

Free-volume structure of glass-As2Se3/PVP nanocomposites prepared by mechanochemical milling

O. Shpotyuk, A. Ingram, Z. Bujňáková, P. Baláž, Y. Shpotyuk, C. Boussard-Plédel, B. Bureau

▶ To cite this version:

O. Shpotyuk, A. Ingram, Z. Bujňáková, P. Baláž, Y. Shpotyuk, et al.. Free-volume structure of glass-As2Se3/PVP nanocomposites prepared by mechanochemical milling. 9th International Conference on Times of Polymers and Composites From Aerospace to Nanotechnology, Jun 2018, Ischia, Italy. pp.020150, 10.1063/1.5046012 . hal-01874719

HAL Id: hal-01874719

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01874719

Submitted on 18 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Free-volume Structure of glass-As₂Se₃/PVP Nanocomposites Prepared by Mechanochemical Milling

Oleh Shpotyuk^{a,b}, Adam Ingram^c, Zdenka Bujňáková^d, Peter Baláž^d, Yaroslav Shpotyuk^{e,f}, Catherine Boussard-Pledel^g, and Bruno Bureau^g

^aJan Dlugosz University in Czestochowa, 13/15, al. Armii Krajowej, Czestochowa, 42200, Poland ^bVlokh Institute of Physical Optics, 23, Dragomanov str., Lviv, 79005, Ukraine ^cOpole University of Technology, 75, Ozimska str., Opole, 45370, Poland ^dInstitute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova str., Košice, 04001, Slovakia ^eUniversity of Rzeszow, 1, Pigonia str., 35-310 Rzeszow, Poland ^fIvan Franko National University of Lviv, 1, Universytetska str., 79000, Lviv, Ukraine ^gLaboratoire Verres et Céramiques UMR-CNRS 6226, University of Rennes 1, Rennes Cedex, 35042, France

Abstract. Atomic-deficient void structure is studied in nanocomposites prepared by mechanochemical milling of glassy g-As₂Se₃ in a water solution of polyvinylpyrrolidone (PVP) employing positron annihilation lifetime spectroscopy. Formalism of Ps-to-positron trapping conversion known as x3-x2-CDA (coupling decomposition algorithm) is applied to identify free-volume defects in the pelletized g-As₂Se₃/PVP nanocomposite in respect to dry-milled g-As₂Se₃ one. Under wet-milling, the inter-nanoparticle Ps-decaying sites in preferential PVP environment replace free-volume positron traps (in dry-milled g-As₂Se₃) with defect-specific lifetime of 0.352 ns, corresponding to di-/tri-atomic vacancies in g-As-Se.

Keywords:, arsenic selenide, free-volume defect, nanoparticle, nanocomposite, positron annihilation, mechanical milling. PACS: 78.67.Sc, 78.70.Bj

INTRODUCTION

The chalcogenide compounds represented by As_2S_3 , different As_4S_4 polymorphs, and As_2O_3 , the overall known as arsenicals [1], have attracted a tight attention in scientific community because of their potential application as promising anti-cancer drugs in treatment of hematological malignant diseases [2]. Their medicinal activity can be tuned by *nanostructurization* stretching over atomic and sub-atomic length-scales [3-6] due to mechanochemistry, an advanced instrumentation tool ensuring arsenicals with unprecedented biocompatibility via enhanced ratio of surface-to-bulk states [7]. In medicinal implementations, the mechanically milled (MM) arsenicals are combined with organic stabilizers such as polyvinylpyrrolidone (PVP), to keep individuality of created nanoparticles (NPs), thereby producing *PVP-capped arsenical nanocomposites* [5,6,8-10]. Nowadays, there are no comparative information concerning similar functionalization in other types of arsenicals, such as arsenic selenides As-Se, forming a large group of glassy-like media possessing widespread application in IR photonics [11].

In this work, the free-volume structural arrangement in the PVP-encapsulated glassy g-As₂Se₃ nanocomposites prepared by high-energy wet attrition ball milling is studied employing positron annihilation lifetime (PAL) spectroscopy, the non-destructive experimental probe for nanostructurization in composite materials [10,12,13].

EXPERIMENTAL

Nanocomposite preparation and characterization

The studied nanocomposites were prepared using coarse-grained pieces of bulk g-As₂Se₃ synthesized from highpurity commercial elemental precursors (As and Se of 5N purity). The plane-parallel plates (1.0-1.5 mm in a thickness) cut from thermally-annealed glassy ingots and polished to a high optical quality were used as reference samples for PAL spectroscopy measurement. The synthesized g-As₂Se₃ has 4.590 g·cm⁻³ density determined at room temperature by the Archimedes displacement technique in ethanol, and mid-onset glass-transition temperature $T_g=185^{\circ}C$ determined from DSC scans, as typical values proper to g-As₂Se₃ [11].

