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Free Vibrations of a Taut Cable with Attached Damper. I: Linear Viscous Damper 
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Abstract:  Free vibrations of a taut cable with an attached linear viscous damper are investigated in detail 

using an analytical formulation of the complex eigenvalue problem.  This problem is of considerable 

practical interest in the context of stay-cable vibration suppression in bridges.  An expression for the 

eigenvalues is derived that is independent of the damper coefficient, giving the range of attainable modal 

damping ratios and corresponding oscillation frequencies in every mode for a given damper location 

without approximation.  This formulation reveals the importance of damper-induced frequency shifts in 

characterizing the response of the system.  New regimes of behavior are observed when these frequency 

shifts are large, as is the case in higher modes and for damper locations further from the end of the cable. 

For a damper located sufficiently near the antinode in a given mode, a regime of solutions is identified for 

which the damping approaches critical as the damper coefficient approaches a critical value.  A regime is 

developed to indicate the type of behavior in each mode for any given damper location. 
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INTRODUCTION 

The problem of large-amplitude stay vibrations on cable-stayed bridges is now quite well known, 

and vibration mitigation has become a significant concern to engineers in the design of new bridges and for 

retrofit of existing bridges (e.g., Poston 1998; Main and Jones 1999).  Stay cables have very low levels of 

inherent mechanical damping, rendering them susceptible to multiple types of excitation (Yamaguchi and 

Fujino 1998).  To suppress the problematic vibrations, viscous dampers are often attached to the stays near 

the anchorages.  Although the mechanisms that induce the observed vibrations are still not fully 

understood, the effectiveness of attached dampers has been demonstrated; long-term measurements by the 

authors on three cable-stayed bridges indicate a significant reduction in vibration amplitudes after damper 

installation (Main and Jones 2001a).  The potential for widespread application of dampers for cable 

vibration suppression necessitates a thorough understanding of the resulting dynamic system.   

Carne (1981) and Kovacs (1982) were among the first to investigate the vibrations of a taut cable 

with an attached damper, both focusing on determination of first-mode damping ratios for damper locations 

near the end of the cable; Carne developed an approximate analytical solution, obtaining a transcendental 

equation for the complex eigenvalues and an accurate approximation for the first-mode damping ratio as a 

function of the damper coefficient and location, while Kovacs developed approximations for the maximum 

attainable damping ratio (in agreement with Carne) and the corresponding optimal damper coefficient 

(about 60% in excess of Carne’s accurate result).  Subsequent investigators formulated the free-vibration 

problem using Galerkin’s method, with the sinusoidal mode shapes of an undamped cable as basis 

functions, and several hundred terms were required for adequate convergence in the solution, creating a 

computational burden (Pacheco et al. 1993).  Several investigators have worked to develop modal damping 

estimation curves of general applicability (Yoneda and Maeda 1989; Pacheco et al. 1993), and Pacheco et 

al. (1993) introduced nondimensional parameters to develop a “universal estimation curve” of normalized 

modal damping ratio versus normalized damper coefficient, which is useful and applicable in many 

practical design situations.  To consider the influence of cable sag and inclination on attainable damping 

ratios, Xu et al. (1997) developed an efficient and accurate transfer matrix formulation using complex 

eigenfunctions.  Recently, Krenk (2000) developed an exact analytical solution of the free-vibration 

problem for a taut cable and obtained an asymptotic approximation for the damping ratios in the first few 
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modes for damper locations near the end of the cable; Krenk also developed an efficient iterative method 

for accurate determination of modal damping ratios outside the range of applicability of the asymptotic 

approximation.  

Previous investigations have focused on vibrations in the first few modes for damper locations 

near the end of the cable, and while practical constraints usually limit the damper attachment location, it is 

important to understand both the range of applicability of previous observations and the behavior that may 

be expected outside of this range.  Damper performance in the higher modes is of particular interest, as full-

scale measurements by the writers (Main and Jones 2000) indicate that vibrations of moderate amplitude 

can occur over a wide range of cable modes.  In this paper an analytical formulation of the free-vibration 

problem is used to investigate the dynamics of the cable-damper system in higher modes and without 

restriction on the damper location.  The basic problem formulation in this paper follows quite closely the 

approach recently used by Krenk (2000), although it was developed independently as an extension of the 

transfer matrix technique developed by Iwan (Sergev and Iwan, 1981; Iwan and Jones 1984) to calculate 

the natural frequencies and mode shapes of a taut cable with attached springs and masses.  A similar 

approach was used by Rayleigh (1877) to consider the vibrations of a taut string with an attached mass.  

Using this formulation, the important role of damper-induced frequency shifts in characterizing the system 

is observed and emphasized.  Consideration of the nature of these frequency shifts affords additional 

insight into the dynamics of the system, and when the shifts are large, complicated new regimes of behavior 

are observed. 

The influences of sag and bending stiffness are neglected in the present paper, because the linear 

taut-string approximation is considered applicable to many real stay cables, and the simplifications 

introduced by these approximations allow for a more efficient formulation of the problem and a more 

detailed investigation of the dynamics of the system.  It has been shown that moderate amounts of sag can 

significantly reduce the first-mode damping ratio, while the damping ratios in the higher modes are 

virtually unaffected (Pacheco et al. 1993; Xu et al. 1999).  However, using a database of stay cable 

properties from real bridges, Tabatabai and Mehrabi (2000) found that for most actual stays, the influence 

of sag is insignificant, even in the first mode.  Tabatabai and Mehrabi (2000) did find that the influence of 

bending stiffness could be significant for many stays, especially for damper locations quite near the end of 
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the cable, and the present writers have carried out a detailed study of the influence of bending stiffness, to 

be presented in a subsequent publication.   

