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Abstract

Background: 20 years of improved technology and growing sequences now renders residue-residue contact
constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of
protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling
Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance
matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for
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(desktop or cloud).

interactive applications. On top, EVfold-mfDCA depends on proprietary software.

Results: Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a
test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction
performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with
negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary
software. FreeContact is implemented as the free C++ library “libfreecontact”, complete with command line tool
“freecontact”, as well as Perl and Python modules. All components are available as Debian packages. FreeContact

Conclusions: FreeContact provides the opportunity to compute reliable contact predictions in any environment
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Background

Experimental high-resolution three-dimensional (3D) struc-
tures are available for fewer than one percent of all known
proteins of known sequence (March, 2014: 100 k protein
structures in the PDB [1] vs. 52 M sequences in UniProt
[2]), and this sequence-structure gap [3] continues to in-
crease. Homology modeling [4] or comparative modeling
[5] is the only bridge that allows reliable modeling of 3D
structure for about 20-40% of the residues in all known
proteins [6]. This boost of experimental information consti-
tutes an immense achievement of computational biology
(with about $50 billion dollars investment for experimen-
tally unraveling 0.1 M known structures, computational
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biology generates structural knowledge for another ~20 M
for just a few million).

Over the last two years, methods have been introduced
that for the first time enable reliable de novo prediction
of 3D structure for large proteins, i.e. intrudes into realms
unreachable by comparative modeling [7]. EVfold [8,9]
has been succeeding in sustained and reliable predictions
of two-dimensional (2D) inter-residue contacts, i.e. the
prediction of which residue pairs are near each other in
the native protein structure. The success and elegance of
the contact prediction through mean-field direct-coupling
analysis [10] of EVfold (EVfold-mfDCA) has revived the
field (e.g. PSICOV [11], plmDCA [12], PconsC [13] and
PhyCMAP [14-16], and EVfold_membrane [7]). Wider ap-
plication of this new generation of contact prediction tools
is enticing, but currently hampered by two problems.

The first problem relates to the amount of sequence
information needed, e.g. EVfold tends to perform better
with 50 k sequences in a family than with 10 k. To put
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this into perspective: a decade ago, only the 10% largest
families had over 100 homologues [17], now we have a
method for which 100 times this may no longer suffice.
This is why, e.g. EVfold_membrane can predict struc-
tures for only tens of families [7]. However, these fam-
ilies are so gigantic that they cover some 3-6% of all
known sequences.

The second problem pertains to the speed of the new
methods and their ease of availability. EVfold-mfDCA is
publicly available, but its implementation requires pro-
prietary interpreter software. PSICOV has recently been
released under the GPLv2 (version 1.09 and later), but is
not optimized for speed (as of version 1.10). Runtimes
often exceed tens of minutes (using the optimal parame-
ters published). This might be restrictive for large-scale
data analysis and for public web service operations such
as PredictProtein [18]. Neither EVfold-mfDCA nor PSI-
COV are packaged for convenient installation and usage.

Here, we report the release of FreeContact, a freely
available software that considerably reduces the runtime
for EVfold-mfDCA and PSICOV and provides conveni-
ent Debian [19] packages freely, open-source available to
all users.

Implementation

FreeContact is an open-source EVfold-mfDCA implemen-
tation optimized for speed. FreeContact can also be pa-
rameterized to produce results according to the PSICOV
algorithm, because these two methods share many com-
putational steps. For optimization, we identified the fol-
lowing program components that contribute significantly
to runtime: BLOSUM-style weighting [20] of protein se-
quences in the input alignment (shared by EVfold-mfDCA
and PSICOV), counting pairwise residue frequencies (also
shared), shrinking the covariance matrix (PSICOV), sparse
inverse covariance estimation (PSICOV), and covariance
matrix inversion (EVfold-mfDCA).

Speed-up

Sequence weights result from computing the percentage se-
quence identity between each protein pair in a family. Our
implementation uses standard x86-64 architecture stream-
ing SIMD instructions (single instruction, multiple data)
extensions 2 (SSE2). These instructions operate on 128-bit
registers, allowing the simultaneous comparison of 16 resi-
dues (each represented in a byte). A generic implementa-
tion is provided for architectures without SSE2 instructions.
Both implementations benefit from multiple cores using
OpenMP [21] to parallelize loops. Parallelization of loops
through OpenMP also accelerated the computation of pair-
wise amino acid frequencies. The usage of single-precision
LAPACK [22] routines accelerated the shrinking of the co-
variance matrix. We used GLASSOFAST [23], a new, fast
implementation of the GLASSO algorithm [24] for sparse
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inverse covariance matrix estimation, developed in part for
its usefulness in protein contact prediction. GLASSOFAST
was used with single-precision numbers and GNU
Compiler Collection (GCC) auto-vectorization (“-ftree-
vectorize”, implied by “~03”). LAPACK routines (single
precision) inverted the covariance matrix.