The high-energy milling was performed in both dry and wet modes. The dry-mode milling was performed in Pulverissete 6 mill (operated at 500 rpm rotational speed and protective argon atmosphere) for 20 min in 250 mL tungsten carbide chamber (loaded with 50 tungsten carbide balls each having 10 mm in diameter), using 3 g of coarse-grained g-As₂Se₃ preliminary sieved under 200 μ m. After milling, the powder was compressed by compacting inside a stainless steel die under a pressure of ~0.7 GPa to produce the dry-MM g-As₂Se₃ pellets having near 6 mm in a diameter and 1 mm in a thickness. The part of dry-milled powder was treated in a wet-milling mode. This 90-min attrition ball milling route performed in a presence of 300 mL of 0.5% PVP solution in laboratory MiniCer mill (Netzsch, Germany), operated under protective argon atmosphere at 3500 rpm speed (85% loading of milling shaft with yttrium-stabilized ZrO₂ balls, each having 0.6 mm in a diameter). For this purpose, we used the powdered PVP with an average molecular weight of 40 000 g·mol⁻¹ purchased from Sigma-Aldrich Co. LLC (St. Louis, MO, USA). After filtration through sterile 0.22 μ m filter, the separated solid phase was dried at 70°C and pelletized under the same pressure of ~0.7 GPa, thus producing the g-As₂Se₃/PVP- nanocomposite.

The NPs sizes in milled arsenicals detected by photon cross-correlation spectroscopy reveal typical single modal distribution with $d_{50}=182$ nm (i.e. 50% of NPs were smaller than 182 nm) and $d_{99}=267$ nm (i.e. 99% of NPs were smaller than 267 nm). As it follows from X-ray diffractometry, the high-energy attrition ball milling in the above conditions does not change amorphous state of the substance.

PAL spectra recording

The PAL spectra were recorded with fast-fast coincidence system (ORTEC) of 230 ps resolution stabilized at 22°C and relative humidity of 35%. To ensure precise lifetime measurement, each PAL spectrum was recorded in normal-measurement statistics (~10⁶ coincidences), the channel width of 6.15 ps allowing 8000 channels in a total. The ²²Na isotope of ~50 kBq activity prepared from aqueous ²²NaCl solution (wrapped by Kapton[®] foil of 12 µm thickness and sealed) was used as positron source sandwiched between two identical samples. The source correction (12% component contribution with 0.372 ns lifetime installed due to calibration with Ni and Kapton[®] foil) was applied to compensate input originating from annihilation in the source itself and in the covering Kapton[®] foil. The best fitting of the PAL spectra was achieved with LT 9.0 program [20] under decomposition into three single exponentials), covering channels from positrons annihilating in (i) defect-free bulky states, (ii) trapped in extended free-volume defects (positron-trapping sites) and (iii) forming bound positron-electron Ps (positronium) state. The error-bar in positron lifetimes τ_i and intensities I_i were ±0.005 ns and 0.5%, respectively. The PAL data were treated using two-state simple trapping model (STM), assuming one kind of free-volume defects for positrons [12,15,16], disturbed by slight input from Ps-decaying. This approach allows determination of positron trapping modes (defect-specific τ_d and defect-free bulk τ_b lifetimes, trapping rate in defects κ_d ,) under condition of slight input from Ps-decaying. This approach allows determination of slight input from Ps-decaying modes (i.e. radius of spherical holes *R* and fractional free volume f_v).

