrid approach was based on the use of
Green’s functions for the half-space combined with the finite element discre-
tization of the finite portion of soil excavated for thie foundation. This hybrid
approach can attain excellent accuracy compared with solutions obtained by
other methods as the finite element method and the indirect boundary inte-
gral equation approach (Apsel and Luco (1987)). The numerical values for the
impedance functions presented by Mita and Luco (1989) in tabular form were
completed by a spline interpolation (Ferziger (1981)).

The dimensionless damped natural frequency ad, and the modal damping
factor 62, calculated by use the two approaches to determine the impedance
functions of embedded foundations are presented in Table 1 for a number of
embedment ratios II/B. Inspection of Table 1 reveals that the agreement
between the two sets of natural frequencies and modal damping factors is
quite satisfactory.

Using the approach based on the local modelling of the embedment, the ef-
fect of soil-structure interaction on the complex eigenvalues of the rectangular
foundation has been studied. The results illustrating the eflect of embedment
ratio h are shown in Fig.2 for the vertical mode and in Fig.3 for the coupled
lateral and rocking mode of vibration, respectively. Full lines represent the va-
lues of damped natural frequency ag; and modal damping factor ég; alfected
by the radiation and material damping and crossed lines show the values of

9 — Mechanika teoretyczna i stosowana
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ad; and 6g; under control of the radiation damping only. Dotted lines in these
figures show the undamped natural frequency af; computed as the root of
the corresponding transcendental frequency equation at suppressed radiation
damping and rhombed lines represent the values of natural frequency a8y
computed from static data for the stiffness parameters.

Table 1. Vertical mode of vibration of a rigid massive square foundation
embedded in a uniform half-space (bg = 10, v = 0.25). Comparison of the
dimensionless damped natural frequency ag, and modal damping factor &g,
calculated by use two approaches to determine the impedance functions of
embedded foundations; 1 — a hybrid approach of Mita and Luco (1987) and

(1989), 2 — modelling of embedment by local boundary.

1 2
/B 1788, | o, [ o
0.00 | 0.723 | 0.278 [ 0.709 | 0.292
0.05 ] 0.732 ] 0.302 ] 0.710 { 0.311
0.10 1 0.737 1 0.322 1 0.711 | 0.330
0.15 { 0.740 { 0.342 | 0.711 { 0.350
0.20 | 0.743 1 0.361 | 0.711 | 0.369
0.25 | 0.744 1 0.379 | 0.710 | 0.389
0.30 ) 0.745 ) 0.398 | 0.709 | 0.408
0.35 | 0.745 | 0.416 | 0.708 | 0.428
0.40 | 0.744 | 0.434 [ 0.705 | 0.447
0.45 | 0.742 | 0.452 | 0.703 | 0.467
0.50 | 0.740 | 0.470 | 0.699 | 0.486
0.55 1 0.736 | 0.488 | 0.695 | 0.506
0.60 | 0.732 | 0.506 | 0.691 | 0.525
0.65 | 0.727 | 0.524 | 0.686 | 0.5145
0.70 | 0.721 | 0.542 | 0.680 | 0.565
0.75 | 0.715 ] 0.560 | 0.674 | 0.585
0.80 | 0.708 { 0.579 | 0.667 | 0.604
0.85 | 0.700 | 0.597 | 0.659 | 0.624
0.90 | 0.692 | 0.616 | 0.650 | 0.645
0.95 | 0.682 ] 0.635 ] 0.640 | 0.665
1.00 | 0.672 | 0.653 | 0.629 | 0.685

Examining Fig.2 and Fig.3, it can be seen, that the natural frequency for
the vertical oscillation ag, and the second natural frequency for the coupled
mode af, are highly damped and the damping significantly increases with the
embedding of the foundation. It is demonstrated by curves representing the
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Fig. 2. Vertical mode of vibration. Variation of dimensionless natural frequencies

modal damping factors 4, and §4,. llowever, the modal damping factor of
the first mode &%, for the coupled rocking-lateral oscillation is low and the
values of the first damped natural frequency ag, virtually coincide with the
values of the first undamped natural frequency ag,.

Differencies between values of ag; and «f; indicate the cffect of damping
arising from the soil-structure interaction on the natural [requencies while
the differences between af; and a§? illustrate the eflect of inertia of the
supporting medium.

