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Abstract—Free-viewpoint television is expected to create a
more natural and interactive viewing experience by providing
the ability to interactively change the viewpoint to enjoy a 3D
scene. To render new virtual viewpoints, free-viewpoint systems
rely on view synthesis. However, it is known that most objec-
tive metrics fail at predicting perceived quality of synthesized
views. Therefore, it is legitimate to question the reliability of
commonly used objective metrics to assess the quality of free-
viewpoint video (FVV) sequences. In this paper, we analyze the
performance of several commonly used objective quality metrics
on FVV sequences, which were synthesized from decompressed
depth data, using subjective scores as ground truth. Statistical
analyses showed that commonly used metrics were not reliable
predictors of perceived image quality when different contents and
distortions were considered. However, the correlation improved
when considering individual conditions, which indicates that the
artifacts produced by some view synthesis algorithms might not
be correctly handled by current metrics.

I. INTRODUCTION

Free-viewpoint systems are meant to provide the viewer

with the ability to interactively change his/her viewpoint to

enjoy a 3D scene. Among these, free-viewpoint television is

one of the key technologies brought by the development of

3D video applications. It opens the door to new applications

in entertainment, post-production, teleconferencing, security

applications, etc. These applications are based on a limited

number of cameras for recording the 3D scene. Many 3D

scene representations have been proposed [1], among which

is the multiview video plus depth (MVD) format. The MVD

format consists of a set of texture views and associated depth

maps acquired at different viewpoints. From color and depth

information, new virtual viewpoints can be rendered through

depth-image-based rendering (DIBR) techniques [2].

The perceived image quality of free-viewpoint content can

be affected at many stages of the processing chain. In par-

ticular, the impact of both compression and DIBR algorithms

on the quality of virtual viewpoints has been shown [3], [4].
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Considering compression, the Video Coding Experts Group

(VCEG) and Moving Picture Experts Group (MPEG) have

joined their efforts to develop new 3D video coding standards

for advanced 3D video applications. These algorithms consider

the quality of the synthesized views to optimize compression.

As any technology, the performance evaluation of free-

viewpoint systems, in terms of quality of user experience,

is essential. Subjective evaluations are time consuming and

expensive. Therefore, objective quality assessment tools are

needed as well. Very few metrics have been proposed for FTV

applications [5], [6] and common full reference 2D metrics,

e.g., PSNR and SSIM, are still mostly used [3], [4].

As outlined in [4], [7], the 3D warping process involved

in the DIBR techniques induces distortions mainly known

as “cracks” or “holes”, which are due to the sampling rate

and the discovering of areas not visible from the reference

viewpoint, but visible in the new viewpoint, and “ghosting”,

which is due to the edge resolution in the depth maps. These

distortions are different from those commonly encountered in

video compression. Moreover, video compression related arti-

facts are often scattered over the whole image, whereas DIBR

related artifacts are mostly located around the disoccluded

areas. Most of the commonly used objective quality metrics

were initially designed to address video compression related

artifacts and are not reliable predictors of perceived quality

of monoscopic and stereoscopic video sequences formed from

synthesized views [8], [9]. As free-viewpoint systems rely on

view synthesis to render new virtual viewpoints, it is legitimate

to question the reliability of these metrics to assess the quality

of free-viewpoint video (FVV) sequences.

In our previous study [10], we performed a subjective

quality evaluation to assess the quality of FVV sequences

corresponding to a smooth camera motion during a time

freeze, which were generated through DIBR from 3D content

represented in the MVD format. Only depth maps compression

was concerned (and not color view compression, as in a

classical scenario) as it has been shown that depth compression

has a critical impact on the quality of synthesized views.

Six MVD contents were considered. The depth maps were

compressed with seven algorithms using three quantization



parameters. Two additional methods were also included to

increase the variety of distortions. Two different modes for

the synthesis process were considered, resulting in a total of

276 processed stimuli and 12 reference stimuli.