PROBLEM FORMULATION 

The problem under consideration is depicted in Fig. 1.  The damper is attached to the cable at an 

intermediate point, dividing the cable into two segments, where ℓ2>ℓ1.  Assuming that the tension in the 

cable is large compared to its weight, bending stiffness and internal damping are negligible, and deflections 

are small, the following partial differential equation is satisfied over each segment of cable: 
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where yk(xk ,t) is the transverse deflection and xk is the coordinate along the cable chord axis in the kth 

segment; m is the mass per unit length, and T is the tension in the cable.  This equation is valid everywhere 

except at the damper attachment point; at this location continuity of displacement and equilibrium of forces 

must be satisfied.   As in Pacheco et al. (1993), a nondimensional time to1ωτ =  is introduced, where 

mTLo )(1 πω = .  To solve (1) subject to the boundary, continuity, and equilibrium conditions, 

distinct solutions over the two cable segments are assumed of the form: 

λττ exYxy kkkk )(),( =                                                             (2) 

where λ is a dimensionless eigenvalue that is complex in general1.  Substituting (2) into (1) yields the 

following ordinary differential equation: 
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Because λ is complex, the solutions to (3), which are the mode shapes of the system, are also complex.  

Continuity of displacement at the damper and the boundary conditions of zero displacement at the cable 

ends can be enforced by expressing the solution as 

                                                 
1 The assumed solution may be alternatively expressed as ωττ j

kkkk exYxy )(),( = , where 1−=j  
and ω is complex; this alternative formulation leads to trigonometric rather than hyperbolic expressions for 
the eigenfunctions.  Although the two forms are equivalent, when the damping is small, ω is “mostly” real, 
and this alternative form leads to more direct expressions for the eigenfunctions.  In cases of large damping, 
to be discussed herein, λ is “mostly” real, and the form of solution in (2) is more direct.   
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where γ is the amplitude at the damper. The equilibrium equation at the damper can be written as 

11

1122

1

1

1

2

2

=
== ∂

∂
=⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−
x

xx t
yc

x
y

x
yT                                         (5) 

where c is the damper coefficient.  Differentiating the assumed solution [(2) and (4)] and substituting into 

(5) yields: 

0)coth()coth( 21 =++
Tm
cLL πλπλ                                   (6) 

Eq. (6) is equivalent to the “frequency equation” presented by Krenk (2000).  Its roots are the eigenvalues 

of the system, each corresponding to a distinct mode of vibration.  For specific values of Tmc /  and 

ℓ1/L, (6) can be directly solved numerically to obtain the damping ratios in as many modes as desired to an 

arbitrary degree of accuracy.  Each eigenvalue can be written explicitly in terms of real and imaginary parts 

as follows 
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in which ζi is the damping ratio and ωi is the modulus of the dimensional eigenvalue, which has been 

referred to as the pseudoundamped natural frequency (Pacheco et al. 1993).  For convenience in subsequent 

manipulations, new symbols are introduced to denote the real and imaginary parts of the ith eigenvalue: 

)Re( ii λ=σ ;  )Im( ii λ=ϕ                                          (8a,b) 

It is noted that φi is the nondimensional frequency of damped oscillation.  The damping ratio ζi can be 

computed from σi and φi: 
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Further insight into the solution characteristics can be obtained by expanding (6) explicitly into real and 

imaginary parts.  Taking the imaginary part of (6) and expanding using the notation of (8a,b) yields the 

following equation, after some simplification:  
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  )2sin()2cosh()2sin()2cosh()2sin( 1221 πϕπσπϕπσπϕ =+ LLLL             (10) 

This equation is independent of Tmc / , and its solution branches give permissible values of λ for a 

given ℓ1/L, thus revealing the attainable values of modal damping with their corresponding oscillation 

frequencies.  Because it corresponds to enforcing equality of phase in (5), (10) will be referred to herein as 

the “phase equation”.  While solution branches to (10) are symmetric about σ=0, only negative values of σ 

are considered, as positive values of σ are associated with negative values of Tmc / , which are not of 

practical interest.  Taking the real part of (6) yields the following equation, after some simplification:  
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For a specific value of λ with real and imaginary parts σ and φ that satisfy (10), the corresponding value of 

Tmc /  can be readily computed from (11).  The expression (4) for the complex mode shapes can be 

expanded explicitly in terms of the real and imaginary parts using the notation of (8a,b), yielding the 

following expression 

( ) ( ) ( ) ( )[ ]LxLxjLxLxAxY kkkkkkk πϕπσπϕπσ sincoshcossinh)( +=       (12) 

in which the complex coefficients are given by )sinh( LA kk πλγ= .  This expression will be useful 

in considering the character of the mode shapes in the following sections, in which three special types of 

solutions will be considered: a non-oscillatory decaying solution (φ=0), non-decaying oscillatory solutions 

(σ=0), and oscillatory solutions approaching critical damping (σ –∞ and ζ 1).   

