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Widely used methods for phylogenetic inference, both those that require and those 

that produce alignments, share certain weaknesses. These weaknesses are discussed, 

and a method that lacks them is introduced. For each pair of sequences in the data 

set, the method utilizes both insertion-deletion and amino acid replacement infor- 

mation to estimate a pairwise evolutionary distance. It is also possible to allow 

regional heterogeneity of replacement rates. Because a likelihood framework is 

adopted, the standard deviation of each pairwise distance can be estimated. The 

distance matrix and standard error estimates are used to infer a phylogenetic tree. 

As an example, this method is used on 10 widely diverged sequences of the second 

largest RNA polymerase subunit. A pseudo-bootstrap technique is devised to assess 

the validity of the inferred phylogenetic tree. 

Introduction 

DNA and protein sequences contain valuable phylogenetic information. A pleth- 

ora of methods for extracting this information exist. Most require sequence alignment 

and do not utilize insertion-deletion information effectively. Detailed introductions 

to techniques for phylogenetic reconstruction from aligned sequences can be found 

in reports by Felsenstein ( 1988) and Swofford and Olsen ( 1990). Unfortunately, the 

correct alignment for a set of DNA or protein sequences is usually unknown. The tree 

topology inferred by alignment-requiring methods is dependent on the quality of the 

alignment. When several insertions and deletions have occurred, techniques that require 

an alignment are subject to error; a flawed alignment can lead to flawed conclusions 

about evolutionary history. Lake ( 199 1) has described a case where the most strongly 

supported tree topology depends critically on the alignment. 

With the exception of Sankoff and his colleagues (e.g., see Sankoff et al. 1973, 

1976; Sankoff 1975), the relationship between alignments and phylogenies has been 

ignored until recently. In the past decade, several methods have been introduced that 

simultaneously infer the phylogeny and an alignment that reflects the phylogeny (e.g., 

see Feng and Doolittle 1987; Konings et al. 1987; Higgins and Sharp 1989; Hein 

1990). Because an alignment is designed to represent the evolutionary correspondence 

between sequences, it is desirable for alignment inference to reflect the fact that se- 

quences are related via an evolutionary tree. 
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Alignment-free Phylogenies 1149 

Although alignment-producing methods are superior in some respects to align- 
ment-requiring methods, all alignment-producing methods share several flaws. For 

example, it is difficult to determine the statistical validity of tree topologies inferred 

by alignment-producing approaches. For methods that require aligned sequences, the 

bootstrap resampling procedure (Felsenstein 1985 ) is available, but it has not been 

successfully extended to procedures that simultaneously align sequences and reconstruct 

the phylogeny. Alignment-producing methods create alignments with a built-in phy- 

logenetic structure. These alignments should not be used as the input for alignment- 

requiring methods. An alignment inferred by aligning according to a specific tree 

topology will be biased in favor of that topology. When the bootstrap is applied to 

such an alignment, the result can be an artificially high level of confidence in the tree 

topology that produced the alignment. 

As an illustration, consider four distantly related DNA sequences of the gene for 

the ribulose biphosphate carboxylase large subunit ( rbcL). The alignment-producing 

method implemented in the program Treealign (Hein 1990) allows the user to specify 

which tree topology will guide alignment inference. This program was used to produce 

three alignments between the four rbcL sequences; each alignment was guided by one 

of the three possible unrooted topologies. 

The treatment of gaps is one problem that can arise when alignment-requiring 

methods are used. In this analysis, gaps were treated as missing data. In other words, 

a gap position was treated as a nucleotide of unknown type. Each alignment was 

analyzed by a parsimony and a maximum-likelihood alignment-requiring method. 

Bootstrap analyses were performed to assess the support for the phylogenetic inference. 

The phylogenetic structure imposed by the alignment procedure affected inferences 

made by the alignment-requiring methods. The results of the alignment-requiring 

analyses were dependent on the alignment (table 1). The bootstrap frequency of a 

Table 1 

Phylogenetic Bias That Alignments Can Contain 

MOST PARSIMONIOUS No. OF SUBSTITUTIONS (bootstrap frequencya)/ 

MAXIMUM LOG LIKELIHCOD (bootstrap frequency”), 

FOR INDICATED TOPOLOGY 

TOPOLOGY USED TO [(Alcal, Chrom), [(Alcal, Nicot), [(Alcal, Crypt), 

GUIDE ALIGNMENT (Crypt, Nicot)] (Chrom, Crypt11 (Chrom, Nicot)] 

[(Alcal, Chrom), 1,309 (0.922)/ 1,40 1 (O.OOO)/ 1,328 (0.078)/ 

(Crypt, Nicot)] -6,452.3 (0.596) -6,499.5 (0.000) -6,456.9 (0.404) 