In this paper, we analyze the performance of several com-

monly used objective quality metrics (PSNR, SSIM, MS-

SSIM, VIF, VIFP, UQI, and IFC) using the FVV sequences

and corresponding ground truth subjective scores1 obtained

in [10]. For each metric, objective scores were fitted to

subjective scores using cubic fitting. As compliant with the

standard procedure for evaluating the performance of objective

metrics [11], [12], the following properties of the estimation

of subjective scores were considered in this study: accuracy,

monotonicity, and consistency. Several performance indexes,

such as Pearson and Spearman correlation coefficients, root-

mean-square-error, and outlier ratio, were computed to com-

pare the metrics estimation of subjective scores. Statistical

tests were performed to determine if the difference between

two metrics is statistically significant.

The remainder of the paper is organized as follows. The

dataset and corresponding subjective scores used as ground

truth are described in Sec. II. The different metrics bench-

marked in this study are defined in Sec. III. In Sec. IV,

the methodology used to evaluate the performance of the

metrics is described. Section V provides a detailed analysis of

the objective results and discusses the reliability of objective

metrics. Finally, Sec. VI concludes the paper.

II. DATASET AND SUBJECTIVE SCORES

The dataset was composed of six multiview video plus depth

(MVD) contents, four real scenes with estimated depth maps

(Book Arrival, Newspaper, Kendo, and Balloons) and two

synthetic scenes with ground truth depth maps (GT Fly and

Undo Dancer), with different visual characteristics, resolu-

tions, and frame rates. The depth maps were compressed using

seven algorithms, labeled from C1 to C7. Three quantization

parameters were selected for each depth map compression

algorithm, according to the visual quality of the rendered

views. Two additional methods were also included to increase

the variety of distortions: low pass filtered depth maps (noted

F) and depth maps with low-pass filtered applied on edges only

(noted FE). Two different modes for the synthesis process,

referred to as VS1 and VS2, were considered:

- VS1: Blended Mode disabled. All pixels visible in the closer

reference view are copied to the virtual view, and only

hole areas are filled from the farther reference view.

- VS2: Blended Mode enabled. A weighted blending based on

the baseline distance is used for hole filling. So pixels

from the reference camera that are closer to the virtual

view are assigned a higher weight.

The ACR-HR methodology was used to assess the FVV

sequences using a five-level quality scale (1: Bad; 2: Poor;

3: Fair; 4: Good; 5: Excellent). The combination of contents,

1Available online at http://ivc.univ-nantes.fr/ivc/en/content/10-databases/
13-free-viewpoint-synthesized-video-database

view synthesis modes, depth map compression algorithms, and

bit rates resulted in a total of 276 processed stimuli and 12

reference stimuli to be assessed. The subjective evaluations

were conducted in an ITU conforming test environment. The

stimuli were displayed on a Panasonic BT-3DL2550 screen

(1920×1080p), and according to [13]. Twenty-seven naı̈ve

observers participated in the subjective quality evaluation

test into two 30-minutes sessions. All subjects underwent a

screening to examine their visual acuity, color vision, and

stereo vision. Four subjects were detected as outliers and

all their scores were removed from the results. Then, the

differential mean opinion scores score (DMOS) was computed

between the mean opinion scores (MOS) of each test stimulus

and its associated hidden reference, as well as associated 95%

confidence interval. More details about dataset and subjective

evaluations can be found in [10].

III. OBJECTIVE QUALITY METRICS

In this study, the performance of the following metrics in

predicting image quality of FVV sequences was assessed:

1) PSNR: Peak Signal-to-Noise Ratio,

2) SSIM: Structural Similarity Index [14],

3) MS-SSIM: Multi-Scale Structural Similarity Index [15],

4) VIF: Visual Information Fidelity [16],

5) VIFP: VIF, pixel domain version [16],

6) UQI: Universal Quality Index [17],

7) IFC: Information Fidelity Criterion [18].