PAL spectra treatment with x3-x2-CDA

For inhomogeneous solids, where annihilation is expected through mixed positron-Ps channels so that only Pstraps are transformed in positron-trapping centers (and vice versa), the formalism of Ps-to-positron trapping conversion [5,6,13] can be applied to identify free-volume defects. Within this approach referred to as x3-x2-CDA (coupling decomposition algorithm) [13], we deal with x3-term PAL spectrum transformed to generalized x2-term form for both reference and nanostructurized solids (caused, in part, by incorporation of *guest* NPs in *host* matrix), the second component involving all possible positron-trapping and Ps-decaying contributions. This approach allows resolving additional input with defect-specific τ_{int} lifetime and I_{int} intensity in the second component of reconstructed x2-term PAL spectrum, provided compensating (τ_n ,I_n) input in the first component obeys complete equilibrium [13]. Parameterization of Ps-to-positron trapping conversion in the nanostructurized matrix is achieved accepting (τ_n ,I_n) and (τ_{int} ,I_{int}) as first and second components of x2-term PAL spectrum employing two-state STM [12,15]. The trapping modes derived within this approach include defect-specific τ_{int} and defect-free bulk τ_b^{NP} lifetimes, trapping rate in defects κ_d^{NP} , signature of trap size in terms of equivalent number of vacancies defined by ($\tau_{int}-\tau_b^{NP}$) difference and nature of these traps defined by τ_{int}/τ_b^{NP} ratio [12].

RESULTS AND DISCUSSION

The PAL spectra of pelletized dry-MM and wet-MM g-As₂Se₃, and bulk g-As₂Se₃ are built of three single exponentials (Table 1), the corresponding PAL trapping parameters being gathered in Table 2.

Arsenical sample (fitting procedure)	[FIT-1]	PAL spectra fitting parameters					τ _{av.}	
		τ_1	τ2	τ3	I ₂	I3	ns	
		ns	ns	ns	a.u.	a.u.		
Bulk g-As ₂ Se ₃ (x2-term)	0.07	0.209	0.363	-	0.627	-	0.305	
Bulk g-As ₂ Se ₃ (x3-term)	0.01	0.193	0.358	2.091	0.620	0.007	0.310	
Dry-MM g-As ₂ Se ₃ (x3-term)	0.05	0.202	0.371	2.087	0.540	0.015	0.322	
Wet-MM g-As ₂ Se ₃ (x3-term)	0.07	0.212	0.428	1.891	0.400	0.052	0.386	

TABLE 1. PAL spectra fitting of g-As₂Se₃-based arsenicals within free x2- and x3-term decomposition.

The PAL spectrum of reference bulky g-As₂Se₃ sample decomposed on three free exponentials reveals second component with τ_2 lifetime approaching ~0.36 ns, which is at a character level of triple- and quadruple-type vacancies in As-Se matrix [17-19]. The third component with relatively small fractional free volume f_v =0.15 and τ_3 =2.091 ns can be ascribed to Ps-related holes having a radius of 0.296 nm. Despite small number of corresponding goodness. Nevertheless, we also decomposed the measured PAL spectrum of bulky g-As₂Se₃ in evidently worse x2-term form (due to seven-times increased [FIT-1] value), to compare these results with known data for the same glass treated within two-state STM [12,15]. The good coincidence in defect-specific τ_d and defect-free bulk τ_b lifetimes, as well as trapping rate in defects κ_d speaks in a favor of tight proximity between these reference samples.

TABLE 2. PAL trapping modes of g-As₂Se₃-based arsenicals within free x2- and x3-term decomposition

Arsenical sample	Positron-trapping modes						Ps-decay modes	
	$\tau_{av.}{}^{tr}$	τ	Kd	τ2- τ ь	τ_2/τ_b	η	R ₃	f_v^3
	ns	ns	ns ⁻¹	ns	a.u.	a.u.	nm	%
Bulk g-As ₂ Se ₃ (x2-term)	0.305	0.285	1.27	0.08	1.27	0.27	-	-
Bulk g-As ₂ Se ₃ (x3-term)	0.297	0.272	1.51	0.09	1.32	0.29	0.296	0.15
Dry-MM g-As ₂ Se ₃ (x3-term)	0.295	0.270	1.24	0.10	1.37	0.25	0.296	0.29
Wet-MM g-As ₂ Se ₃ (x3-term)	0.304	0.270	1.01	0.16	1.58	0.21	0.277	0.83

In structurally inhomogeneous substances composed of agglomerated NPs having individual 100-300 nm grains (as it clearly illustrated by particle size distribution on Fig. 1), the large fraction of positrons thermalized inside these grains travelers towards grain boundaries (because of their diffusion length becomes comparable with NP size), where they annihilate after getting trapped into free-volume defects. This feature determines a more complicated PAL spectroscopy for both dry-MM and wet-MM g-As₂Se₃ (as compared with non-milled bulky samples) in addition to large amount of free-volume voids and unfilled cavities created due to powdering these arsenicals [20].