Parameters

FreeContact is controlled by the following parameters
(Table 1). Command-line usage of FreeContact is facili-
tated by Bash auto-completion [25] for its parameters
and their arguments.

We provide the choice of parameter profiles through
the “—parprof” command-line option to conveniently set
FreeContact options to recommended parameterizations
of EVfold-mfDCA and PSICOV: the “evfold” argument
sets EVfold-mfDCA compatibility mode, while “psicov”
sets PSICOV “improved results” compatibility mode,
and “psicov-sd” sets PSICOV “sensible default” compati-
bility mode (as defined in the README file distributed
with PSICOV). This allows FreeContact to function as
an accelerated replacement for both EVfold-mfDCA and
PSICOV.

Differences

One of the differences between the FreeContact and the
original implementation of PSICOV is the interpretation
of the BLOSUM -style clustering percentage for sequence
weighting. The original implementation groups sequences
with a similarity larger than (>) the given threshold, while
FreeContact groups at larger-or-equal (=) the threshold.

Table 1 FreeContact command-line parameters

--clustpc BLOSUM-style sequence clustering percentage [0-100]

--cov20 when true, one amino acid is left out when forming
the covariance matrix, making it non-overdetermined
[10] [Boolean]

--density target precision matrix density [0-1]

--estimate-ivcov  perform inverse covariance matrix estimation instead

of matrix inversion [Boolean]

--apply-gapth exclude alignment columns with a weighted gap
frequency greater than —gapth from the covariance
matrix [Boolean]

--gapth weighted gap frequency threshold (0-1]

--icme-timeout  inverse covariance matrix estimation timeout in
seconds [0-)

--mincontsep minimum sequence separation (j - i = arg) for
reporting contacts [1-)

--pseudocnt pseudo-count for sequence weighting [0-)

--pscount-weight  pseudo-count weight for sequence weighting [0-1]

--rho initial value of GLASSO regularization parameter [0-)

--parprof parameter profile selection [evfold|psicov|psicov-sd]

FreeContact command-line parameters controlling contact prediction.
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This technical detail matters as it allows FreeContact to
share this program component between its implementa-
tions of PSICOV and EVfold-mfDCA. The performance
of PSICOV is affected minimally by this detail [see
Additional file 1].

A novel addition is the optional time limit that Free-
Contact can impose on inverse covariance estimation.
The rationale was the observation that this estimation
can take exceedingly long. If the time limit is exceeded,
the prediction aborts with a dedicated error code.

An important difference between the original EVfold-
mfDCA and its FreeContact implementation is the way
in which contact scores are computed. FreeContact
returns improved “corrected norm” scores [12] instead
of the original “direct information”. The reason for this
is that “corrected norm” scores have been reported to be
superior [12].

Build

FreeContact was compiled with the GNU Compiler
Collection (GCC, version 4.7.2, with the “~O3 -ffast-
math -funroll-loops” flag), and it was linked with the
threaded version of the linear algebra software ATLAS
[26] (version 3.8.4, built on the host architecture).
ATLAS provides a highly efficient machine-specific im-
plementation of BLAS [27] and LAPACK [22]; it auto-
matically adapts itself during the build process to the
host architecture in order to optimize performance.
FreeContact can be linked with other BLAS and
LAPACK implementations. PSICOV was compiled with
the recommended “-m64 —O3 -mfpmath =sse -msse3
-funroll-loops -ffast-math” options.

Availability

FreeContact is available under the GNU General Public
License version 3 or later (GPLv3+, granting freedom to
use the software, guaranteeing included source code,
allowing modifications, and allowing free redistribution
[28]). It is available as a C++ library (called “libfreecon-
tact”), along with a command-line executable (called
“freecontact”), and modules in Perl (“FreeContact”, pack-
aged as “libfreecontact-perl”) and Python (“freecontact”,
packaged as “python-freecontact”). The library, execut-
able, modules, and documentation are available as offi-
cial Debian packages for Debian and derivative operating
systems [29] - such as Ubuntu, Bio-Linux [30] and
CloudBioLinux [31] - from Debian Med [32,33]. All
packages can be easily installed with the common pack-
age management tools. TAR GZ downloads are available
from the Rostlab FTP site [34].