[(Alcal, Nicot), 1,327 (0.863)/ 1,381 (O.OOO)/ 1,341 (0.137)/ 

(Chroma, Crypt)] -6,503.6 (0.040) -6,s 15.3 (0.000) -6,480.9 (0.960) 

[(Alcal, Crypt), 1,341 (0.104)/ 1,422 (O.OOO)/ 1,323 (0.896)/ 

(Chroma, Nicot)] -6,502.4 (0.001) -6,522.7 (0.000) -6,429.8 (0.999) 

NOTE.-The program Treealign was used to infer three alignments between four rbcL sequences. The sequences Alcal, 

Chrom, Crypt, and Nicot are from Nicoriana tabacum (Shinozaki and Sugiura 1982), Aicaligenes eumphus (Andenen and 

Caton 1987), Crypfomonas phi (Douglas et al. 1990), and Chromalium vinosum (Viale et al. 1989), respectively. Each 

alignment was produced by using one of the three possible unrooted topologies as a guide. The default Treealign penalties 

were used. The penalties are as follows: 2 for transitions, 5 for tramversions, and 8 + 3k for a gap of length k nucleotides. 

Version 3.4 of the PHYLIP computer package was used to perform both a parsimony analysis and a likelihood analysis of 

the three alignments. The rows of the table contain results from the analysis of a specific alignment. 

’ Calculated by analyzing 1,000 resampled data sets. 
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I 150 Thorne and Kishino 

topology is influenced by whether that topology was used to guide the alignment. The 

magnitude of the alignment effect is large; it reveals the weakness of aligning according 

to a tree and then using an alignment-requiring method. 

These four rbcL sequences were selected because they are highly diverged. If these 

sequences had been more closely related, the effect of alignments on topology inference 

would probably have been smaller. It is not clear how closely related a group of se- 

quences must be to negate the effect of alignment artifacts on phylogeny inference. 

Also, the Treealign program was not designed to be-and has not been described 

by its author as-a tool for producing an alignment that can be analyzed by alignment- 

requiring methods. It can simultaneously align sequences and infer their phylogeny 

but cannot provide confidence statements about the phylogeny. The output alignments 

from this and similar programs have been misused by researchers who desire both 

estimates of the phylogeny and bootstrap frequencies. Treealign is not alone in pro- 

ducing phylogenetically biased alignments. Other programs that simultaneously align 

sequences and infer phylogenies also do so. 

Another weakness of alignment-producing methods involves the weighting of 

gaps in the alignment, versus the weighting of substitutions. Different relative weights 

will affect alignment inference and, presumably, phylogenetic reconstruction. It is 

difficult to choose appropriate weights. Widely used implementations of alignment- 

producing methods use weights chosen arbitrarily rather than objectively; the relative 

weights are fixed rather than adapted to the data being analyzed. 

In our opinion, the greatest weakness of methods that simultaneously align se- 

quences and reconstruct the phylogeny is shared with methods that require the align- 

ment to be given. Both classes of methods use only a single alignment for phylogenetic 

reconstruction. Ideally, all alignments possible for a set of sequences would contribute 

to a phylogenetic inference. It is important to consider alternative alignments, because 

the best single alignment may be misleading. For example, the most probable single 

alignment between distantly related sequences typically contains fewer gaps than the 

true alignment (fig. 1). 

In a report by Thorne et al. ( 199 1)) an evolutionary process that allows insertions 

and deletions as well as substitutions was studied. A method was developed that allows 

all possible alignments between a pair of sequences to contribute to evolutionary 

parameter estimates. This method was compared with one that allows only a single 

maximum-likelihood alignment to contribute to estimates. For the method that con- 

siders only a single alignment, estimates of substitution amounts were positively biased, 

and estimates of indel amounts were negatively biased. This was not true for the 

former method; it was more accurate and less biased. For pairs of highly diverged 

sequences, the superiority of the former method was especially obvious. This implies 

that phylogenetic inferences based on a single multiple-sequence alignment of a set 

of highly diverged sequences might also be severely biased. This bias may lead to an 

error in the inference of evolutionary tree topology. 