All above objective metrics were computed on the luma

component of each frame of the FVV sequence and the

resulting values were averaged across the frames to produce

a global index for the entire FVV sequence. All objective

metrics were computed using MeTriX MuX (v. 1.1)2.

IV. PERFORMANCE INDEXES

The results of the subjective tests can be used as ground

truth to evaluate how well the objective metrics estimate

perceived quality. The result of execution of a particular

objective metric is a video quality rating (VQR), which is

expected to be the estimation of the DMOS corresponding to a

pair of video data. To be compliant with the standard procedure

for evaluating the performance of objective metrics [11], [12],

the following properties of the VQR estimation of DMOS

were considered in this study: accuracy, monotonicity, and

consistency.

First, a regression was fitted to each [VQR, DMOS] data

set using cubic fitting, with the constraint that the function is

monotonic on the interval of observed quality values:

DMOSp(V QR) = a · V QR3 + b · V QR2 + c · V QR+ d

where a, b, c, and d are the parameters of the fitting function.

Then, the Pearson linear correlation coefficient (PCC) and

the root-mean-square error (RMSE) were computed between

DMOSp and DMOS to estimate the accuracy of the VQR.

To estimate monotonicity and consistency, the Spearman rank

2http://foulard.ece.cornell.edu/gaubatz/metrix mux/



Table I Accuracy, consistency, and monotonicity indexes for the different metrics considering cubic fitting.

Metric
All contents Average
PCC SCC RMSE OR PCC SCC RMSE OR

PSNR 0.2671 0.2945 0.9072 0.5091 0.3284 0.4505 0.5663 0.3452
SSIM 0.0000∗ 0.0000∗ 0.9414 0.5641 0.2202 0.3670 0.6035 0.3741
MS-SSIM 0.0105 0.0611 0.9413 0.5604 0.1870 0.3942 0.6098 0.3960
VIF 0.0584 0.0948 0.9398 0.5714 0.2642 0.3415 0.5836 0.3853
VIFP 0.0798 0.1223 0.9384 0.5678 0.2624 0.3305 0.5847 0.3854
UQI 0.0000∗ 0.0000∗ 0.9414 0.5641 0.2395 0.3441 0.6007 0.3853
IFC 0.1289 0.0657 0.9335 0.5531 0.2808 0.3307 0.5799 0.3741

∗The correlation for SSIM and UQI is null, which is due to the fact that the cubic fitting was constrained to be monotonic on the interval
of observed quality values, whereas the non-fitted scores for these two metrics mostly showed a negative correlation with perceived quality
(see Fig. 1(b), which shows the correlation between the obtained subjective scores and the corresponding non-fitted objective scores).

Table II Statistical analysis of the different metrics considering cubic fitting.

PSNR SSIM MS-SSIM VIF VIFP UQI IFC

PSNR 6= 6=== 6= 6=== 6= 6=== 6= 6=== 6= 6=== = 6===
SSIM 6= 6=== = 6=== = 6=== = 6=== = 6=== = 6===
MS-SSIM 6= 6=== = 6=== ==== ==== = 6=== ====
VIF 6= 6=== = 6=== ==== ==== = 6=== ====
VIFP 6= 6=== = 6=== ==== ==== = 6=== ====
UQI 6= 6=== = 6=== = 6=== = 6=== = 6=== = 6===
IFC = 6=== = 6=== ==== ==== ==== = 6===

Each entry in the table corresponds to the results of the statistical tests performed on the following performance indexes (from left to right):
PCC, SCC, RMSE, and OR. “=” means that there was no significant difference between the two metrics, whereas “6=” means that the
difference was significant. Reading: Line 2, column 4: SSIM and VIF are statistically different according to SCC, whereas they are similar
according to the other performance indexes.

order correlation coefficient (SCC) and the outlier ratio (OR),

were computed between DMOSp and DMOS, respectively.

Finally, these four performance indexes were averaged across

the different contents.