THE SPECIAL CASE OF NON-OSCILLATORY DECAY 

Solutions to (6) can exist for which λ is purely real, corresponding to non-oscillatory, 

exponentially decaying solutions in time; in this case φ=0, the phase equation (10) is trivially satisfied, and 

(11) reduces to: 
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in which it is emphasized that positive values of Tmc /  are of practical interest, leading to negative 

values of σ.  Eq. (13) reveals that purely real solutions exist only when Tmc /  exceeds a critical value; 
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when σ –∞, the two terms on the left-hand side of (13) each approach unity, so that the critical value of c 

associated with this limit is given by: 

Tmccrit 2=                                                                 (14) 

For c<ccrit no solutions to (13) exist, as it can be shown that the left-hand side of (13) is always >2; for 

c>ccrit the magnitude of σ decreases monotonically with increasing c.  In the limit as σ 0, it can be shown 

that Tmc / ∞.  This case of non-oscillatory decay may be compared to the case of supercritical 

damping for a single-degree-of-freedom (SDOF) oscillator1, for which the solution decays exponentially 

without oscillation, and the rate of decay decreases with increasing c.  With φ=0 in this case, the expression 

for the the mode shapes (12) reduces to a hyperbolic sinusoid with a purely real argument: 

( )LxAxY kkkk πσsinh)( =                                                      (15) 

Fig. 2 illustrates the mode shape corresponding to a purely real eigenvalue, plotted for several different 

values of Tmc / , with an arrow indicating the trend with increasing c.  As c ∞ and σ 0 according to 

(13), the linear term in the series expansion of )sinh( Lxkπσ  becomes dominant, and the mode shape 

tends to the static deflected shape of the cable under a concentrated load. 

LIMITING CASES OF NON-DECAYING OSCILLATION 

Solutions to (6) can exist for which λ is purely imaginary (σ=0), corresponding to non-decaying 

oscillation or zero damping.  It can be shown that when σ=0, the phase equation (10) reduces to 

0)sin()sin()sin( 21 =πϕπϕπϕ LL                                            (16) 

which indicates that there are three sets of frequencies associated with ζ=0, corresponding to the zeros of 

each of the sinusoids in (16).  One of these sets of frequencies is associated with the limit of c 0 and the 

other two sets of frequencies are associated with the limit of c ∞ (i.e., a perfectly rigid damper.)  Many 

investigators have made reference to these limiting cases in giving a physical explanation for the existence 

of an optimum damper coefficient for a specific mode: in both of these limits, physical intuition suggests 

                                                 
1 It is noted that the critical value of the damper coefficient for an SDOF oscillator has a remarkably similar 
form: kmccrit 2= , where m is the mass and k is the spring constant.    
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that the damping ratios must be zero.  These limiting cases can be observed more clearly by rearranging the 

eigenvalue equation (6) into the following form: 

0)sinh()sinh()sinh( 21 =+ LL
Tm
c πλπλπλ                                       (17) 

In the first limiting case, when c 0, (17) reduces to 0)sinh( =πλ , which can only be satisfied if λ is an 

integer multiple of 1−=j .  Consequently, λ must be purely imaginary and φ must take on integer 

values: 

ioi =ϕ                                                                       (18) 

These frequencies simply correspond to vibrations in the undamped natural modes of the cable.  In the 

second limiting case, when c ∞,  (17) becomes 0)sinh()sinh( 21 =LL πλπλ , which yields two 

sets of roots, both of which are purely imaginary.  One set of roots, corresponding to the zeros of 

)sinh( 2 Lπλ , yields the following frequencies:  

)( 2Lici =ϕ                                                             (19) 

These frequencies correspond to vibrations of the longer cable segment of length ℓ2, with zero displacement 

at the damper (the subscript c indicates a “clamped” frequency). The second set of roots, corresponding to 

the zeros of )sinh( 1 Lπλ , yields the following frequencies:  

)( 1
)1( Lici =ϕ                                                           (20) 

These frequencies correspond to vibrations of the shorter cable segment of length ℓ1 (the superscript 

indicates vibrations of the cable segment with index k=1), also with zero displacement at the damper.  As 

the three sets of frequencies (18)-(20) represent all the solutions to (16), there no other frequencies 

associated with ζ=0.  When σ=0, the expression for the mode shapes (12) reduces to: 

( )LxjAxY kkkk πϕsin)( =                                             (25) 

which indicates that when the ζ=0, the mode shapes over each cable segment are sinusoids with purely real 

arguments.  Fig. 3 depicts mode shapes associated with these three special cases of non-decaying 

oscillation; the mode shape associated with φo1 is depicted in Fig. 3(a), and the mode shapes associated 

with φc1 and φc1
(1) are depicted in Figs. 3(b) and 3(c), respectively. 
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OSCILLATORY SOLUTIONS APPROACHING CRITICAL DAMPING 

 Complex-valued solutions to (6) can exist for which σ –∞ as the nondimensional frequency φ 

tends to a constant value.   When σ –∞ with φ bounded, it is evident from (9) that ζ 1, so that while the 

real part of the eigenvalue increases without limit, the damping ratio itself approaches a finite value (ζ=1), 

corresponding to critical damping.  The frequencies associated with these limiting cases of critical damping 

can be determined from the phase equation (14) by taking the limit as σ –∞, which yields the equation 

0)2sin( 1 =Lπϕ .  The frequencies that satisfy this equation can be divided into two distinct 

categories: 

( )( )1, /2/1 Liicrit −=ϕ ;    ( )1
)1(

, /Liicrit =ϕ                                          (22a,b) 

It is noted that the frequencies φcrit,i
(1) coincide with the clamped frequencies of the shorter cable segment in 

(20).  It can be readily shown using (11) that as σ –∞, Tmc / 2, or c ccrit, regardless of the value of 

φ.  As σ –∞, the expression for the mode shapes (12) tends to 

( ) ( )LxjLxAxY kkkkk πϕπσ expsinh)( ≅                                         (23) 

Eq. (23) indicates that as σ –∞, the magnitude of the mode shape over each cable segment takes the same 

hyperbolic form as (15) for the case of non-oscillatory decay. 