In the present report, we present a distance-based method for phylogenetic in- 

ference, a method that is immune to most of the alignment-induced problems of 

phylogenetic inference. Our method is presented in terms of protein sequences, but 

it is easily modified to DNA sequence analysis. It involves obtaining a maximum- 

likelihood estimate of evolutionary distance between each pair of sequences. All possible 

pairwise alignments make a contribution to an evolutionary distance estimate. After 

the distance estimates are found, the phylogeny is inferred by minimizing a weighted 
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Alignment-free Phylogenies 115 1 

A: 

TGAGACCAGACCT--CTATGTAGGTTCAGGCTAATACTTCC~CG~~GACAA 

TAGTACCGGCCATTT09TTCGAGTTCGAGGTTTATAGTAC----CGGTG 

CATGAGTGATAGAACAAACA----------CTACAAC-CT 

CT--TGGCATATATCAAGCAAGACCGGGCGAAGCTGGT-----AG 

GGAGCAAGATGGTCTAT~GTGGTCTTGGTTTCTGAGACT 

GAGAGAACAl-GGGCAAGTTGCCGTG’TCG--T!ICCCAGTl’TAGGTCGM#iAGAAAAGTGGATGGCATTCGATA- 

GCCAATCGTTGGGGGTGTCACTCGGCA-TAGCATGTC----------GGCTTCCAG 

------AGTCA------TAAA----TCATCTTGACGGAATCCTAGAGTGGGGTCCAC 

B: 

ACCGGTACCTGATGCCG----ATTCGTCTCAn;CTTTATnTA-GAACGTGAACATAACA 

--CGGGCCCAGTTACCGAAACACTCTGCAATGCCCACGTTGG 

G--ACCTCTATGTAGGTTCAGGCTAATACTTCCTCCGGGGGAC~TACG~CCCGGTCCA~AG~A 

GCCATTTCA’ITCGAGTTCGAGGTTTATAGTACCCCTGTT----CGGTGCTT--GGCA 

TAGAACAAACACTAC-----------AACCTGGTGGTGTAGCTAGGC~GA~ACTACG~~GC~GAT 

TATATCAAGCAAGACCGGGCGTGACGAAGCTGGTAGTGTA-----GGAGAGAACAT 

GGTCTATTTGTGGTCTTGGTTTCTGAGACTGCATCGACAAG 

GGGCAAGTTGCCGTGTCG--TTCCCAGITTAGGTCGAAAAGTGGATGGCATTCGATAA 

GGGGTGTCAACTCGGCATAGCATGTCGGCTTCCAG 

------TCTTGACGGAATCCTAGAGTGGGGTCCAC 

FIG. I.-Comparison between a true alignment and an optimal alignment. The insertion-deletion 

model of Thorne et al. ( 1992) and the substitution model of Jukes and Cantor ( 1969) were used to evolve 

a descendant DNA sequence from an ancestral sequence. The expected number of nucleotide substitutions 

per alignment position was 0.75. The insertion-deletion parameters (defined in the subsection entitled “The 

Insertion-Deletion Model”) were r = 0.67 and pt = 0.1. The simulation was designed so that the ancestral 

sequence would have an expected length of 270 nucleotides. A, True alignment between the ancestral and 

descendant sequences. B, Maximum-likelihood alignment between the ancestral and descendant sequences. 

least-squares criterion. To assess the accuracy of the inference, we present a pseudo- 

bootstrap technique. 

The pair-wise nature of our method is a limitation. It cannot extract all of the 

evolutionary information in a multiple-sequence alignment. A more powerful method 

would allow all or at least a large representative sample of the possible multiple- 

sequence alignments to contribute to phylogenetic inference. Until such a method is 

computationally feasible, we believe a conservative approach is warranted when an- 

alyzing distantly related sequences. Our approach is conservative; when it does find 

strong support for an evolutionary hypothesis, one does not need to wonder whether 

the support is simply an artifact of the method. 

The Evolutionary Model 

Maximum-likelihood estimation of pairwise distances requires a model of se- 

quence evolution. The evolutionary model presented here allows amino acid replace- 

ments as well as insertions and deletions. A weakness of this model is that evolution 

is assumed to operate directly at the amino acid level and not at the level of the 

underlying nucleotide code. The probability that one type of amino acid is replaced 
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1152 Thorne and Kishino 

by another should depend not only on the two amino acid types but also on the specific 

nucleotide triplet that codes for the original amino acid. Furthermore, an ideal evo- 

lutionary model would not ignore frameshift mutations or the existence and evolution 

of introns. 

Amino Acid Replacement Model 

The amino acid replacement process is assumed to be Markovian. Let Ri be the 

equilibrium probability (i.e., the frequency) of amino acid type i, and let Pt(j I i) be 

the probability that a sequence position occupied by an amino acid of type i is occupied 

by an amino acid of typej after an amount of evolution equal to t . A reversible amino 

acid replacement model is a model for which 

for all amino acid types i and j. Any reversible amino acid replacement model could 

be adopted for the estimation of pairwise distances from nonaligned sequences. In the 

present report, the empirical amino acid transition matrix of Dayhoff et al. ( 1978) is 

adopted. 

