
FreeFlow: High Performance Container Networking

Tianlong Yu†, Shadi A. Noghabi♭, Shachar Raindel‡

Hongqiang Harry Liu‡, Jitu Padhye‡, Vyas Sekar†
†CMU, ‡Microsoft, ♭UIUC

Abstract— As the popularity of container technology grows,

many applications are being developed, deployed and man-

aged as groups of containers that communicate among each

other to deliver the desired service to users. However, cur-

rent container networking solutions have either poor perfor-

mance or poor portability, which undermines the advantages

of containerization. In this paper, we propose FreeFlow, a

container networking solution which achieves both high per-

formance and good portability. FreeFlow leverages two in-

sights: first, in most container deployments a central entity

(i.e. the orchestrator) exists that is fully aware of the loca-

tion of each container. Second, strict isolation is unnecessary

among containers belonging to the same application. Lever-

aging these two observations allows FreeFlow to use a vari-

ety of technologies such as shared memory and RDMA to

improve network performance (higher throughput, lower la-

tency, and less CPU overhead), while maintaining full porta-

bility – and do all this in a manner that is completely trans-

parent to application developers.

1 Introduction

The history of all hitherto computer science is

(often) the history of a struggle between isola-

tion, portability and performance.

(With apologies to Karl Marx.)

At the dawn of computing, applications had access to (and

had to manage) raw hardware. Applications were not portable

as they were tailored for specific platforms. Isolation be-

tween applications was non-existent as well. Operating sys-

tems emerged and offered a modicum of isolation and porta-

bility. As users demanded more portability and better isola-

tion across applications, OSes became more sophisticated,

and deep layering became the norm; the modern TCP/IP

stack is a classic example of layering. Layering improves

the application’s portability across systems and types of net-

works, but incurs well-known performance issues [37, 41].

Soon enough, solutions like DPDK [6] and RDMA [33] emerged
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotNets-XV, November 09 - 10, 2016, Atlanta, GA, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005756

that traded off some portability and isolation to provide bet-

ter performance. The trend continued with virtualization,

which offers even more isolation, and additional portability

(e.g., you can pack up and move VMs at will, even live-

migrate them). In return, performance – especially the net-

work performance is further reduced [26]. Numerous tech-

nologies have been proposed to remedy the situation (e.g., [6,

22, 26, 37]) – again at the cost of isolation and portability.

The latest step in this trend is containerization [1, 2, 5].

By wrapping a process together a complete filesystem and

namespace cell, a container has everything needed to run the

process, including executables, libraries and system tools.

A container has no external dependencies, which makes it

highly portable. The namespace of the container is isolated

from other containers, eliminating worries about naming and

version conflicts. For example, it is possible to run two con-

tainers as two web servers without introducing port conflicts

(port 80 or 443) on a bare-metal machine. Such portability

and independence significantly simplifies the life cycle of a

containerized application, from testing to high availability

maintenance.

overlay host shm

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

0

20

40

60

80

100

(a)

mem bw

overlay host shm

L
a

te
n

c
y
 (

u
s
)

0

500

1000

1500

(b)

27 0.37

Figure 1: Performance comparison of two modes of con-

tainer networking and shared memory IPC.

Unfortunately, containers too suffer the veritable curse of

having to sacrifice one or more of performance, isolation,

and portability. To understand these potential performance

bottlenecks, we conducted a simple experiment. We set up

two Docker containers on a single server1. We consider three

ways for the containers to communicate with each other: (1)

Shared Memory: This requires special setup2 to bypass the

namespace isolation, and offers the least isolation, and the

least portability; (2) Host mode: in which a container binds

an interface and a port on the host and uses the host’s IP to
1See Section 5 for HW and SW details
2We setup the shared memory data transfer through shared
memory object in a shared IPC namespace and measure the
time to pass the pointer and make one copy of the data.