DAMPER PERFORMANCE FOR SMALL FREQUENCY SHIFTS 

By focusing their attention on vibrations in the first few modes for small values of ℓ1/L, previous 

investigators restricted their attention to cases in which the damper-induced frequency shifts are small.  

Consideration of the characteristics of solution branches to the phase equation (10) in these cases provides 

additional insight into the dynamics of the cable-damper system.  Fig. 4 shows the first five branches of 

solutions to (10) for ℓ1/L=0.05 plotted in the φ-ζ plane; a distinct solution branch is associated with each 

mode. The frequencies associated with the special cases of non-decaying oscillation discussed above are 

plotted along the horizontal axis; the undamped frequencies, φoi, are indicated by circles and the clamped 

frequencies, φci, are indicated by crosses.  Each solution branch originates at φoi with ζ=0, terminates at φci 

with ζ=0, and takes on nonzero values of ζ for intermediate frequencies.  The difference between these two 

limiting frequencies is given by 

( )21 /ioicii =−=Δ ϕϕϕ                                                      (24) 
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The similar form of the solution branches for each mode suggests that it may be useful to define a new 

parameter as a measure of the damper-induced frequency shift 

10; <Θ≤
Δ
−

=Θ ci
i

oii
ci ϕ

ϕϕ
                                               (25) 

The parameter, which will be referred to as the “clamping ratio” in the ith mode, is zero when c=0, as 

depicted in Fig. 3(a), and it approaches unity when c ∞, as depicted in Fig. 3(b).    The frequency of 

oscillation in mode i can then be expressed as 

 icii i ϕϕ ΔΘ+=                                                               (26) 

When the frequency difference, Δϕi, is small, σi is also small, and in this limit an approximate solution to 

(10) can be developed by substituting the expression for φi in (26) into (10) and expanding each term as a 

Taylor series.  Solving the resulting approximate equation for σi and taking the limit of small Δϕi (which 

also implies small ℓ1/L) yields the following expression:  

)1()/( 1 cicii Li Θ−Θ−≅σ                                                      (27) 

Noting that ζi≈–σi/i, (27) yields the following asymptotic relation between the ζi and Θci:  
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i

L
Θ−Θ≅

ζ
                                                     (28) 

This relation is independent of mode number, indicating a maximum attainable damping ratio of 

ζi=(1/2)(ℓ1/L) in each mode, corresponding to an optimal clamping ratio of Θci=1/2.  Fig. 5(a) shows a plot 

of the asymptotic solution (28), along with numerically computed curves of ζi/(ℓ1/L) versus Θci in the first 

five modes for ℓ1/L=0.02, generated by numerical solution of (10).  A distinct curve is plotted for each 

mode, and for this damper location, the numerically generated curves corresponding to each of the five 

modes are indeed very nearly identical, agreeing quite well with (28).  An approximate relation between the 

clamping ratio and Tmc /  can be established by substituting the expressions for φi (26) and σi (27) into 

equation (11) and using similar asymptotic approximations, yielding the following relation: 

ci

ci
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where κ is a nondimensional parameter grouping defined as 
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It is noted that )/(/ 1omLcTmc ωπ= , and the alternative normalization )/( 1omLc ω  is used in (30) 

to facilitate comparison with previous investigations; κ is equivalent to the nondimensional parameter 

grouping plotted on the abscissa in the universal curve of Pacheco et al. (1993).  Fig. 5(b) shows a plot of 

(29) along with numerically computed curves of κ versus Θci in the first five modes for ℓ1/L=0.02, 

generated from (11) after numerical solution of (10).  Again, the numerically computed curves 

corresponding to each of the five modes are nearly identical, agreeing well with the approximation of (29).  

The clamping ratio increases monotonically with κ, from Θci = 0 when κ = 0 to approach Θci = 1 as κ ∞.  

Substituting the optimal clamping ratio of Θci=1/2 into (29) reveals that the optimal value of modal 

damping is achieved when κ = π—2 ≈ 0.101, as determined by Krenk (2000).  Eq. (29) can be inverted and 

solved for Θci: 

1)(
)(
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22

+
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ci                                                             (31) 

Substituting this expression into (28) yields the following approximate relation: 

            
1)()/( 22

2
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≅

κπ
κπζ

L
i                                                         (32) 

This expression was recently derived by Krenk (2000); it is an analytical expression for the “universal 

curve” of Pacheco et al. (1993) and is a generalization of the first-mode approximation obtained by Carne 

(1981).  Fig. 5(c) shows a plot of (32) along with curves of ζi/(ℓ1/L) versus κ for the first five modes for 

ℓ1/L=0.02 generated numerically from (10) and (11). It is evident that again the curves collapse very nearly 

onto a single curve in good agreement with the approximation of (32).    

It is important to note that the optimal damping ratio can only be achieved in one mode for a linear 

damper.  Noting that κ is proportional to mode number, it is evident from Fig. 5(b) that Θci increases 

monotonically with mode number, so that if the damper is designed optimally for a particular mode, it will 

be effectively more rigid in the higher modes and more compliant in the lower modes, resulting in 

suboptimal damping ratios in other modes.  As discussed in the companion paper (Main and Jones 2001b), 
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recent investigations by the writers indicate that nonlinear dampers may potentially overcome this 

limitation in performance, allowing the optimal damping ratio to be achieved in more than one mode; 

however, in the case of a nonlinear damper, the damping performance is amplitude-dependent, and optimal 

performance can only be achieved in the neighborhood of a particular oscillation amplitude. 