The mathematical aspects of this model have been explained elsewhere (e.g., see 

Dayhoff et al. 1978; Kishino et al. 1990; but, for criticism of the Dayhoff et al. model, 

also see Wilbur 1985). To construct the empirical transition matrix, Dayhoff et al. 

( 1978) collected sets of easily aligned (i.e., closely related) sequences. Only closely 

related sequences were considered, because, when evolutionary distance is sufficiently 

small, the possibility of multiple replacements can be ignored. The observed replace- 

ment patterns were used to construct an amino acid transition matrix. 

The Dayhoff et al. model measures evolutionary distance in units called “PAMs” 

(accepted point mutations per 100 residues). Ifs is the amino acid replacement rate, 

then an evolutionary distance of st = k PAMs between two sequences is equivalent 

to the expectation that the two sequences are separated by k amino acid replacements 

per 100 residues. Because the model is empirical, it reflects both the fact that different 

amino acid types are replaced at different rates and the fact that amino acids are 

usually replaced by biochemically similar amino acids. 

The Insertion-Deletion Model 

Similar to the Dayhoff et al. model, the insertion-deletion model employed here 

is Markovian and reversible. It has been presented elsewhere, in the context of DNA 

sequence evolution (Thorne et al. 1992 ). Each protein sequence is treated as a sequence 

of concatenated amino acid fragments. Each fragment contains one or more amino 

acids. Because fragments are inserted and deleted as units, the fragment-size distribution 

should be identical to the insertion-deletion-length distribution. For computational 

convenience, the number of amino acid residues per fragment (i.e., the fragment size) 

is assumed to be geometrically distributed. At the cost of more computation, other 

distributional forms could have been adopted. Let h(n) be the probability that a frag- 

ment is associated with exactly II amino acids residues. For the geometric distribution, 

this probability can be expressed as 

h(n) = (1-r)r”-’ 0 5 r 5 1 y1= 1,2,. . . . (2) 

The expected length of a fragment is 1 /( 1 -Y). 
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Alignment-free Phylogenies I 153 

A sequence that contains n fragments experiences deletions at rate it u. The same 

sequence experiences insertions at rate (n+l)& because insertions are allowed only 

at the n - 1 interior boundaries between fragments, the extreme 5’ end of the sequence, 

and the extreme 3’ end of the sequence. The likelihood expression for a pair of sequences 

involves ut and ht, where t is the divergence time; p and h cannot be estimated in- 

dependently oft. To reduce the number of parameters to be estimated, the value of 

3Lt will depend on the value of pt as described in equations ( 11) and ( 12) of Thorne 

et al. ( 1992). In practice, the effect of this forced dependence is to make ht almost 

equal to-but slightly less than-ut . The ratio of 3Lt and pt will depend on the lengths 

of the two sequences being analyzed. As will become clear later, ideally this ratio would 

be the same for all pairs of sequences in the data set. Fortunately, the variation in this 

ratio is small enough in biologically interesting data sets to make this imperfection of 

only trivial importance. 

Insertions and deletions at the extreme 5’ or 3’ ends of a sequence must be treated 

carefully. Terminal gaps in an alignment may not actually be due to insertions or 

deletions; they could be an artifact of the data collection procedure. Our practice is 

to consciously avoid terminal gaps; conserved regions are used to delimit the sequence 

portions that are analyzed. The conscious avoidance of terminal gaps injects a subjective 

element into an otherwise objective method, but, for reasonably long sequences, this 

subjectivity should not have a significant impact. 

The Method 

Likelihood of Two Nonaligned Sequences 

The likelihood of two nonaligned sequences depends on the likelihoods of the 

alignments that can relate them. Each pairwise alignment is a specific hypothesis about 

the evolutionary relationship between two sequences. Some relationships are more 

probable than others. The probability of two sequences, given specific parameter values 

(i.e., the likelihood), is the sum, over all possible relationships (i.e., alignments), of 

the probabilities of the relationships. The parameter values that maximize the prob- 

ability of two sequences are the maximum-likelihood estimates. All possible alignments 

between the sequence pair contribute to these estimates. These estimates can be com- 

puted with the methods of Thorne et al. ( 199 1, 1992). 

Distance Estimation 

For each pair of sequences in a data set, distance-based approaches to phylogenetic 

reconstruction require an estimate of dii, the distance between the ith andjth sequences. 

Under a molecular clock, this distance should have the form C& = Ut;j, where cr is a 

constant and tij is the time since divergence of the ith andjth sequences. The existence 

of a molecular clock is not crucial to the following discussion; it is adopted only for 

the sake of explanation. Another measure of branch length could be used in place of 

divergence time. The methods of Thorne et al. ( 199 1, 1992) are easily adapted to find 

d;j, a maximum-likelihood estimate of do, from a pair of sequences that are not 

aligned. Because all possible alignments between the two sequences contribute to the 

likelihood, these estimates of du should be more accurate and less biased than estimates 

produced from the same data by other approaches. 