43

HostOS Hypervisor

(a) same physical

machine

(b) different physical

machines

(c) same physical

machine, different VMs

(d) different physical

machines and VMs

Container
Physical

Machine

GuestOS

Figure 2: Representative running environments of containers.

communicate, like an ordinary process. Hence, containers

are not truly isolated as they must share the port space; and

(3) Overlay mode: in which the host runs a software router

which connects all containers on the host via a bridge net-

work. The software routers enable overlay routing across

multiple hosts to provide maximum portability as each con-

tainer can even have public IPs assigned.

Figure 1 is a telling demonstration of the fundamental tus-

sle between portability, isolation, and performance. We make

two observations from this figure. First, the throughput and

latency of host and overlay modes of inter-container com-

munication are significantly worse than the throughput and

latency of shared memory based communication. The reason

is obvious: both host and overlay modes require a “hairpin”

path through the full TCP/IP stack.

Second, the performance of overlay networking is worse

than host mode. The reason, again, is simple: in case of over-

lay networking, hairpinning happens twice, since the packets

must traverse through the software router as well. This fig-

ure thus clearly illustrates the performance cost of isolation

and portability.

As the popularity of container networking grows, this in-

efficiency must be addressed. On one hand, the low through-

put and high latency directly impacts the overall performance

of large scale distributed systems, such as big data analyt-

ics [8, 11, 12, 13], key-value stores [17], machine learning

frameworks [28], etc. On the other hand, it forces the appli-

cations to reserve substantial CPU resources to merely per-

form traffic processing, which significantly raises the cost of

running the applications.

One may argue that there is nothing new here: virtualiza-

tion suffers from similar inefficiencies and we know how to

address them using techniques like SR-IOV [22] and NetVM [26].

Unfortunately, these ideas cannot be directly applied to the

container world. SR-IOV typically scales to tens of VMs per

server. In typical deployments, there are hundreds of con-

tainers per server. The cost of supporting so many containers

in the NIC hardware will be prohibitive. NetVM [26] cannot

be applied to containers without destroying their portability,

because it requires two VMs to be on the same server.

In this paper we outline a solution, called FreeFlow to ad-

dress this issue. Our vision is to develop a container net-

working solution that provides high throughput, low latency

and negligible CPU overhead and fully preserves container

portability in a manner that is completely transparent to ap-

plication developers.

To achieve these seemingly conflicting goals, we observe

an opportunity to leverage two key aspects of typical con-

tainer deployments: (1) they are typically managed by a

central orchestrator (E.g., Mesos, YARN and Kubernetes [2,

24, 39]) and (2) they are typically deployed over managed

network fabrics (e.g., a public cloud provider). Taking ad-

vantage of these easily available additional bits of informa-

tion, we sketch a roadmap of an overlay-based solution that

obtains the relevant deployment-specific information from

the aforementioned container orchestrator and fabric man-

ager and use this in conjunction with the "right" I/O mech-

anism (e.g., shared memory when containers are co-located,

vs. RDMA when they are not).

While this sounds conceptually simple, there are several

architectural and system design challenges in realizing this

vision in practice. In the rest of the paper, we discuss these

challenges and sketch a preliminary design. We will also

present results from an early prototype.

2 Background

Container technology has gain tremendous popularity [15,

16, 27] since it enables a fast and easy way to package, dis-

tribute and deploy applications and services.

Containers are essentially processes, but they use mecha-

nisms as chroot [19] to provide namespace isolation. The

dependencies of containerized applications are bundled to-

gether with the application, making them highly portable:

they can be easily distributed and deployed [1]. Compared

to VMs, containers are much more lightweight and can be

initialized much faster [31, 34]. Containers can be deployed

both within a VM or on bare metal and are supported by

both Linux and Windows operating system. Docker [1] is

perhaps the most popular container management system, al-

though there are many others as well [2, 5].