DAMPER PERFORMANCE FOR LARGE FREQUENCY SHIFTS 

When the frequency difference Δϕi in a given mode becomes large, as is the case in higher modes 

and for larger values of ℓ1/L, the approximate relations (28), (29), and (32) become less accurate.  Fig. 6 

shows the same plot as in Fig. 5(c), but for a damper located further from the end of the cable, at ℓ1/L=0.05, 

and a distinct curve has been plotted for each of the first eight modes, with an arrow indicating the trend 

with increasing mode number.  It is evident that the curves no longer collapse together.  The solution 

curves for the first few modes agree quite well with the curves in Fig. 5(c); however, as the mode number 

increases, yielding larger values of Δϕi, departures become significant, and the optimal damping value 

ζi,opt/(ℓ1/L) and the corresponding abscissa value κopt both increase noticeably with mode number.  

Numerical investigation in the first five modes over a range of ℓ1/L revealed that ζi,opt/(ℓ1/L) increases 

monotonically with Δϕi in a given mode, to take on a value of 1.2 - 1.3 as Δϕi 0.5, and κopt also increases 

monotonically with Δϕi, taking on a value of about 0.18 as Δϕi 0.5.  When Δϕi reaches 0.5 in a given 

mode, new regimes of behavior are observed which are discussed in the following sections.   

Special Cases of Vertical Solution Branches 

 In investigating and categorizing the complicated characteristics of solution branches to the phase 

equation (10) for large frequency shifts, it useful to begin by considering some special cases of vertical 

solution branches, which serve as boundaries between different regimes of behavior.  These branches 

extend from σ=0 to σ=–∞ [from ζ=0 to ζ=1 according to (13)] at a constant frequency ϕ.  Inspection of (10) 

reveals that if the following conditions are satisfied: 

0)2sin( 1 =Lπϕ ; 0)2sin( 2 =Lπϕ ; 0)2sin( =πϕ                       (33a,b,c) 

then (10) is trivially satisfied for all values of σ, yielding a vertical solution branch.  The values of ϕ that 

satisfy (33a) are the two sets of critically damped frequencies previously introduced in (22a,b).  The 

condition (33c) is satisfied if ϕ can be expressed as i or as i+1/2, where i is an integer.  It is noted that the 
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additional requirement (33b) follows directly from (33a) and (33c), and consequently, (33a,b,c) are all 

satisfied in four distinct cases, corresponding to four types of vertical solution branches.  To aid in 

interpreting these special cases, Fig. 7 presents a plot of the different sets of nondimensional frequencies, 

φoi (18), φci (19), φci
(1) (20) – which is equal to φcrit,i

(1) (22b), and φcrit,i (22a), against  ℓ1/L.  The 

combinations of ℓ1/L and φ corresponding to the four distinct types of vertical solution branches are 

indicated with different symbols.  These four types are discussed in the following paragraphs, and the 

contexts in which they arise are discussed in subsequent sections.  Along a vertical solution branch, (11) 

can be expressed as  
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where ( )La 12cos πϕ−=  and ( )Lb 22cos πϕ−= , and because ϕ is constant along each branch, 

a and b are also constant. 

Type 1: φcrit,n = i.  In these cases, indicated with hollow circles in Fig. 7, the nth critically damped 

frequency φcrit,n (22a), where n is an integer, coincides with an undamped frequency, φoi=i.  Equating these 

expressions and solving for ℓ1/L yields ℓ1/L=(n-1/2)/i, where n≤(i+1)/2, which corresponds to a damper 

located at the nth antinode of mode i.   In this case, a=1 and b=1 in (34), from which it can be shown that for 

this case, Tmc / 2 monotonically from zero as σ –∞ from zero. 

Type 2: φcrit,n = i+1/2.  In these cases, indicated with solid squares in Fig. 7, the nth critically 

damped frequency, φcrit,n (22a), equals i+1/2.  Equating these expressions and solving for ℓ1/L yields 

ℓ1/L=(n-1/2)/(i+1/2), where n≤(i+1)/2.  It is also noted that in these cases φcrit,n coincides with a clamped 

frequency φcp (19), where p is also an integer.  Using these expressions, the intersection frequency can be 

expressed in terms of n and p as (i+1/2)=n+p-1/2, and the corresponding damper location can be expressed 

as ℓ1/L = (n-1/2)/(n+p-1/2), where n≤p.  In this case, a=1 and b=–1 in (34), and using the resulting 

expression it can be shown that Tmc /  takes on a minimum value of 

]1)2[cosh()2sinh()1( 1121 +−−+ LL oo πσπσ , which is less than 2, at a value σo which 

satisfies the equation 1)2cosh()()2cosh()( 1221 =−−− LLLL πσπσ .  As σ decreases 

from σo to approach zero, Tmc /  increases monotonically to approach infinity, and as σ increases from 
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σo to approach infinity,  Tmc /  increases monotonically to approach 2.  It will be observed subsequently 

that this type of vertical solution branch actually corresponds to two solution branches that intersect at the 

intermediate value σ=σo and diverge; along one branch σ –∞ as Tmc / 2, and along the other branch 

σ 0 as Tmc / ∞. 

Type 3: φcrit,n
(1) = i.  In these cases, indicated with solid circles in Fig. 7, the nth critically damped 

frequency associated with the shorter cable segment, φcrit,n
(1) (22b), coincides with an undamped frequency, 

φoi=i.  Equating these expressions and solving for ℓ1/L yields ℓ1/L=n/i, where n≤i/2, which corresponds to a 

damper located at the nth node of mode i.  In this case, a=–1 and b=–1 in (34), and the resulting expression 

is the same as (13) for the case of a purely real eigenvalue, for which it was observed that Tmc /  

increases monotonically from 2 to approach infinity as σ 0 from –∞. 