The amounts of amino acid replacement (St,), insertion ( 3Ltij), and deletion ( ptii) 

contribute to the distance between two sequences. Although evolutionary rates are 

allowed to differ among lineages, we assume here that both the distribution of indel 

lengths and the ratio of indel rates to amino acid replacement rates are constant among 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/9
/6

/1
1
4
8
/1

0
7
3
6
7
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



1154 Thorne and Kishino 

lineages. In other words, we assume that I and p = s/p are constant among lineages. 

Under this assumption, we could adopt any one of stij, ht,, and ptii as a measure of 

the distance. Certainly, the assumption will sometimes be incorrect, and it is not clear 

how robust the proposed distance method will be to violations of this assumption. 

Assume that we are interested in N sequences. Furthermore, let A; and AI be the 

ith and jth sequences. We could estimate dij, p, and r by maximizing the following 

pseudo-likelihood function: 

L = ni<jL( dijr p, r I A; 3 A,) . (3) 

Because this maximization is computationally prohibitive, we instead adopt a two- 

step procedure. Our previously published methods are designed to jointly estimate 

stu, pt;j, and r from a pair of sequences. Let these maximum-likelihood estimates be 

S2,, l?G;j, and rii. Also, let pij = S2o/$;j. The first step of our procedure is to calculate 

pij and r;j for each of the N( N- 1 )/ 2 sequence pairs. Because p and I are assumed to 

be constant, we set p equal to the median of the pij values and set r equal to the median 

of the rij values. These are the values of p and r that will be used for the calculation 

of pairwise distances. 

To estimate p and r, we select the medians instead of the means, because medians 

are more robust to outliers. When a pair of sequences is closely related, p and r estimates 

based solely on this single sequence pair can be poor, because of paucity of evolutionary 

events. When a pair of sequences is distantly related, p and r estimates based solely 

on the single sequence pair can be poor, because of the difficulty of differentiating 

between replacement events and insertion or deletion events. A single poor estimate 

of p, for example, could substantially affect the mean of the N( N- 1)/Z initial estimates 

while only slightly affecting the median. 

After these medians are found, each pair of sequences can be analyzed again. 

This time, stij can be considered the only free parameter, because p and r are pre- 

specified. The maximum-likelihood estimates of stg that result from this reanalysis 

will serve as the pairwise distances. 

Enhanced accuracy of distance estimates is one advantage of this maximum- 

likelihood approach. Another advantage is the ability to approximate the variance of 

each distance estimate. This approximation can be made by examining the curvature 

of the log-likelihood surface (e.g., see Kendall and Stuart 1973, pp. 45-46). This 

feature can prevent a poorly estimated distance from having undue influence on the 

phylogeny. In contrast, widely used distance methods [e.g., the method of Cavalli- 

Sforza and Edwards ( 1967), the method of Fitch and Margoliash ( 1967), and the 

neighbor-joining method of Saitou and Nei ( 1987)] are more susceptible to the influ- 

ence of a poorly estimated distance on the phylogeny. 

After estimation of distances, the proposed method is straightforward. Like both 

the method of Fitch and Margoliash ( 1967) and the method of Cavalli-Sforza and 

Edwards ( 1967 ), this method consists of minimizing a weighted least-squares criterion. 

It can be implemented via a slight modification of FITCH-the least-squares distance 

program in PHYLIP (Felsenstein 1989). Let z$ be the approximate variance of d+ 

Also, let pii be the length of the path that connects the ith and&h sequences on a tree, 

and let 
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Alignment-free Phylogenies 1155 

s=c ( d ij-Pij) 2 
2 . 

iCJ Zij 

The proposed method selects the tree that minimizes S. 

Accuracy of the Inferred Topology: Pseudo-Bootstrap 

The value of this method would be enhanced if the support for the inferred 

phylogeny could be assessed. Although pairwise distance estimates are not independent, 

one possibility is to treat them as if they were and then show by simulation that this 

treatment is reasonable. The idea is to generate, via a parametric bootstrap, “new” 

sets of distances from the original set. Each new set can be used to reconstruct the 

phylogeny. The variability of the phylogenies that are reconstructed from new sets of 

distances can be used to assess the support for the original inference. 

If sequences i and j are long, then the distribution of dii will resemble a normal 

distribution with mean C& and variance zi (e.g., see Kendall and Stuart 1973, pp. 45- 
46). To assess the accuracy of the inferred phylogeny, we sampled a new distance 

d$ for each i and j from a normal distribution with mean d, and variance zt. A 

phylogeny can be inferred from this simulated data set by minimizing S*, where 

se = c (d$-p$)2 
2 

iJ ZiJ 

and where pt is the length of the path that connects the ith andjth sequences on this 

tree. This process of creating resampled distance matrices and then inferring a phy- 

logeny can be repeated many times. As explained by Felsenstein ( 1985), consensus 

trees can be constructed from these inferred phylogenies and can be used to assess the 

support for the original inference. 