Most containerized applications are usually composed of

multiple containers. For example, each mapper and reducer

node in Hadoop [4] is an individual container. A modern

web service with multiple layers (load balancers, web servers,

in-memory caches and backend databases) is deployed with

multiple containers in each layer. These containers are usu-

ally deployed into a multi-host server cluster, and the de-

ployment is often controlled by a cluster orchestrator, e.g.

Mesos [24] or Kubernetes [2]. Such an architecture makes

it easier to upgrade the nodes or mitigate failures, since a

stopped container can be quickly replaced by a new one on

the same or a different host. Working as a single applica-

44

Bandwidth Cap(Gb/s)
0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

0

20

40

60

80

100 100%

0%

C
P

U
 (

%
)

(b) overlay

sender cpu
receiver cpu
throughput

Bandwidth Cap(Gb/s)
0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

0

20

40

60

80

100 100%

0%

C
P

U
 (

%
)

(a) host

sender cpu
receiver cpu
throughput

Figure 3: CPU limits overlay networking throughput.

tion, containers need to exchange data, and the network per-

formance has a significant impact on the overall application

performance [8, 11, 12, 13].

Depending on whether containers run on bare-metal hosts

or VM hosts, there are four cases any container networking

solution must handle. These cases are illustrated in Figure 2.

For maximum portability, containers today often use overlay

networks. A number of software solutions are available to

provide overlay fabrics, such as Weave [7] and Calico [3].

In these solutions, the host (i.e., the server or the VM) runs

the software router which connects to the NIC of the host

and to the virtual interfaces of the containers on the host

via a software bridge. The router also performs appropriate

tunneling (encapsulation and decapsulation) to move traffic

between the physical network and the overlay fabric. The

router uses standard networking protocols like BGP to con-

nect with software routers on other hosts. Containers send

and receive IP packets via this overlay, and hence are agnos-

tic to locations of other containers they are communicating

with.

The CPU overhead of processing packets in the software

bridge, as well as in the software router (for off-host com-

munication) is the primary performance bottleneck in over-

lay networks, as illustrated in Figure 3. This figure shows

throughput and CPU utilization of two containers, running

iPerf3. For Figure 3(a), the containers were on the same

server, communicating via host mode. For Figure 3(b), the

containers were on different servers, connected via overlay

routing using Weave [7]. We vary the iPerf traffic generation

rate, and plot the achieved throughput and corresponding

CPU utilization. We see that in host mode, the throughput

tops off at 30Gbps, while in overlay mode it is just 20Gbps.

In both cases, the CPU is the bottleneck – the sender and the

receiver CPUs are fully utilized.

3 Overview

In this section, we discuss the overall architecture of FreeFlow,

and discuss the key insights that enable FreeFlow to achieve a

high network performance without sacrificing portability of

containers.

3.1 High network performance without sacri-
ficing portability

Container deployments opt for overlay-based networking since

it is most portable: a container does not have to worry about

where the other endpoint is. For example, in Figure 4(a),

Container 1 and Container 3 cannot distinguish whether Con-

tainer 2 is on Host 1 or Host 2, as long as Container 2 keeps

its overlay IP address (2.2.2.2) and the overlay routers know

how to route packets to this IP.

Existing overlay-based container networks sacrifice per-

formance for good portability, because traffic needs to go

through a deep software stack, as shown in Figure 4(a). The

key to achieve high performance and low overhead overlay

network for containers is to avoid, in the data-plane, any per-

formance bottlenecks such as bridges, software routers and

host OS kernel. Given that containers are essentially pro-

cesses, the communication channels provided by host-based

IPC and hardware offloaded network transports (RDMA) give

us numerous options to build a better container network. For

instance, containers within a single host, like Container 1

and Container 2 in Figure 4(a), can communicate via a shared-

memory channel, and overlay routers in different hosts can

talk via RDMA (or DPDK) to bypass the performance bot-

tlenecks. Note that communication paradigms like shared-

memory and RDMA partially sacrifice the isolation of con-

tainers. However, since in most cases containers that com-

municate with each other are part of the same larger, dis-

tributed application deployed by a single tenant, we believe

that that trading off a little isolation for a large boost in per-

formance is acceptable. We will discuss security implica-

tions of our design in more details later in the paper.