Type 4: φcrit,n
(1) = i+1/2.  In these cases, indicated with hollow squares in Fig. 7, the nth critically 

damped frequency associated with the smaller cable segment, φcrit,n
(1) (22b), equals i+1/2.  Equating these 

expressions and solving for ℓ1/L yields ℓ1/L=n/(i+1/2), where n≤i/2.  In this case, a=–1 and b=1 in (34), and 

it can be shown that Tmc /  increases monotonically from 2 to approach infinity as σ 0 from –∞. 

Behavior in a Single Mode 

To further explore the dynamics of the cable-damper system, is it helpful to consider the evolution 

of a single solution branch of the phase equation (10) as the damper is moved from the end of the cable past 

the first antinode to the first node of the corresponding undamped mode; over this range, three distinct 

regimes of behavior are observed for a given mode.  The evolution of the solution branch associated with 

mode 2 will be considered, and Fig. 8 shows a surface plot of ζ versus φ and ℓ1/L for mode 2; the surface 

was generated by incrementing ℓ1/L from 0 to 0.5 and repeatedly solving (10).  Fig. 9 is a companion to 

Fig. 8 with a separate plot for each of the three regimes; each curve in Fig. 9 is a slice through the surface 

of Fig. 8 at a specific value of ℓ1/L.   

Regime 1: Characteristics of regime 1 are exhibited in a given mode i when 0≤ℓ1/L<1/(2i+1); the 

upper limit of ℓ1/L is associated with a vertical solution branch of type 2 at φ=i+1/2.  Fig. 9(a) shows curves 

of ζ versus φ within regime 1 for mode 2, and the characteristics of these solution branches are similar to 

those previously observed.  Each curve originates at the undamped frequency φoi (18) with ζ=0 (indicated 
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by a circle), terminates at the clamped frequency φci (19) with ζ=0 (indicated by a cross), and attains a 

maximum value of ζ at an intermediate frequency.   The width of the base of the curve is Δϕi, and as ℓ1/L is 

increased within this regime, Δϕi increases and larger values of ζ are attained.  As ℓ1/L 1/(2i+1) and 

Δϕi 1/2, the shape of the curve becomes increasingly skewed to the right.   

Intermediate Case: When ℓ1/L=1/(2i+1), Δϕi=1/2, and the clamped frequency φci=i+1/2.  For this 

value of ℓ1/L, the first critically damped frequency φcrit,1 (22a) also equals i+1/2, and a vertical solution 

branch of type 2 occurs at φ=i+1/2, with the solution branches for mode i and mode i + 1 intersecting at this 

intermediate frequency.  This situation is depicted in Fig. 10 for ℓ1/L=0.2; in this case the solution branches 

for modes 2 and 3 intersect at φ=2.5.  At this intersection point, one solution branch diverges downwards 

and ζ 0 as c ∞; this limit is indicated by the cross at the bottom center of Fig. 10.  The other branch 

diverges upwards and ζ 1 (σ –∞) as c increases to approach ccrit.  This limit is indicated by the triangle at 

the top center in Fig. 10.   

Regime 2: Characteristics of regime 2 are exhibited in mode i when 1/(2i+1)<ℓ1/L<1/(2i–1).  The 

lower limit of ℓ1/L within this regime is associated with a vertical solution branch of type 2 at φ=i+1/2, and 

the upper limit of ℓ1/L is associated with a vertical solution branch of type 2 at φ=i–1/2.  Curves of ζ versus 

φ within regime 2 are plotted in Fig. 9(b), and the characteristics of these solution branches are remarkably 

different from those previously observed.  As before, each curve originates at φ=φoi with ζ =0 (indicated by 

a circle); however, in this regime the curves no longer terminate with ζ=0.  Rather, the damping increases 

monotonically and ζ 1 (σ –∞) as φ approaches the first critically damped frequency φcrit,1 (22a); these 

limiting cases are associated with c ccrit and are indicated by triangles along the top of Fig. 9(b).  When 

ℓ1/L=1/(2i), corresponding to a damper located at the first antinode of mode i, φcrit,1=φoi, and a vertical 

solution branch of type 1 occurs at φ=i, as shown at the center of Fig. 9(b).  Fig. 11 shows the evolution 

with increasing Tmc /  of a mode shape in regime 2; the magnitude of the mode shape is plotted for 

ℓ1/L=0.25 and for several different values of Tmc / , and as c ccrit and σ –∞, the mode shape changes 

from the familiar sinusoid to a shape resembling a hyperbolic sinusoid, as indicated by (23).  Interestingly, 

when c>ccrit, then no solution exists along a solution branch in regime 2; this indicates that if c>ccrit 

vibrations are completely suppressed for modes in regime 2.  However, other solutions emerge when 
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c>ccrit; it was previously observed that solutions with purely real eigenvalues exist only when c>ccrit, and it 

will be observed subsequently that solutions associated with significant vibration of the shorter cable 

segment also emerge when c>ccrit.    

When ℓ1/L=1/(2i–1), corresponding to the upper limit of regime 2, an intersection of adjacent 

solution branches occurs, similar to that depicted in Fig. 10.  In this case, the (i–1)th clamped frequency and 

the first critically damped frequency φcrit,1 are both equal to i–1/2, and a vertical solution branch of type 2 

occurs at φ= i–1/2. 