The x3-term decomposed PAL spectrum of the pelletized dry-MM g-As₂Se₃ demonstrates slightly increased defect-specific lifetime τ_2 , but rather unchanged Ps-decaying lifetime τ_3 , the average lifetime $\tau_{av.}$ as a mass center of all positron-annihilation events [12] being only slightly shifted from 0.310 ns to 0.322 ns. The third component intensity I₃ is over two-times increased as in bulky g-As₂Se₃, resulting in equivalent growth of fractional free volume f_v (Table 2). The relative stability of average lifetime $\tau_{av.}$ in this arsenical is evidently counter-balanced by abruptly decreased second component intensity I₂, the process favoring changes in the Ps-formation probability [21].

The x3-term PAL spectrum of the pelletized PVP-capped g-As₂Se₃ nanocomposite (i.e. wet-MM g-As₂Se₃) differ essentially demonstrating obvious changes in positron- and Ps-related annihilation channels, the corresponding changes in third and second component intensities (I₂ and I₃) being enhanced evidently (Table 1). As a consequence, the average lifetime $\tau_{av.}$ in this composite grows to 0.386 ns, while the τ_3 lifetime drops to 1.891 ns, tending towards Ps-related lifetime in pure PVP matrix (τ_3 =1.867 ns) [22]. Hence, the Ps-decaying occurs rather in PVP environment than in "pure" g-As-Se matrix, this process being nearly three-times enhanced in respect to f_v=0.83% (see Table 2). In contrast, the defect-specific τ_2 lifetime grows abnormally in g-As₂Se₃/PVP nanocomposite approaching ~0.43 ns, which can be ascribed to positron trapping in large free-volume defects such as multi-vacancy clusters [17-19].

To identify free-volume nanostructurization in the pelletized g-As₂Se₃/PVP nanocomposite, the PAL spectrum of pelletized dry-milled g-As₂Se₃ is considered in respect to wet-milled one using the x3-x2-CDA [13] (Table 3).

First co	mponent	Second component			Positron trapping modes				•	
$\tau_{\rm n}$	In	(tn·In)	Tint	Iint	(tint·Iint)	$\tau_{av}{}^{NP}$	τ_b^{NP}	Kd ^{NP}	$ au_{int}$ - $ au_{b}^{NP}$	τ_{int}/τ_b^{NP}
ns	a.u.	ns	ns	a.u.	ns	ns	ns	ns ⁻¹	ns	a.u.
0.194	0.334	0.065	0.352	0.472	0.166	0.287	0.263	1.35	0.09	1.34

TABLE 3. x3-x2-CDA trapping modes in dry-MM g-As₂Se₃ defined in respect to g-As₂Se₃/PVP nanocomposite.

The positive first and second component intensities (In and Iint) in the PAL spectrum reconstructed in terms of x3-x2-CDA, along with well-filled $(\tau_n \cdot I_n)$ and $(\tau_{int} \cdot I_{int})$ component inputs testify that Ps-decaying sites in pelletized PVP-g-As₂Se₃ nanocomposite are transformed to positron-trapping sites in dry-MM g-As₂Se₃ pellets. The defectrelated lifetime $\tau_{int}=0.352$ ns shows the appeared positron traps represent interfacial voids, which are close in their free volumes to di- and/or tri-atomic vacancies in g-As-Se matrix, reaching ~0.25-0.28 nm in a radius (in a spherical approximation) as it follows from known semiempirical relationships for arsenic triselenide As₃Se₃ [17-19]. This finding agrees well with $(\tau_{int}-\tau_b^{NP})=0.09$ ns and $\tau_{int}/\tau_b^{NP}=1.34$ values as character indicatives of these vacancies [12]. In dry-MM g-As₂Se₃ pellet, this positron-trapping channel substitutes the Ps-decaying contribution originated from inter-NPs holes with τ_3 =2.087 ns by input from PVP-filled inter-NPs Ps-traps with τ_3 =1.891 ns lifetime (Table 1). The whole trapping-conversion process, i.e. appearance of positron traps with defect-related lifetime $\tau_{int}=0.352$ ns instead of Ps-decaying sites with $\tau_3=2.087$ ns lifetime, occurs in a chemical environment possessing defect-free bulk positron lifetime $\tau_b^{NP}=0.263$ ns (Table 3). This value is evidently above bulk positron lifetime in crystalline c-As₂Se₃ ($\tau_b=0.240$ ns) [17], but below this lifetime in g-As₂Se₃ ($\tau_b=0.280$ -0.285 ns) as defined within STM from constrainedfree x2-term decomposed PAL spectra, i.e. ignoring any competitive contribution from Ps-decaying channel [19]. Thus, the chemical environment of Ps-to-positron trapping conversion, i.e. inner spaces where positron traps appear (dry-MM g-As₂Se₃) instead of PVP-filled inter-NPs Ps-decay sites (wet-MM g-As₂Se₃), is indeed g-As-Se matrix.