Generally, one container should decide how to communi-

cate with another according to the latter’s location, using the

optimal transport for high networking performance. There

are two issues to realize this key idea: (1) How to discover

the real-time locations of containers; (2) How to enable con-

tainers to use different mechanisms to communicate with

different peers.

One way is to solve these two issues is to depend on con-

tainerized applications themselves: the applications can dis-

cover and exchange location information and agree on a com-

munication mechanism to use. This method requires appli-

cations to do extra work (and the code can become quite

complicated, as the programmer deals with different com-

munication methods), and hence is undesirable.

Instead, we take an alternative approach: using a (con-

ceptually) centralized orchestrator to decide how containers

should communicate, and keeping the container locations

and the actual communication mechanisms transparent to

containerized applications. Our key insight is that since cur-

rently most of the container clusters are managed by a cen-

tralized cluster orchestrator (e.g., Mesos, Kubernetes, and

Docker Swarm)3, the information about the location of the

other endpoints can be easily obtained by querying the or-

chestrator. By leveraging this information, we can choose

the right communication paradigm for the specific scenario.

Furthermore, all of the complexity of communication mech-

3They can easily be deployed on private bare-metal clusters
or cloud VM clusters without any special supports from cloud
providers.

45

Overlay Router

Container1

IP: 1.1.1.1

Host1

Host Network

TCP/IP Stack

vNIC

NetAPI

Application

NetLib

Container2

IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3

IP: 3.3.3.3

Host2

Host OS

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container1

IP: 1.1.1.1

Host1

Host Network

vNIC

NetAPI

Application

NetLib

Container2

IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3

IP: 3.3.3.3

Host2

vNIC

NetAPI

Application

NetLib

PhyNIC

RDMA, DPDK, etc.

(a) Legacy Overlay Containers Networks (b) FreeFlow

Network Orchestrator

co
n

ta
in

e
r

lo
ca

ti
o

n
s

shm-obj

IPC shared-

mem space

Figure 4: The overall system architecture of existing overlay network and FreeFlow. Gray boxes are building blocks

of FreeFlow.

anism selection and execution can be hidden from the ap-

plication by bundling it into a customized network library

supporting standard network APIs. Next, we sketch the ar-

chitecture of our solution.

3.2 The architecture of FreeFlow

Figure 4(a) shows the architecture of existing overlay net-

working solutions for containers. Each container has a vir-

tual NIC that is attached to the overlay router of the host via

a software bridge. Different overlay routers exchange rout-

ing information and build routing tables via standard rout-

ing protocols, such as BGP. The fabric built by virtual NICs,

bridges, overlay routers, physical NICs and the host network

is the actual data-plane for packets traversing the overlay

from container to another one. Inside each container, ap-

plications use standard network APIs to access the network.

The API calls are implemented in network libraries, such

as glibc for Socket API, and libibverbs for RDMA

Verbs API.

FreeFlow reuses many control-plane features like IP alloca-

tion and routing implemented by existing solutions such as

Weave. However, FreeFlow modifies multiple existing mod-

ules in the networking stack to achieve a smarter and more

efficient data-plane.

Figure 4(b) shows the overall architecture of FreeFlow. The

gray boxes in Figure 4(b) represent the three key building

blocks of FreeFlow: customized network library, customized

overlay router and customized orchestrator.

FreeFlow’s network library is the core component which

decides which communication paradigm to use. It supports

standard network programming APIs, e.g. Socket for TCP/IP,

MPI and Verbs for RDMA, etc. It queries the network or-

chestrator for the location of the container it wishes to com-

municate with. Whenever possible, it uses shared memory

to communicate with the other container, bypassing overlay

router. FreeFlow’s overlay routers are based on existing over-

lay routers. We add two new features: (1) the traffic between

routers and its local containers goes through shared-memory

instead of software bridge; and (2) the traffic between differ-

ent routers is delivered via kernel bypassing techniques, e.g.