Regime 3: Characteristics of regime 3 are exhibited in mode i when 1/(2i–1)<ℓ1/L<1/i; the lower 

limit of ℓ1/L is associated with a vertical solution branch of type 2 at φ=i–1/2, and the upper limit of ℓ1/L 

corresponds to a damper located at the first node of mode i.  Solution branches in this regime are shown in 

Fig. 9(c) for mode 2.   Each solution branch originates at φoi with ζ=0, terminates at the frequency of 

clamped mode i – 1 with ζ=0, and attains a maximum value of ζ at an intermediate frequency.  As the 

damper approaches the location of the first node, the frequency of clamped mode i – 1 approaches φoi, and 

the solution branch for the ith mode shrinks to a single point at φ=i with ζ=0.  This indicates, as expected, 

that no damping can be added to a given mode when the damper is located at a node of that mode.  

Interestingly, when the damper is located at the node of mode i, a vertical solution branch of type 3 occurs 

at φ=i.  Vertical solution branches of type 3 and 4 are associated with emergent vibrations of the shorter 

cable segment, and the characteristics of these solution branches are considered in the following section. 

Modes with Significant Vibration in the Shorter Cable Segment 

Fig. 12 depicts several solution branches associated with the first clamped mode of the shorter 

cable segment for several different values of ℓ1/L, ranging from 1/3 to 1/2.  Each curve originates at the 

clamped frequency of the shorter cable segment φc1
(1) (20) with ζ=0 (indicated with squares along the φ-

axis in Fig. 12), and tends to the critically damped frequency φcrit,1
(1), (22b) as ζ 1 (σ –∞) (indicated with 

diamonds along the top of Fig. 16).  Because φci
(1)=φcrit,i

(1), in each case the solution branches originate and 

terminate at the same frequency.  When ℓ1/L=1/3, the damper is located at the node of mode 3, and a 

vertical solution branch of type 3 occurs at φ=3, plotted at the right-hand edge of Fig. 12.  A circle and a 

cross are also plotted at this frequency with ζ=0 to indicate that the third undamped frequency, φo3, and the 

second clamped frequency, φc2, also coincide with φcrit,1
(1) and φc1

(1) for this damper location, as can be seen 



 17

in Fig. 7.  Similarly, when ℓ1/L=1/2, the damper is located at the node of mode 2, and a vertical solution 

branch of type 3 occurs at φ=3.  When ℓ1/L=0.4, φcrit,1
(1)=φc1

(1)=2.5, and a vertical solution branch of type 4 

occurs at φ=2.5, plotted at the center of Fig. 12.  Vertical solution branches of type 3 and 4 have similar 

characteristics, as discussed previously, and for each of these solution branches, the origin of the solution 

branch at ζ = 0 is associated with c ∞, and c decreases monotonically to ccrit as ζ 1 (σ –∞).    

Consequently, if c<ccrit, then no solution exists along this type of solution branch, and these modes emerge 

only when c>ccrit.  Fig. 13 shows a plot of the magnitude of the mode shape associated with the first 

clamped mode of the shorter cable segment for ℓ1/L=0.4 and for several different values of Tmc / .  For 

slightly supercritical values of c, the damping is very large, and the magnitude of the mode shape resembles 

a hyperbolic sinusoid.  As c ∞ and ζ 0, the mode shape takes on the expected form of a half sinusoid to 

the left of the damper.   

Global Modal Behavior 

The previous discussion of the three regimes of behavior considered damper locations only up to 

the location of the first node, ℓ1/L ≤ 1/i.   When ℓ1/L is increased past the first node, the branches of 

solutions to the phase equation (10) initially exhibit the same characteristics as those observed in regime 1.  

As the damper is moved still further along the cable to approach the second antinode, a vertical solution 

branch of type 2 is encountered at a frequency of i + 1/2, and for damper locations past this point, 

characteristics of regime 2 are exhibited.  As the damper is moved past the second antinode to approach the 

second node, a vertical solution branch of type 2 is encountered at a frequency of i – 1/2, and for damper 

locations past this point, characteristics of regime 3 are exhibited.   The cycle continues past subsequent 

nodes and antinodes until ℓ1/L=1/2, at which point the subsequent behavior is dictated by symmetry.  This 

periodic cycling through the three regimes of behavior is conveyed graphically in Fig. 14.  The curves of 

limiting frequencies versus ℓ1/L depicted in Fig. 7 are used as the basis for this graphical depiction, and the 

regions corresponding to each of the three regimes have been indicated using different shadings.  The 

shaded areas indicate ranges of φ and ℓ1/L for which solutions to (10) exist, and the type of shading 

indicates the characteristics of solution branches in that region.  Situations in which solution branches 

corresponding to two adjacent modes intersect at a vertical solution branch of type 2 (as depicted in Fig. 

10) are indicated by a solid vertical line connecting the undamped frequencies of the two adjacent modes. 
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In the interesting case of ℓ1/L=1/2, the damper is located at an antinode of all the odd-numbered 

modes and at a node of all the even-numbered modes.  Vertical solution branches of type 1 then occur at 

the undamped frequencies of each odd-numbered mode, and ζ 1 (σ –∞) in these modes as c ccrit, while 

ζ=0 in the even-numbered modes.  When c>ccrit, vibrations in the odd-numbered modes are completely 

suppressed, and new modes of vibration emerge, including a non-oscillatory decaying mode and a set of 

modes with the same frequencies as the even-numbered modes, associated with vertical solution branches 

of type 3.  As c ∞, ζ 0 in this set of emergent modes, and these modes take on an appearance similar to 

that of the undamped even-numbered mode shapes, except that they are symmetric about ℓ1/L=1/2, with a 

discontinuity in slope at the damper. 