Results and discussion
PSICOV has two notable run modes: “improved results”
and “sensible default”. The first (improved results) has
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been reported to be slightly more accurate and 2-3 times
slower than the second [11]. We have tested the runtime
of the FreeContact implementation (FC) of these modes
(FC.psicov and FC.psicov-fast), and of EVfold-mfDCA
(FC.evfold) on 140 proteins of the published test set of
PSICOV [see Additional files 2 and 3]. We compared run-
times to PSICOV version 1.10. The original implementa-
tion of EVfold-mfDCA was unavailable for testing due to
its dependency on proprietary software. Ten proteins of
the complete PSICOV test set of 150 were excluded from
the evaluation, because at least one of the methods failed
to return results, due to either excessive run time, or in-
sufficient total alignment weight. PSICOV was allowed to
run for at least three hours. FreeContact was run with the
default 30-minute time limit on the inverse covariance es-
timation step. All tests of FreeContact were carried out
using the “FreeContact” Perl module, on a computer with
32 GB RAM and two 6-core AMD Opteron 2431 proces-
sors running at 2.4 GHz. FreeContact was run on a single
thread unless indicated otherwise.

Performance

The most time-consuming step of the original PSICOV
implementation is the sparse inverse covariance matrix
estimation. In fact, this step is responsible for a large
fraction of the runtime. The next most CPU-intensive
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Figure 1 Runtimes for FreeContact. We measured the runtime
(logarithmic y-axis) for different program components (x-axis) on a
single thread. The program components were: “seqw” — sequence
weighting; “pairfreq” — pairwise residue frequencies; “shrink” — shrinking
of covariance matrix; “inv"’ — sparse inverse covariance estimation/
covariance matrix inversion. The different colors distinguish: the original
PSICOV implementation (blue), our acceleration of PSICOV (FC.psicov,
yellow), our acceleration of the faster PSICOV version “sensible default”
(FCpsicov-fast, green), and our implementation of EVfold-mfDCA
(FCevfold, red). The whiskers on the box plots show the most extreme
data point that is less than 1.5-times the interquartile range from the
box. Outliers are not shown. Total runtime of all methods tested is
dominated by the sparse inverse covariance estimation/covariance
matrix inversion component.
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Figure 2 Speedup using multiple threads. A: Sequence weighting. Speed is calculated as: proteins in alignment? length of target protein/
runtime. B: Pairwise residue frequency calculation. Speed is calculated as: proteins in alignment length of target protein’/runtime. Dashed lines
indicate linear correlation, extrapolated from one thread. The whiskers extend to the most extreme data point that is less than 1.5-times the
interquartile range from the box. The surprisingly clear correlation between the number of threads and speed demonstrates how well our

implementation scales for multi-threading.

steps are shrinking the covariance matrix, sequence
weighting, and pairwise residue frequency calculation
(Figure 1).

Sequence weighting in FreeContact was accelerated
over 12-fold on a single thread, compared to PSICOV
(Figure 1, “seqw”). Parallelization yielded further speedup.
On the 12-core test machine, 2.0, 3.8, and 7.9-fold average
speedups were observed when using FreeContact with 2,
4, and 10 threads, respectively (Figure 2A). The FreeCon-
tact computation of pairwise residue frequencies was as
fast as PSICOV on a single thread (Figure 1, “pairfreq”).
Parallelization yielded 2.0, 3.7, and 6.8-fold speedup on 2,
4, and 10 threads, respectively (Figure 2B).

Our code, taking advantage of the optimized ATLAS
implementation of single precision LAPACK routines,
sped up the covariance matrix shrinking step over five-
fold, compared to PSICOV (Figure 1, “shrink”). FC.psi-
cov performed the inverse covariance matrix estimation
step on average 8-times faster than PSICOV (Figure 1,
“inv”), due to the optimized GLASSOFAST routine. Over-
all, FC.psicov, FC.psicov-fast, and FC.evfold were 7.9, 32,
and 226-times faster than PSICOV on a single thread, re-
spectively (Figure 1, “all”).

Precision

We measured the performance of FreeContact in the
following way. Two residues were defined to be in con-
tact when their CB-Cp distance (Ca-Ca for glycine) was
below 8 A (0.8 nm). In this debatable threshold, we
followed the procedure introduced by the Critical As-
sessment of protein Structure Prediction (CASP) [35]. It
was also used for the original PSICOV publication [11].
Similarly, we monitored a score that had also been intro-
duced by CASP, namely the precision in contact predic-
tions for pre-defined thresholds in the number of contacts
predicted. The thresholds were chosen as the top L/n (L:

length of target protein) contacts, with n=(1, 2, 5, 10).
We distinguished different regions of sequence separation
(residues j and i separated by at least [j - i] >sep, with
sep=(4, 8, 11, 23)). All of those choices followed the
CASP procedure. Many readers might argue for problems
with those choices. However, for our purpose the CASP-
like evaluation of contact prediction sufficed to establish
that the FreeContact implementation of PSICOV and
EVfold-mfDCA did not come at the cost of performance.
Our assessment showed that the re-implementation of
PSICOV and the switching of some calculations to single
precision did not significantly affect precision (Table 2:
PSICOV vs. FC.psicov) [see Additional file 1]. The small
differences observed were entirely caused by switching
the relational operator in sequence weighting from lar-
ger (“>”) in the original PSICOV to larger-equal (“>”) in
FC.psicov (our implementation). Switching back to the