In our consideratio, we have been grounded on assumption that Ps-to-positron trapping conversion is alone process linking dry-MM and wet-MM g-As₂Se₃. This condition seems to be really satisfied under small amount of PVP in nanocomposite due to the same positron annihilation channel from defect-free bulky states in both arsenicals.

REFERENCES

- 1. P. J. Dilda and P. J. Hogg, Cancer Treatment Rev. 33 542-564 (2007).
- 2. W. Ding, L. Zhang, S. Kim, W. Tian, Y. Tong, J. Liu, Y. Ma and S. Chen, Molecular Medicine Rep. 11 968-974 (2015).
- 3. Y. Tian, X. Wang, R. Xi, W. Pan, S. Jiang, Z. Li, Y. Zhao, G. Gao and D. Liu, Intern. J. Nanomedicine 9 745-757 (2014).
- 4. J.-Z. Wu and P.C. Ho, Eur. J. Pharm. Sci. 29 35-44 (2006).
- Z. Bujnakova, P. Balaz, P. Makreski, G. Jovanovski, M. Caplovicova, L. Caplovic, O. Shpotyuk, A. Ingram, T.-C. Lee, J.-J. Cheng, J. Sedlak, E. Turianicova and A. Zorkovska, *J. Mater. Sci.* 50 1973-1985 (2015).
- O. Shpotyuk, Z. Bujňáková, P. Baláž, A. Ingram, P. Demchenko, A. Kovalskiy, M. Vlcek, Ya. Shpotyuk, J. Cebulski and A. Dziedzic, *Mater. Chem. Phys.* 186 251-260 (2017).
- 7. P. Baláž, M. Achimovičová, Z. Bujňáková and E. Dutková, J. Mater. Sci. 52 11851-11890 (2017).
- 8. G. Ghosh, M.K. Naskar, A. Patra and M. Chatterjee, Opt. Mater. 28 1047-1053 (2006).
- 9. I. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan and R. Jayavel, Nanomater. Nanotechnol. 1 42-48 (2011).
- 10. O. Shpotyuk, A. Ingram, Y. Shpotyuk, Z. Bujňáková and P. Baláž, Polymer Eng. Sci. 57 502-505 (2017).
- 11. A. Feltz, Amorphous Inorganic Materials and Glasses, VCH, Weinheim, 1993, pp. 1-446.
- 12. R. Krause-Rehberg and H. Leipner, *Positron annihilation in semiconductors: defect studies*, Heidelberg, Springer, 1999, pp. 1-350.
- 13. O. Shpotyuk, J. Filipecki, A. Ingram, R. Golovchak, M. Vakiv, H. Klym, V. Balitska, M. Shpotyuk and A. Kozdras, *Nanoscale Res. Lett.* **10** 77-1-77-5 (2015).
- 14. J. Kansy, Nucl. Instr. Meth. Phys. Res. A 374 235-244 (1996).
- 15. F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85 1583-1631 (2013).
- Y.C. Jean, P.E. Mallon and D.M. Schrader, Principles and application of positron and positronium chemistry. World Sci. Publ. Co. Pte. Ltd., New Jersy-London-Singapore-Hong Kong, 2003.
- 17. K.O. Jensen, P.S. Salmon, I.T. Penfold and P.G. Coleman, J. Non-Cryst. Solids 170 57-64 (1994).
- 18. O. Shpotyuk, A. Ingram, M. Shpotyuk and J. Filipecki, Nucl. Instr. Meth. Phys. Res. B 338 66-71 (2014).
- 19. M. Hyla, J. Filipecki, O. Shpotyuk, M. Popescu and V. Balitska, J. Optoelectron. Adv. Mat. 9 3177-3181 (2007).
- 20. O. Shpotyuk, A. Ingram, Z. Bujňáková, P. Baláž and Ya. Shpotyuk, Nanoscale Res. Lett. 11 10-1-10-7 (2016).
- 21. Y.K. Vijay, S. Wate, D.K. Awasthi, D. Das and S. Ghughre, Indian J. Eng. Mater. Sci. 7 375-377 (2000).
- 22. O. Shpotyuk, Z. Bujňáková, P. Baláž, A. Ingram and Ya. Shpotyuk, J. Pharm. Biomed. Anal. 117 419-425 (2016).