This resampling approach incorrectly treats pair-wise distances as if they were 

independent. To correctly create resampled distance matrices, the correlations between 

pairwise distances should be considered (Hasegawa et al. 1985 ) . Phylogenetic-support 

statements produced by this approach will tend to be conservative. For example, this 

approach might yield a pseudo-bootstrap frequency of 90% when a better approach 

that correctly accounts for pair-wise correlations would yield a confidence level of 95%. 

The conservative nature of this approach stems from the treatment of pairwise distances 

as being independent. Pair-wise distance correlations are imposed by the phylogenetic 

structure. The correlations exist because the path that connects two tips of a tree often 

will traverse some of the same branches that are traversed by a path connecting another 

pair of tips; random evolutionary events that occur on the common branches will 

affect both pairwise distances in the same direction. A resampled distance matrix 

created by ignoring these correlations will contain less phylogenetic structure. This is 

revealed in practice by the fact that S* , the criterion minimized when a phylogeny is 

inferred from a resampled distance matrix, is invariably greater than S, the criterion 

minimized when a phylogeny is inferred from the actual distance matrix. 

Differences between support levels produced by this pseudo-bootstrap approach 

and those produced by the conventional bootstrap of prealigned sequences were ex- 

plored through simulation. To assist this simulation study, two computer programs 

were provided by Joseph Felsenstein. One of these generated random evolutionary 

trees via a branching process, and the other evolved DNA sequences of length 250 
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1156 Thorne and Kishino 

nucleotides along the trees. Trees were generated by successive splittings of evolutionary 

lineages. The first splitting event defined the root of the tree. Subsequent events created 

interior nodes of the tree. Trees with 10 tips were simulated; simulations were stopped 

immediately before occurrence of the split that would create the 11 th tip. If termination 

of the simulations had not occurred, then individual branch lengths on these trees 

would have been exponentially distributed with a mean of 0.1 substitutions per se- 

quence position. Because termination did occur, the actual distribution was somewhat 

different. 

Because the conventional bootstrap requires an alignment, the simulated evo- 

lutionary process involved only substitutions. Specifically, the substitution model of 

Jukes and Cantor ( 1969) was employed. Although rooted topologies were generated, 

the proposed distance method was used to infer unrooted topologies. Values of z’, 

were computed by the formula of Kimura and Ohta ( 1972). Each interior branch of 

a topology serves to partition the sequences into two groups, and the bootstrap support 

of these partitions or interior branches can be measured. In total, 10 randomly generated 

topologies were studied. For each interior branch, a conventional bootstrap frequency 

was computed by analyzing 1,000 resampled data sets, and a pseudo-bootstrap fre- 

quency was computed by analyzing 1,000 resampled distance matrices. 

Of the 70 interior branches defined by the 10 random topologies, 50 had a con- 

ventional bootstrap frequency of 20.9. These 50 conventional bootstrap frequencies 

were placed into four categories: 0.9-0.949, 0.95-0.989, 0.99-0.999, and 1.0. There 

were no cases of a pseudo-bootstrap frequency being >0.9 when the conventional 

bootstrap frequency was ~0.9. Table 2 describes the distribution of pseudo-bootstrap 

frequencies among all conventional bootstrap frequencies that fall into a given interval. 

Clearly, the pseudo-bootstrap frequencies are conservative. The difference between 

the two types of bootstrap frequencies appears to grow as the conventional bootstrap 

frequency decreases. Only bootstrap frequencies corresponding to interior branches 

of the true tree are summarized in table 2. There was one case of a partition that was 

not on the true tree and that had a conventional bootstrap frequency >0.9 (0.932). 

It is interesting that the pseudo-bootstrap frequency of this partition was ~0.9 (0.696). 

This was only a preliminary comparison of the conventional bootstrap and the 

pseudo-bootstrap. Although a more general simulation study is warranted, this pre- 

liminary investigation is consistent with the expected conservative nature of the pseudo- 

bootstrap, and it hints that the pseudo-bootstrap is not so conservative as to be without 

value. A more accurate procedure for assessing the support of inferences made by the 

proposed distance method would be desirable, but this pseudo-bootstrap procedure 

errs on the side of caution. 