RDMA or DPDK, if the hardware on the hosts is capable.

Network orchestrator keeps track of the realtime locations of

each container in the cluster. Our solution extends existing

network orchestration solutions, and allows FreeFlow’s net-

work library to query for the physical deployment location

of each container.

The architecture enables the possibility to make traffic among

containers flow through an efficient data-plane: shared-memory

for intra-host cases and shared-memory plus kernel bypass-

ing networking for inter-host cases.

However, we have two challenges to achieve FreeFlow’s

simple vision. First, the network library of FreeFlow should

naturally support multiple standard network APIs for trans-

parency and backward compatibility. Second, for inter-host

cases, overlay routers should connect the shared-memory

channel with local containers and the kernel bypassing chan-

nel between physical NICs to avoid overhead caused by mem-

ory copying. In next section, we discuss how FreeFlow ad-

dresses these challenges.

4 Design

This section presents the designs of FreeFlow’s major compo-

nents.

4.1 The network library of FreeFlow

The network library of FreeFlow is the key component which

makes the actual communication paradigm transparent to ap-

plications in the containers. It has two goals: (1) support-

ing most common network APIs, such as Socket (TCP/IP),

Verbs (RDMA), MPI (parallel computing) and so on; and

(2) selecting the most efficient communication paradigm no

matter which network API is used.

One straightforward way to build the network library is to

develop several independent libraries each of which deals

46

RDMA Verbs Library (FreeFlow version)

Socket over RDMA

Socket API RDMA API

MPI over RDMA

MPI

Data in Shared Memory
Sharing with overlay

router (inter-host)

Sharing with other

container (intra-host)

NetLib

Figure 5: The internal structure of FreeFlow’s network

library. The gray box is built by FreeFlow.

Overlay Router

NetLib

Overlay Router

NetLib

(1) sharing data (2) send(dataPtr,

length, dstAddr)

(3) finding next

hop to dstAddr

(5) receive(&dataPtr,

&length, &srcAddr)

(4) RDMA Write data to

remote overlay router

Host 1 Host 2

Figure 6: The working flow of sending data from one

host to another via overlay routers in FreeFlow.

with a specific network API. For instance, we extend the

socket implementation of glibc for supporting Socket API

and design a new libibverbs for RDMA Verbs API. How-

ever, writing different libraries is clearly suboptimal. In-

stead, as shown in Figure 5, we merely develop a new li-

brary for RDMA API, and use existing “translation” libraries

such as [9, 18, 23, 30] to support socket and MPI APIs atop

the RDMA API. Note that we could have made the choice

the other way as well: e.g. support socket API natively and

use translation libraries to support other APIs atop it. We

chose RDMA API as our primary interface, since it provides

a message-oriented interface that maps naturally to the com-

munication patterns of many containerized applications. The

TCP/IP sockets interface can be easily implemented over

RDMA [21].

After the network library receives calls to send data to an-

other container, it first checks (from the network orchestra-

tor) the receiver container’s location. If the container is on

the same host, it will put the data into a shared memory block

and send the pointer of the memory block to the receiver’s

network library module. The latter will use correct API se-

mantics to notify the application on the receiver container

that the data is ready to read. Otherwise, if the receiver con-

tainer is on a different host, the network library will share

the data with the overlay router on the same host, and tell

the overlay router to send the data to the receiver container’s

IP. Then it relies on the overlay routers to deliver the data to

the destination.

4.2 The overlay router of FreeFlow

Overlay router has functionalities in both control-plane and

data-plane. In control-plane, it allocates IP addresses for

new containers according to default or manually configured

policies. It also exchanges routing information and compute

routes to all containers in the cluster. FreeFlow inherits the

control-plane behaviors from existing overlay network solu-

tions.