The root-mean-square error (RMSE) and the outlier ratio

(OR) are defined as follows:

RMSE =

√

√

√

√

1

N − 1

N
∑

i=1

(DMOSi −DMOSpi)
2

OR =
total number of outliers

N

outlier: point for which |DMOSi −DMOSpi| > CIi

where N is the total number of points and CIi is the 95%

confidence interval corresponding to DMOSi.

To determine whether the difference between two perfor-

mance index values corresponding to two different metrics

is statistically significant, a statistical test was performed

according to [19].

A PCA was also applied between the DMOS and the objec-

tive scores to further investigate the correlation of the objective

metrics with perceived quality. As the different metrics have

different scales and PCA is sensitive to the relative scaling

of the original variables, normalized variables with zero-mean

and unit-variance were used.

V. RESULTS

A. Correlation between objective and subjective scores

Table I reports the accuracy, consistency, and monotonicity

indexes, as defined in Sec. IV, for the cubic fitting. The fitting,

as defined in Sec. IV, was applied in two different ways:

a) on all contents at once,

b) on each content separately.

In the latter case, the performance indexes were computed

separately on each content and then averaged across contents.

When the fitting was applied on all contents at once, the

correlation was lower than 0.15 for all metrics, except for

PSNR, which showed a correlation around 0.3. The RMSE was

around 0.9 for all metrics. The OR was higher than 55% on

all metrics. These results show that there is a poor correlation

between objective metrics and perceived quality. When the

fitting was applied on each content separately, the obtained

performance marginally improved, as the PCC and SCC scores

are still in the range 0.18-0.33 and 0.33-0.45, respectively. The

RMSE and OR decreased below 0.61 and 40%, respectively.

However, these results still lead to the conclusion that there

is a poor correlation between objective metrics and perceived

quality.

When the fitting was applied on all contents at once, PSNR

seems to outperform other metrics, even though the correlation

was still very low. To determine if the difference between

PSNR and the other metrics is significant, statistical tests

were performed according to [19]. Table II reports the results

of the statistical tests considering cubic fitting. Each entry



(a) PCA (b) Correlation

Figure 1 Circle of correlations and Pearson and Spearman correlation scores between DMOS and objective scores.

in the table corresponds to the results of the statistical tests

performed on the following performance indexes (from left

to right): PCC, SCC, RMSE, and OR. The statistical tests

were performed to determine whether the difference between

two performance index values corresponding to two different

metrics was statistically significant: “=” means that there was

no significant difference between the two metrics, whereas

“ 6=” means that the difference was significant. The results

showed that PSNR was significantly different from the other

metrics according to PCC and SCC values, except for IFC.

Figure 1 shows the correlation between the obtained subjec-

tive scores and the corresponding objective scores. Figure 1(a)

depicts the circle of correlations derived from the PCA.

Figure 1(b) depicts the Pearson and Spearman correlation

coefficients between the DMOS and the objective scores.

Only two components had an eigenvalue larger than 1 in the

PCA. These two principal components explained 84% of the

variance of the data.

The circle of correlations allows the observation of cor-

relations between variables and principal components. Each

measured variable is represented as a vector. The vector length

represents the combined strength of the relationships between

measured variable and principal components. The vector di-

rection indicates whether these relationships are positive or

negative. Since the data is not perfectly represented by the

two principal components, the variables are positioned inside

the circle of correlations. The closer the variable is to the

circle, the more important it is to the principal components.

The smaller the angle between two measured variable’s vector

representations, the higher their correlation. In Fig. 1(a), it

can be observed that the objective metrics are grouped, which

shows that they are correlated with each other. However, the

angle between most of the objective metrics and DMOS is

close to π
2

, which indicates that subjective scores are not cor-

related to objective metrics. This is confirmed by the analysis

of Pearson and Spearman correlation scores in Fig. 1(b): these

correlation scores are very low since they do not reach 0.3.

Another interesting observation concerns the contributions

of the variables to the principal components in Fig. 1(a). The

variables for which the contribution value is larger than the

average contribution for the first component are VIFP, VIF,

SSIM, MS-SSIM, and PSNR. The only variable for which the

contribution value is larger than the average contribution for

the second component is DMOS.