Table 2 

Comparison of Conventional Bootstrap and Pseudo-Bootstrap 

NO. OF INSTANCES WITH PSEUDO-BOOTSTRAP FREQUENCY OF 

CONVENTIONAL 

BOOTSTRAP 0.990- 0.950- 0.900- o.soo- 0.700- 0.600- 

FREQUENCY 1 .ooo 0.999 0.989 0.949 0.899 0.799 0.699 

1.000 17 6 1 0 0 0 0 

0.990-0.999 2 4 2 1 1 0 0 

0.950-0.989 0 0 2 4 1 2 0 

0.900-0.949 0 0 0 0 5 I 1 
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An Example 

To demonstrate this method, a phylogeny is inferred from 10 amino acid se- 

quences of the second largest RNA polymerase subunit. These sequences include two 

eukaryotic pol I sequences, two eukaryotic pol II sequences, two eukaryotic pol III 

sequences, two archaebacterial sequences, a eubacterial sequence, and a chloroplast 

sequence. The 10 sequences possess a relatively conserved region near their 5’ end 

and near their 3’ end. Only the amino acids between and including these two conserved 

regions were considered. The footnote to table 3 contains names and sources of se- 

quences, as well as specification of where conserved regions begin and end. 

A phylogenetic analysis of these 10 sequences was performed. The first step was 

to find p and Y from the medians of the 45 possible pairwise comparisons between the 

RNA polymerase sequences. The resulting values of p and r were, respectively, 291 

and 0.89. With these values, pairwise distances and approximate standard deviations 

were computed (table 3 ) . The distances were used to infer a phylogeny via the proposed 

method (fig. 2 ) . 

The amount of computation required by this method is large but not prohibitive. 

First-step pairwise comparisons (i.e., those done to find p and r) are slower than 

second-step pairwise comparisons (i.e., those done to find pairwise distances), because 

first-step comparisons require that three parameters (ut;,, st;,, and r) be estimated 

instead of just one (d,) . For example, the first-step comparison between the Drosophila 

pol I and pol II sequences required 54.8 min of central processing unit (CPU) time, and 

the second-step comparison required 12.5 min of CPU time, on a Sun Sparcstation IPX. 

The Fitch-Margoliash and neighbor-joining implementations in PHYLIP version 

3.4 were also applied to this distance matrix. The option that does not allow the Fitch- 

Table 3 

Pairwise Distances and Standard Errors 

SC1 Drl SC2 Dr2 SC3 Dr3 Sul Met Esc Spi 

SC1 4.3 6.6 6.9 7.0 6.5 7.0 6.3 10.1 10.3 

Drl _._.. 81.9 6.6 7.2 7.1 7.4 7.0 6.8 10.2 10.7 

SC2 112.3 112.3 2.6 4.4 4.9 4.3 4.3 8.7 9.3 

Dr2 _. 113.6 118.7 48.1 4.8 5.0 4.3 4.3 8.5 9.0 

SC3 108.2 122.8 86.0 90.2 2.8 4.9 4.9 8.7 9.3 

Dr3 _. _. 108.7 124.9 92.0 95.9 49.2 5.3 5.2 8.7 9.4 

Sul 117.2 117.9 77.3 80.7 91.7 100.6 3.2 6.8 8.8 

Met _. 111.5 116.9 87.6 86.1 92.5 94.5 61.2 6.5 8.3 

Esc 152.2 151.4 136.9 137.1 138.4 140.4 112.0 115.1 4.6 

Spi _. 153.7 162.9 142.4 139.9 144.9 142.6 134.9 134.4 88.2 

NOTE.-The name, abbreviation used, reference, beginning hexanucleotide, ending hexanucleotide, and length of the 

analyzed sequences are as follows: Saccharomyces cerevisiae pal I, Scl, Yano and Nomura (1991), HIGSFN, EKIFED, 

I,I 10 amino acids; Drosophila melanogaster pal I, Drl, Kontermann et al. (1989). HVDSFD, ARFKLN, 1,089 amino 

acids; S. cerevisiae pal II, Sc2, Sweetser et al. (1987), QLDSFN, PRLYTD, I, I73 amino acids; D. melanogaster pal II, Dr2, 

Falkenburg et al. (1987). QLDSFD, PRLMVT, 1,133 amino acids; S. cerevisiae pal III, Sc3, James et al. (1991), HLDSFN, 

PRLRLE, 1,084 amino acids; D. melanogaster pal III, Dr3, Seifarth et al. (1991), HIDSFN, PKMILE, 1,080 amino acids; 

Sulfolobus acidocoldarius RNA polymerase, Sol, Piihler et al. (1989), HLDSFN, PRLILG, 1,092 amino acids; Methanc- 

bacrerium fhermoaufofrophicum RNA polymerase, Met, Berghiifer et al. (1988), HIHSYN, PKLVLE, 1,095 amino acids; 