In the data-plane, FreeFlow has its own implementation to

make the data transfer more efficient. Figure 6 shows an ex-

ample of how overlay routers deliver data from a sender con-

tainer to a receiver container. As described in §4.1, the net-

work library in the sender container will share the data with

its local overlay router (Step 1) if the former finds that the

receiver is on another host. After that, the network library

will tell the overlay router to send the data to the receiver’s

IP address (Step 2). The overlay router will check its routing

table to find the next hop router towards the receiver (Step 3)

and (Step 4) it writes the data to the next hop overlay router

via RDMA (or DPDK, if available). If RDMA or DPDK are

not available, normal IP communication is used. If the next

hop router finds the receiver is on its host, it will share the

received data with the network library on the same host and

notify the latter that the data is ready to fetch (Step 5).

Note that in this design, there is only one time data copy

from one host to another host, which is unavoidable. The

communications between network library and overlay router

on the same host are all performed via shared-memory.

4.3 The network orchestrator

The main functionality of the network orchestrator is to main-

tain the real-time information of container locations and VM

locations (if needed). Since containers are typically started

and managed by a cluster orchestrator (e.g. Mesos), the

container to host mapping can be easily accessed from the

cluster orchestrator. FreeFlow only adds a small module into

existing clusters orchestrator to allow the network library

modules to query the container-to-host mapping. Note that

the orchestrator can either push the mappings to network li-

braries, or the libraries can pull it. The two choices have

different scalability implications. We are investigating this

tradeoff in the further.

5 Preliminary Implementation

We have implemented a prototype of FreeFlow on a testbed of

clustered bare-metal machines (Intel Xeon E5-2609 2.40GHz

4-cores CPU, 67 GB RAM, 40Gbps Mellanox CX3 NIC,

CentOS 7). The prototype selects the most efficient data-

plane mechanism based on the location of two containers:

if the two containers are intra-host, shared-memory mecha-

nism will be selected for data transfer, and if the two contain-

ers are inter-host, RDMA will be selected. We implemented

the shared-memory via multiplexing IPC namespace, and

enabled containers to use RDMA by using the host mode.

We evaluated our prototype and compare it with state-of-

the-art container overlay network - Weave, which is using

socket communication. The results are shown in Figure 7.

We see that the FreeFlow prototype achieves higher through-

put and lower latency. The CPU utilization per bit/second

is also significantly lower for FreeFlow compared to that of

47

Weave. This is because our prototype always selects the

most efficient communication mechanism in different set-

tings – for intra-host, our prototype chose shared memory;

and for inter-host, our prototype chose RDMA.

weave proto

T
h
ro

u
g
h
p
u
t
(G

b
/s

)

0

50

100

weave proto
L

a
te

n
c
y
 (

u
s
)

0

500

1000

1500

0.37

weave proto

T
h
ro

u
g
h
p
u
t
(G

b
/s

)

0

10

20

30

40

1.31

weave proto

L
a

te
n

c
y
 (

u
s
)

0

500

1000

1500

1.33

(a) Intra-host

(b) Inter-host

Figure 7: Compare FreeFlow prototype with weave.

6 Related Work

Inter-VM Communication: The tussle between isolation

and performance is not unique to containers. The issue has

also been studied in the context of Inter-VM Communica-

tion. For example, NetVM [26] provides a shared-memory

framework that exploits the DPDK library to provide zero-

copy delivery between VMs. Netmap [37] and VALE [38]

(which is also used by ClickOS [32]) are sharing buffers and

metadata between kernel and userspace to eliminate mem-

ory copies. However, these systems cannot be directly used

in containerized setting. For example, the NetVM work is

applicable only to intra-host setting, constrained by the pos-

sibility of shared memory. It does not handle inter-host com-

munication. Similarly, the Netmap and VALE solutions are

sub-optimal when the VMs/containers are located on the same

physical machine: shared memory provides a much more ef-

ficient communication mechanism.