CONCLUSIONS  

Free vibrations of a taut cable with attached linear viscous damper have been investigated in 

detail, a problem that is of considerable practical interest in the context of stay-cable vibration suppression.  

An analytical formulation of the complex eigenvalue problem has been used to derive an equation for the 

eigenvalues that is independent of the damper coefficient.  This “phase equation” (10) reveals the attainable 

modal damping ratios ζi and corresponding oscillation frequencies for a given damper location ℓ1/L, 

affording an improved understanding of the solution characteristics and revealing the important role of 

damper-induced frequency shifts in characterizing the response of the system.    The evolution of solution 

branches of (10) with varying ℓ1/L reveals three distinct regimes of behavior.  Within the first regime, when 

the damper-induced frequency shifts are small, an asymptotic approximate solution to (10) has been 

developed, relating the damping ratio ζi in each mode to the “clamping ratio” Θci, a normalized measure of 

damper-induced frequency shift.  Asymptotic approximations have also been obtained relating Θci and ζi to 

the damper coefficient, and it is observed that these approximations grow less accurate when the damper-

induced frequency shifts become large.  Characteristics of the second regime are exhibited when the 

damper is located sufficiently near the antinode of a specific mode.  For modes in this regime the damping 

ratio increases monotonically with the damper coefficient, approaching critical damping as the damper 

coefficient approaches a critical value Tmccrit 2= .  When c>ccrit, vibrations are completely suppressed 

for modes in this regime; however, other modes of vibration emerge, including a non-oscillatory decaying 

mode of vibration and a set of modes with significant vibration in the shorter cable segment.  
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Characteristics of the solution branches in regime 3 are similar to those in regime 1 except that the 

oscillation frequencies are reduced, rather than increased, by the damper, and the attainable damping ratios 

approach zero as the damper approaches the node.  A regime diagram has been presented to indicate the 

type of behavior that may be expected in each of the first 10 modes for any given damper location.   The 

complexities of the solution characteristics in different regimes are potentially significant in practical 

applications, and the approach and analysis presented herein facilitate an improved understanding of the 

dynamics of the cable-damper system.  
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APPENDIX II.  NOTATION 

The following symbols are used in this paper: 

Ak = coefficient of the ith
  eigenfunction on the kth cable segment; 

c =  viscous damper coefficient; 

i  = mode number; 

j = 1− ; 

k =  cable segment number; 

L = length of cable; 

ℓk = length of kth cable segment; 

m = mass per unit length of cable; 

T = tension in cable; 

t = time; 

Yk(xk) = complex mode shape on the kth cable segment; 

yk(xk , t) = transverse displacement of the kth cable segment from the equilibrium position; 

xk = coordinate along cable chord axis in the kth segment; 

γ = displacement amplitude at the damper; 

Δφi = nondimensional difference between the ith
  “clamped” frequency and the ith undamped frequency; 

ζi = damping ratio of mode i; 

Θci = “clamping ratio” in mode i; 

λi = nondimensional complex eigenvalue of mode i; 

σi = real part of the ith nondimensional eigenvalue; 

τ = nondimensional time; 

φi = imaginary part of the ith nondimensional eigenvalue; 

φci = ith nondimensional “clamped” frequency; 

φci
(1) = ith nondimensional “clamped” frequency of the shorter cable segment; 

φcrit,i = ith nondimensional critically damped frequency; 

φcrit,i
(1) = ith nondimensional critically damped frequency of the shorter cable segment; 

φoi = nondimensional undamped frequency of mode i; 
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ωi = pseudoundamped natural circular frequency of mode i; and   

ωo1 =  undamped natural circular frequency of mode 1.    
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FIGURES 

 

 

 

 

 

 

FIG. 1.  Taut Cable with Viscous Damper  

L 
1

1x

2

c 
T T m 

2x



 25

 

 FIG. 2. Mode Shape Associated with a Purely Real Eigenvalue 
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FIG. 3.  Special Cases of Non-Decaying Oscillation 
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FIG. 4.  Phase Equation Solution Branches (ℓ1/L = 0.05, First 5 Modes) 
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FIG. 5.  (a) Normalized Damping Ratio versus Clamping Ratio; (b) Normalized Damper Coefficient versus 

Clamping Ratio; and (c) Normalized Damping Ratio versus Normalized Damper Coefficient. 
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FIG. 6.  Normalized Damping Ratio versus Normalized Damper Coefficient; (ℓ1/L = 0.05, First 8 Modes) 
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FIG. 7.  Undamped Frequencies, Clamped Frequencies, and Critically Damped Frequencies versus Damper 

Location with Vertical Solution Branches Indicated 
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FIG. 8.  Attainable Damping Ratios in Mode 2 versus Frequency and Damper Location
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FIG. 9.  Phase Equation Solution Branches for Mode 2 in Three Regimes: (a) Regime 1; (b) Regime 2; (c) 
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FIG. 10.  Phase Equation Solution Branches for an “Intermediate Case”
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FIG. 11. Evolution with Damper Coefficient of a Mode Shape in Regime 2 (ℓ1/L = 0.25, mode 2) 
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FIG. 12.  Phase Equation Solution Branches Associated with the First Clamped Mode of the Shorter 

Segment 
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FIG. 13.  Magnitude of the Eigenfunction Associated with the First Clamped Mode of the Shorter Cable 

Segment 
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FIG. 14.  Regime Diagram of Frequency versus Damper Location 

 

 

 