Table 2 Mean precision values [%]

j-i1>4 [j-i1>8

L L2 L5 L10 L L/2 L/5 L0
pSICOV 46 60 73 78 42 58 71 77
FC.psicov 46 60 73 77 42 57 71 77
FCpsicov-fast 44 58 72 77 41 55 70 76
FCevfold 45 57 67 73 44 57 69 75

-i1>11 [-i1>23

L 2 5 w10 L 2 w5 10
pSICOV 40 55 70 77 33 47 65 73
FC.psicov 40 55 70 76 33 47 65 73
FCpsicov-fast 39 53 68 76 32 45 63 71
FC.evfold 42 56 69 75 35 49 64 72

Mean precision values [%] for the top-L/n, L =length of target protein,

n=(1, 2, 5, 10) contacts divided by sequence separation ranges [j - il > sep, j, i
residue positions, sep = (4, 8, 11, 23), where the CB-Cf distance (Ca-Ca for
glycine) is less than 8 A.
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original larger (“>”) resulted in identical precision [see
Additional files 4 and 5].

We could not compare the performance of the original
implementation of EVfold-mfDCA with ours (FC.evfold),
due to the former’s dependency on proprietary software.
We noted, however, that FC.evfold was the fastest of the
four methods tested, and assessed on the PSICOV test
set, the immense gain in speed appeared to come with
good performance: FC.evfold outperformed the other
three methods at certain top-L contact and sequence
separation ranges (Table 2, italic values).

Interoperability

FreeContact is not limited to the command line or C/C++
programs. Its full speed and features are available to Perl
and Python scripts as well, through extension modules dis-
tributed with the software. FreeContact supports BioXSD
[36] — the proposed XML data-exchange format for se-
quences, alignments, and features — as an option for out-
put formats. This facilitates its integration into workflows
and incorporation into Web services. We plan to support
BioXSD input as well, and release a FreeContact Web ser-
vice in the near future.

Conclusions

FreeContact is a fast replacement for EVfold-mfDCA
and PSICOV, offering significant acceleration on com-
mon hardware. The implementation takes full advantage
of standard x86-64 features such as SSE2 instructions
and multiple cores. The speed increase is important for
large-scale protein contact or protein-protein interaction
prediction projects, as it leads to significant savings
through shorter runtimes. We anticipate providing up-
dates to FreeContact as the algorithms are developed.

Availability and requirements

e Project name: FreeContact

e DProject home page: http://rostlab.org/owiki/index.
php/FreeContact

e Operating systems: UNIX-like (tested on Debian and
Ubuntu)

e Programming language: C++, Fortran

e Other requirements: Autotools, Boost C++ Libraries,
BLAS, LAPACK, Xerces C++, CodeSynthesis XSD (the
latter two are required only for optional XML I/O)

e License: GPLv3 or later

e Any restrictions to use by non-academics: none

Additional files

Additional file 1: FC.psicov vs. PSICOV precision plot. Precision of
FC.psicov plotted against PSICOV, for the test set of 140 proteins.
Precision values for the top-L, L = length of target protein, contacts
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with separation range [j - i} > 4, where the CR-Cp distance (Ca-Ca for glycine)
is less than 8A.

Additional file 2: PDB codes of target proteins. List of 140 PDB codes
of target proteins used for testing. A subset of the test protein set of
PSICOV.

Additional file 3: Distribution of target protein alignment sizes and
lengths. Alignment size of the 140 target proteins plotted against the
target sequence length.

Additional file 4: FC.psicov> vs. PSICOV precision plot. Precision of
FC.psicov> plotted against PSICOV, for the test set of 140 proteins. FC.
psicov> uses “>" for the sequence clustering threshold, like PSICOV.
Precision values for the top-L, L = length of target protein, contacts with
separation range [j - i] > 4, where the C3-C distance (Ca-Ca for glycine)
is less than 8A.

Additional file 5: FC.psicov+ vs. PSICOV precision plot. Precision of
FC.psicov+ plotted against PSICOV, for the test set of 140 proteins. FC.
psicov+ is FC.psicov (using “2"), run with slightly higher sequence
clustering thresholds to compensate for the “>" comparison used by
PSICOV. Precision values for the top-L, L = length of target protein,
contacts with separation range [j - i] > 4, where the Cp-C distance
(Ca-Ca for glycine) is less than 8A.
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