It is known that the excavating and the backlilling disturb the soil surro-
unding the foundation. The backlill can reduce the embedment effectivencss
quite substantially. In the considered model it is taken into account distingui-
shing between the shear modulus G, and the mass density pg of the sidelayer
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ag; mipBi=10  G./G=1 J

i Iyl pB°=20 pIp=1 ——&=&=02
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L/B=2 _

h=11/B

Fig. 3. Coupled rocking and lateral mode of vibration. Variation of dimensionless

natural frequencies ad;, a;, a¥%*, i = 1,2, and modal damping factors 8§, 6¢, with

the embedment ratio A

from the shear modulus G and the mass density p of the underlying half-
space assuming Gs/G < 1 and p,/p < 1. The results for the vertical mode
are given in Table 2 and for the coupled rocking and lateral mode of vibration

in Tables 3 and 4.
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Table 2. Vertical mode of vibration. Effect of state of backfill on dimen-
sionless damped natural frequency o, and imodal damping factor 8§, of rigid
massive rectangular foundation embedded in elastic or viscoclastic medium

(bo = 10, L/B = 2, v = 0.25).

. Ps G . Ps G . P —
ayp L B 1[G =0T B =08 G =05 § =07
gy ] 6011 aOU l 6011 a

elastic supporting medium £, = &£ =

0.00 | 0.698 | 0.604 | 0.698 0.604 0.698 0.604
0.10 | 0.674 | 0.656 | 0.679 0.644 0.682 0.635
0.20 | 0.644 | 0.709 | 0.656 0.684 0.664 0.667
0.30 | 0.607 | 0.762 | 0.630 0.725 0.644 0.699
0.40 | 0.562 | 0.817 | 0.600 0.765 0.622 0.731
0.50 | 0.504 | 0.873 | 0.564 0.807 0.597 0.763
0.60 | 0.419 | 0.934 | 0.522 0.849 0.569 0.795
0.70 | 0.325 | 0.990 | 0.468 0.893 0.537 0.828
0.80 | 0.223 | 1.045 | 0.392 0.912 0.499 0.862
0.90 | 0.063 | 1.101 | 0.312 0.987 0.453 0.897
1.00 - - | 0.249 1.030 | 0.392 0.934
viscoelastic supporting medium & = £ = 0.2
0.00 | 0.647 | 0.649 | 0.647 0.6419 0.647 0.649
0.10 | 0.613 | 0.704 | 0.620 0.691 0.625 0.682

0.20 | 0.572 | 0.759 | 0.590 0.733 0.601 0.715
0.30 | 0.522 | 0.816 | 0.545 0.776 0.574 0.748
0.40 | 0.457 | 0.874 | 0.513 0.819 0.544 0.782
0.50 | 0.372 | 0.934 | 0.463 0.864 0.510 0.816
0.60 | 0.281] 0.991 | 0.397 0.911 0.471 0.851
0.70 | 0.170 | 1.049 | 0.322 0.957 0.424 0.887
0.80 - - 0.258 1.001 0.362 0.925
0.90 - - 0.194 1.045 0.294 0.963

1.00 - - 0.123 1.090 0.248 0.998
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Table 3. Coupled rocking and lateral imnode of vibration. Effect of state
of backfill on dimensionless damped natural {requencies «;, ad, and modal
damping factors &%, 64, of rigid massive rectangular foundation embedded
in elastic medium (by = 10, B,, = 20, L/B = 2, z./B =1, v, = v = 1/3,
£ =£=0).

First mode | Second mode
af | 861 afy | 85,
Gs/Gzl; Ps/P=1
0.00 | 0.541 | 0.029 | 1.020 | 0.599
0.10 | 0.554 | 0.040 | 0.975 | 0.712
0.20 | 0.569 | 0.053 | 0.917 | 0.818
0.30 | 0.583 | 0.068 | 0.847 | 0.915
0.40 | 0.599 | 0.084 | 0.761 | 1.005
0.50 | 0.615 | 0.103 | 0.652 | 1.090
0.60 | 0.631 | 0.124 | 0.530 | 1.167
0.70 | 0.648 | 0.147 | 0.409 | 1.239
0.80 | 0.665 | 0.173 | 0.275 | 1.309
0.90 | 0.683 | 0.202 | 0.055 | 1.376
1.00 | 0.700 | 0.235 - -
Gs/G = 0.5; ps/p =0.75

0.00 | 0.541 | 0.029 | 1.020 | 0.599
0.10 | 0.547 | 0.036 | 0.991 | 0.668
0.20 | 0.554 | 0.044 | 0.957 | 0.732
0.30 | 0.562 | 0.053 | 0.920 | 0.792
0.40 | 0.570 | 0.063 | 0.879 | 0.847
0.50 | 0.578 | 0.075 | 0.835 | 0.897
0.60 | 0.588 | 0.089 | 0.787 | 0.943
0.70 | 0.597 | 0.105 | 0.735 | 0.984
0.80 | 0.608 | 0.123 | 0.678 | 1.023
0.90 | 0.619 | 0.143 | 0.612 | 1.058
1.00 | 0.631 | 0.167 | 0.533 | 1.091