B. Scope of validity of the objective metrics

Huynh-Thu and Ghanbari [20] have shown that even PSNR

can be a valid quality measure if the video content and the

codec type are not changed. It is well known that objective

metrics can better handle some types of degradations and often

fail when different types of degradations are combined. In this

study, different views synthesis modes, contents, depth map

compression algorithms, and bit rates were considered. As it

was shown in our previous study [10], the view synthesis mode

had an impact on perceived quality and modified the behavior

of a compression algorithms. Therefore, we benchmarked and

analyzed the different metrics on sub-groups of stimuli, where

only one view synthesis mode and one codec were considered.

Figure 2 shows the minimum and maximum PCC values

(across all metrics) for the different sub-groups. It can be



(a) VS1 and VS2 (b) VS1 only (c) VS2 only

Figure 3 Accuracy, consistency, and monotonicity indexes when considering only content S1.

(a) Contents (b) Codecs

Figure 2 Minimum and maximum PCC values across all
metrics for the different sub-groups.
Reading: Contents, line 4, columns 1 and 2: min(PCC) ≈ 0.5,
max(PCC) ≈ 0.8 for content S3 when all synthesis modes are
considered.

observed that the correlation can be quite high when only

VS2 is considered and the analysis is performed for each

content separately (except for content S6, where the correlation

remains very low).

Figure 3 depicts the accuracy, consistency, and monotonicity

indexes when considering only content S1. The results show

that there is a poor correlation between objective metrics and

perceived quality when the views are not blended (VS1, see

Fig. 3(b)) as the PCC value is lower than 0.25 on all metrics,

whereas the correlation is high when the views are blended

(VS2, see Fig. 3(c)) as the PCC value is higher than 0.8 on

all metrics. These results show that the objective metrics can

achieve a good correlation with perceived quality if content

characteristics are considered, but cannot handle the artifacts

produced by some view synthesis algorithms.

C. A specific case: C6

Figures 4(a) and (b) show the circle of correlations derived

from PCA and the Pearson and Spearman correlations co-

efficients with subjective and objective scores of C6 related

stimuli only. In Fig. 4(a), the two principal components

explained 87.7% of the variance of the data. The variables

for which the contribution value is larger than the average

contribution for the first component are VIFP, VIF, SSIM, and

MS-SSIM, according to the principal component coefficients.

These objective metrics are known to be perception-oriented.

The variables for which the contribution value is larger than

the average contribution for the second component are IFC,

UQI, DMOS, PSNR, and SSIM. In addition, Fig. 4(a) shows

that the angle between the vectors representing DMOS, IFC,

and PSNR are very small, which indicates a large correlation

between these variables. These results are in line with the

obtained correlation scores in Fig. 4(b) regarding PSNR:

according to Pearson and Spearman coefficients, PSNR is

the most correlated objective metric. Our observation of C6

related depth maps shows that this coding method distorts only

slightly small pixel blocks around the edges. So the quality of

the resulting synthesized views is close to that of the reference

stimuli, which explains the higher objective scores.

These observations show that objective metrics are strongly

content dependent, as previously shown in [20]. Therefore,

content characteristics should be considered by objective met-

rics or the benchmarking of objective metrics should be made

on a per content basis for fair comparison.

VI. CONCLUSION

In this paper, we analyzed the performance of several

commonly used objective quality metrics on free-viewpoint

video sequences using subjective scores as ground truth. The

considered free-viewpoint video sequences were generated

from decompressed data and simulating a smooth camera

motion during a time freeze. The results showed that objective

metrics achieved low correlation with subjective scores when

various conditions were considered. However, the correlation

with perceived quality improved when content characteristics

were considered. In addition, the artifacts produced by some

view synthesis algorithms might not be correctly handled by

the objective quality metrics. These results motivate the need

to design better objective metrics that can accurately assess

the specific artifacts generated by the view synthesis process.
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