RDMA and HPC: RDMA originated from the HPC world,

in the form of InfiniBand. The HPC community proposed

RDMA enablement solutions for virtualization [36] and con-

tainerization [29] technologies. These solutions are address-

ing the challenges in exposing RDMA interfaces to virtual-

ized/containerized applications, treating each VM/container

as if it resides on a different node.

The HPC community has also been using shared-memory

based communication [20, 25, 35] for intra-node communi-

cation. These solutions are targeting MPI processes resid-

ing on a shared non-containerized, non-virtualized machine.

They do not attempt to pierce the virtualization/containerization

for additional performance.

The same concepts described for FreeFlow can also be ap-

plicable for MPI run-time libraries. This can be achieved ei-

ther by layering the MPI implementation on top of FreeFlow,

or by implementing a similar solution in the MPI run-time

library.

General improvements: A significant amount of work

has been spent attempting to improve the performance of the

networking stack [10, 18, 40] in various scenarios. How-

ever, none of them were aiming at optimizing the perfor-

mance of networking communications between co-residing

containers. While the performance of intra-node communi-

cation for containers was identified as relevant before [14],

to our knowledge there was no attempt at addressing this

challenge.

7 Conclusion and Discussion

In this paper, we discussed how to build a network solution

for containers, named FreeFlow. It offers high performance,

good portability and acceptable isolation. We sketched the

design of FreeFlow which enables containers to communi-

cate with the most efficient way according to their locations

and hardware capabilities and keeps the decisions transpar-

ent to applications in containers. We are currently building

FreeFlow, and we list a few important considerations below.

Live migration: FreeFlow could be a key enabler for con-

tainers to achieve both high-performance and capability for

live migration. It will require the network library to interact

with the orchestrator more frequently, and may require main-

taining additional per-connection state within the library. We

are currently investigating this further.

Security and middle-box: One valid concern for FreeFlow

is how legacy middle-boxes will work for communication

via shared-memory or RDMA, and whether security will be

broken by using shared-memory or RDMA. We do not yet

have complete answer to this issue. We envision that for

security, FreeFlow would only allow shared-memory among

trusted containers, for example, container belongs to the same

vendor (e.g., running spark or storm). We are investigating

how best to support existing middle-boxes (e.g. IDS/IPS)

under FreeFlow.

VM environment: So far our evaluation and prototype is

based on containers running on bare-metal. But our design

easily generalizes to containers deployed inside VMs. Some

issues, such as efficient inter-VM communication (perhaps

using NetVM [26]) need to be addressed, but we believe that

it can be easily done within the context of FreeFlow design.

Scalability of FreeFlow: Scalability of FreeFlow is a major

focus of our ongoing work. The design proposed in §4 has

a few potential scalability challenges. For example, overlay

routers in FreeFlow may end up having to maintain per-flow

state if they communicate with co-located containers using

shared memory and with remote routers using RDMA – if

done näively, the router may end up maintaining one queue

pair for each pair of communicating containers. To solve

this problem, we need to to multiplex a single queue pair on

overlay routers for multiple container sessions.

48

Acknowledgments

This work was supported in part by NSF award number CNS-

1440056.

8 References

[1] Docker. http://www.docker.com/.

[2] Kubernetes. http://kubernetes.io/.

[3] Project calico. https://www.projectcalico.org/.

[4] Apache Hadoop. http://hadoop.apache.org/, accessed 2016.

[5] CoreOS. https://coreos.com/, accessed 2016.

[6] Data plane development kit (DPDK). http://dpdk.org/, accessed 2016.

[7] Weave Net. https://www.weave.works/, accessed 2016.

[8] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris. Reining in the outliers in map-reduce clusters using mantri. In
USENIX OSDI, 2010.

[9] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K.
Panda. Sockets direct protocol over infiniband in clusters: is it beneficial? In
IEEE ISPASS, 2004.

[10] J. Brandeburg. Reducing network latency in linux. In Linux Plumbers

Conference, 2012.

[11] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior
knowledge. In ACM SIGCOMM, 2015.