H/B
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Table 4. Coupled rocking and lateral mode of vibration. Effect of state
of backfill on dimensionless damped natural frequencies ad,, ad, and modal
damping factors 68, 6%, of rigid massive rectangular foundation embedded in
viscoelastic medium (bo = 10, B,, =20, L/B =2, z./B =1, v, = v = 1/3,
£ =¢€= 0.2)

First mode | Second mode
af, | 851 ad | ‘532
G,/G =1; ps/p =1
0.00 | 0.540 | 0.045 | 0.954 | 0.671
0.10 | 0.553 | 0.057 | 0.887 | 0.790
0.20 | 0.567 | 0.071 | 0.806 | 0.900
0.30 | 0.581 | 0.087 | 0.708 | 1.001
0.40 | 0.596 | 0.106 | 0.586 | 1.096
0.50 | 0.611 | 0.126 | 0.457 | 1.183
0.60 | 0.626 | 0.149 | 0.322 | 1.266
0.70 | 0.642 | 0.174 | 0.148 | 1.346
0.80 | 0.658 | 0.203 - -
0.90 | 0.673 | 0.234 - -
1.00 | 0.688 | 0.270 - -
G,;/G = 0.5; ps/p=0.75

0.00 | 0.540 | 0.045 | 0.954 | 0.671
0.10 | 0.546 | 0.052 | 0.911 | 0.744
0.20 | 0.553 | 0.061 | 0.863 | 0.811
0.30 | 0.560 | 0.071 | 0.811 | 0.873
0.40 | 0.567 | 0.082 | 0.756 | 0.930
0.50 | 0.575 | 0.096 | 0.696 | 0.982
0.60 | 0.584 | 0.111 | 0.631 | 1.029
0.70 | 0.593 | 0.128 | 0.556 | 1.073
0.80 | 0.602 | 0.147 | 0.477 | 1.112
0.90 | 0.612 | 0.170 | 0.418 | 1.149
1.00 | 0.622 | 0.195 | 0.370 | 1.185

H/B

7. Conclusions

It is well known from the structural dynamics that knowledge of the natural
frequencies, the modal damping factors and the corresponding mode shapes
of the linear system provides the insight into its dynamic action. The physical
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insight into the dynamic behaviour of a rigid massive rectangular block on
soil medium has becn realized by a continuum approach to modelling the
soil taking the frequency dependence of foundation impedance functions into
account. The impedance {unctions for the three-dimensional rigid embedded
foundation have been determined by a procedure that takes due cognizance of
the mixed boundary conditions at the surface of the half-space and the local
boundary conditions at the vertical sides of the embedded block.

The natural frequencies obtained by including the dynamic interaction be-
tween the rigid massive foundation and the semi-infinite flexible medium have
been compared with those obtained at neglected radiation damping in the ela-
stic supporting medium and based on the static data. It indicates the signi-
ficance of including interaction effects and adequate modelling of mechanisms
governing dynamic soil-structure interaction in the prescence of uncertainties
which are an inherent part ol engincering.
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Drgania swobodne sztywnych masywnych fundamentéw o podstawie
prostokatnej zagl¢bionych w pdlprzestrzeni lepkosprezystej

Streszczenie

Przedstawiono metode analizy drgan swobodnych sztywnego masywnego funda-
mentu o podstawie prostokatnej, zaglebionego w podlozu. Zastosowano zespolona
analize modalng wykorzystujaca zespolone wartosci wlasne oraz zcspolone posta~
cie drgan. Uwzgledniajac zaleznos¢ zespolonych dynamicznych funkeji sztywnosci
fundamentu od czestosct drgan, bezwymiarowa czestos¢ drgain wlasnych tlumionych
rozwazanej formy gléwnej otrzymano jako pojedynczy pierwiastek rzeczywisty odpo-
wiedniego przestepnego réwnania charakterystycznego.

Wyniki obliczeni z uwzglednieniem dynamicznego oddzialywania pomiedzy lunda-
mentem 1 podlozem poréwnano z wynikami otrzymanymi przy pominicciu tlumienia
oraz z wynikami opartymi na danych statycznych. Pokazano, ze zagl¢bicnie funda-
mentu oraz stan gruntu otaczajacego fundament wywieraja istotny wplyw na zespo-
lone wartosci wlasne fundamentu.
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