Escherichia co/i RNA polymerase, Esc, Ovchinnikov et al. (1982), QLDSFQ, INIELE, 1,310 amino acids; and Spinacia 

oleracea chloroplast RNA polymerase, Spi, Hudson et al. (1988), QFEGFW, LNHFLV, 1,040 amino acids. Because the 

Methanobacterium sequence is split into two subunits, the analyzed portion is actually a concatenation of the 3’ end of the 

B” subunit sequence and the 5’ end of the B’ subunit sequence. Data below the diagonal are pairwise distance estimates, 

and data above the diagonal arc standard errors. 
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Dr 

Dr3 

41.6 (1.006) 

spi 

FIG. 2.-Inferred RNA polymerase phylogeny and pseudo-bootstrap frequencies. Abbreviations for 

species names are as in the footnote of table 3. To obtain the pseudo-bootstrap frequencies, the distance 

matrix was resampled 1,000 times. A tree was inferred from each of the resampled distance matrices, and 

these 1,000 inferences were summarized by the program Consense in version 3.4 of the PHYLIP package. 

The pseudo-bootstrap frequencies of the partitions, defined by the interior branches, are in parentheses. 
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Alignment-free Phylogenies 1159 

Margoliash method to infer negative branch lengths was chosen. The Fitch-Margoliash 

method finds a tree with the same topology as shown in figure 2. The topology found 

by the neighbor-joining method is slightly different. Whereas the tree in figure 2 contains 

a branch that separates the pol I and pol III lineages from all other lineages, the 

neighbor-joining tree instead contains a branch that separates the pol I and pol II 

lineages from all others. Because the pseudo-bootstrap frequency of the branch that 

separates the pol I and pol III lineages from all others is low (0.6 14), we know little 

about the relative merits of the two topologies. 

For the sake of simplicity, we have described our method in the context of regional 

homogeneity of amino acid replacement rates. In fact, the regions of a protein do not 

all evolve at the same rate. The evolutionary model of Thorne et al. ( 1992) can allow 

regional heterogeneity of replacement rates. Our method is easily modified to corre- 

spond to this model. For the polymerase sequences, there is a large difference between 

the log likelihood produced by a homogeneity analysis and that produced by a het- 

erogeneity analysis. This is an indication that the heterogeneity analysis is more ap- 

propriate. For example, the difference is 23.2 log-likelihood units for the first-step 

comparison between the Drosophila pol I and pol II sequences. In light of the fact 

that the regional heterogeneity model contains only two more parameters than does 

the homogeneity model, this difference is large. When our method is modified to 

permit regional heterogeneity, the topology of figure 2 is again preferred. 

Discussion 

Blaisdell ( 1986, 199 1) has suggested an alignment-free technique for computing 

pairwise distances between sequences. This approach involves counting, within each 

sequence, the number of occurrences of all subsequences of length n . A subsequence 

of length n is called an n-tuple. For example, there are four possible 1-tuples (e.g., A, 

G, T, and C) and 16 possible 2-tuples in a DNA sequence. To calculate a distance, 

the number of occurrences of a specific n-tuple in one sequence is subtracted from 

the number of occurrences in the other, and then this difference is squared. The sum 

of this difference taken over all n-tuples is used as the pairwise distance. This is a 

clever approach to avoiding alignment artifacts, but it possesses certain weaknesses. 

The values of distances calculated in this way depend on both the lengths of the 

sequences and the amount of evolution that separates them. The choice of tuple size 

is important, and the n that is the best choice for one pair of sequences may not be 

best for another pair of sequences, Most important, the Blaisdell method discards 

some evolutionary information that could be extracted from a sequence pair. 

Our method utilizes more evolutionary information than does the Blaisdell 

method, but it is still incomplete. The pseudo-bootstrap procedure and the treatment 

of terminal indels both need to be improved. Frameshifts, intron evolution, and com- 

plex sequence rearrangements should not be ignored. Also, by considering only pairwise 

information, this method shares the weaknesses of other distance methods. 

While the proposed method is not ideal, it has advantages over widely used phy- 

logenetic inference techniques. Regional heterogeneity of replacement rates can be 

allowed. The method does not rely on a single alignment or ignore the evolutionary 

information provided by insertions and deletions. It incorporates the uncertainty of 

distance estimates into phylogeny estimation. Finally, it has been intentionally designed 

to be conservative. The pseudo-bootstrap frequency of the inferred topology is an 

underestimate of statistical support. Alignment-requiring methods may yield artificially 

high bootstrap frequencies because they ignore uncertainty due to artifacts of alignment. 
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1160 Thorne and Kishino 

In the reconstruction of evolutionary history, it is our opinion is that it is better to err 

on the side of caution. 
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