[12] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing data
transfers in computer clusters with orchestra. In ACM SIGCOMM, 2011.

[13] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys.
In ACM SIGCOMM, 2014.

[14] J. Claassen, R. Koning, and P. Grosso. Linux containers networking:
Performance and scalability of kernel modules. In IEEE/IFIP NOMS, 2016.

[15] Datadog. 8 suprising facts about real Docker adoption.
https://www.datadoghq.com/docker-adoption/, 2016.

[16] Docker. Docker community passes two billion pulls.
https://blog.docker.com/2016/02/docker-hub-two-billion-pulls/, 2016.

[17] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm: fast remote
memory. In USENIX NSDI, 2014.

[18] M. Fox, C. Kassimis, and J. Stevens. IBM’s Shared Memory Communications
over RDMA (SMC-R) Protocol. RFC 7609 (Informational), 2015.

[19] FreeBDS. chroot – FreeBDS Man Pages. http://www.freebsd.org/cgi/man.cgi,
FreeBDS 10.3 Rel.

[20] B. Goglin and S. Moreaud. Knem: A generic and scalable kernel-assisted
intra-node MPI communication framework. Journal of Parallel and Distributed

Computing, 73(2), 2013.

[21] D. Goldenberg, M. Kagan, R. Ravid, and M. S. Tsirkin. Zero copy sockets
direct protocol over infiniband-preliminary implementation and performance
analysis. In 13th Symposium on High Performance Interconnects (HOTI’05),
pages 128–137. IEEE, 2005.

[22] P. S. I. Group. Single root I/O virtualization.
http://pcisig.com/specifications/iov/single_root/, accessed 2016.

[23] S. Hefty. Rsockets. In OpenFabris International Workshop, 2012.

[24] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing
in the data center. In USENIX NSDI, 2011.

[25] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. D.
Gropp, V. Kale, and R. Thakur. Mpi + mpi: A new hybrid approach to parallel
programming with mpi plus shared memory. Computing, 95, 2013.

[26] J. Hwang, K. Ramakrishnan, and T. Wood. Netvm: high performance and
flexible networking using virtualization on commodity platforms. IEEE

Transactions on Network and Service Management, 12(1), 2015.

[27] Iron.io. Docker in production – what we’ve learned launching over 300 million
containers. https://www.iron.io/docker-in-production-what-weve-learned/,
2014.

[28] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient
distributed machine learning with the parameter server. In Advances in Neural

Information Processing Systems, 2014.

[29] L. Liss. Containing RDMA and high performance computing. In
ContainerCon, 2015.

[30] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-based MPI
implementation over infiniband. International Journal of Parallel

Programming, 32(3), 2004.

[31] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, et al. Jitsu:
Just-in-time summoning of unikernels. In USENIX NSDI, 2015.

[32] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. Clickos and the art of network function virtualization. In USENIX

NSDI, 2014.

[33] Mellanox. RDMA aware networks programming user manual.

http://www.mellanox.com/, Rev 1.7.

[34] D. Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), 2014.

[35] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes. In Euromicro International

Conference on Parallel, Distributed and Network-based Processing, 2009.

[36] A. Ranadive and B. Davda. Toward a paravirtual vRDMA device for VMware
ESXi guests. VMware Technical Journal, Winter 2012, 1(2), 2012.

[37] L. Rizzo. Netmap: a novel framework for fast packet i/o. In USENIX Security

Symposium, 2012.

[38] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual machines. In ACM

CoNEXT, 2012.

[39] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, et al. Apache hadoop
yarn: Yet another resource negotiator. In ACM Symposium on Cloud

Computing, 2013.

[40] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: A transparent high
performance inter-vm network loopback. In ACM HPDC, 2008.

[41] Y. Zhu, H. Eran, D. Firestone, C. Guo, et al. Congestion control for large-scale
RDMA deployments. In ACM SIGCOMM, volume 45, 2015.

49

