
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3144  | https://doi.org/10.1038/s41598-021-82543-3

www.nature.com/scientificreports

Freely scalable and reconfigurable 
optical hardware for deep learning
Liane Bernstein1,5*, Alexander Sludds1,5*, Ryan Hamerly1,2, Vivienne Sze1, Joel Emer3,4 & 
Dirk Englund1*

As deep neural network (DNN) models grow ever-larger, they can achieve higher accuracy and 
solve more complex problems. This trend has been enabled by an increase in available compute 
power; however, efforts to continue to scale electronic processors are impeded by the costs of 
communication, thermal management, power delivery and clocking. To improve scalability, 
we propose a digital optical neural network (DONN) with intralayer optical interconnects and 
reconfigurable input values. The path-length-independence of optical energy consumption enables 
information locality between a transmitter and a large number of arbitrarily arranged receivers, which 
allows greater flexibility in architecture design to circumvent scaling limitations. In a proof-of-concept 
experiment, we demonstrate optical multicast in the classification of 500 MNIST images with a 
3-layer, fully-connected network. We also analyze the energy consumption of the DONN and find that 
digital optical data transfer is beneficial over electronics when the spacing of computational units is on 
the order of > 10µm.

Machine learning has become ubiquitous in modern data analysis, decision-making, and optimization. A promi-
nent subset of machine learning is the arti�cial deep neural network (DNN), which has revolutionized many 
�elds, including  classi�cation1,  translation2 and  prediction3,4. An important step toward unlocking the full poten-
tial of DNNs is improving the energy consumption and speed of DNN tasks. To this end, emerging DNN-speci�c 
 hardware5–8 optimizes data access, reuse and communication for mathematical operations: most importantly, 
general matrix–matrix multiplication (GEMM) and  convolution9. However, despite these advances, a central 
challenge in the �eld is scaling hardware to keep up with exponentially-growing DNN  models10 (see Fig. 1) due 
to electronic  communication11,  clocking12, thermal  management13 and power  delivery14.

To overcome these electronic limitations, optical systems have previously been proposed to perform linear 
algebra and data transmission. Analog weighting of optical inputs can be implemented with masks, holography 
or optical interference using acousto-optic  modulation15–18, spatial light  modulation19, electro-optic or thermo-
optic  modulation20–23, phase-change  materials24 or printed di�ractive  elements25. Due to their analog nature, 
system errors can decrease the accuracy of large DNN models processed on this hardware. Prior works in digi-
tal optical interconnects have focused on integrated point-to-point  connections26,27, free-space point-to-point 
 transmission28,29, and small-scale free-space  multicast30. �ese ideas would be di�cult to scale since they incur 
signi�cant overhead in number of components and introduce compounded component losses.

In this Article, we introduce a novel optical DNN accelerator that encodes inputs and weights into recon-
�gurable on-o� optical pulses. Free-space optical elements passively transmit and copy data from memory to 
large-scale electronic multiplier arrays (fan-out). �e length-independence of this optical data routing enables 
freely scalable systems, where single transmitters are fanned out to many arbitrarily arranged receivers with fast 
and energy-e�cient links. �is system architecture is similar to our previous coherent optical neural  network23, 
but in contrast to this work and the other analog schemes described above, we propose an entirely digital system. 
Incoherent optical paths for data transmission (not computation) replace electrical on-chip interconnects, and 
can thus preserve accuracy. Unlike prior digital optical interconnect systems, our ‘digital optical neural network’ 
(DONN) uses free-space fan-out for data distribution to a large number of receivers for the speci�c application 
of matrix multiplication of the type found in modern DNNs.

We �rst illustrate the DONN architecture and discuss possible implementations. �en, in a proof-of-concept 
experiment, we demonstrate that digital optical transmission and fan-out with cylindrical lenses has little e�ect 
on the classi�cation accuracy of the MNIST handwritten digit dataset (< 0.6%). Crosstalk is the primary cause of 
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this drop in accuracy, and because it is deterministic, it can be compensated: with a simple crosstalk correction 
scheme, we reduce our bit error rates by two orders of magnitude. Alternatively, crosstalk can be greatly reduced 
through optimized optical design. Since shot and thermal noise are negligible (see “Discussion”), the accuracy 
of the DONN can therefore be equivalent to an all-electronic DNN accelerator.

We also compare the energy consumption of optical interconnects (including light source energy) against 
that of electronic interconnects over distances representative of logic, multi-chiplet interconnects and multi-chip 
interconnects in a 7 nm CMOS node. Multiple  chips44 or partitioned  chips45,46 are regularly employed to process 
large networks since they can ease electronic constraints and improve performance over a monolithic equivalent 
through greater mapping  �exibility47, at the cost of increased communication energy. Our calculations show 
an advantage in data transmission costs for distances ≥ 5 µ m (roughly the size of the basic computation unit: 
an 8-bit multiply-and-accumulate (MAC), with length 5–8 µm). �e DONN thus scales favorably with respect 
to very large DNN accelerators: the DONN’s optical communication cost for an 8-bit MAC, i.e., the energy to 
transmit two 8-bit values, remains constant at ∼ 3 fJ/MAC, whereas multi-chiplet systems have much higher 
electrical interconnect costs ( ∼ 1000 fJ/MAC), and multi-chip systems have a higher energy consumption still 
( ∼ 30, 000 fJ/MAC). �us, the e�cient optical data distribution provided by the DONN architecture will become 
critical for continued growth of DNN performance through increased model sizes and greater connectivity.

Results
Problem statement. A DNN consists of a sequence of layers, in which input activations from one layer are 
connected to the next layer via weighted paths (weights), as shown in Fig. 2a. We focus on inference tasks in this 
paper (where weights are known from prior training), which, in addition to the energy consumption problem, 
place stringent requirements on latency and throughput. Modern inference accelerators expend the majority of 
energy (> 90%) on memory access, data movement, and computation in fully-connected (FC) and convolutional 
(CONV)  layers5.

Parallelized vector operations, such as matrix–matrix multiplication or successive vector–vector inner prod-
ucts, are the largest energy consumers in CONV and FC layers. In an FC layer, a vector x of input values (‘input 
activations’, of length K) is multiplied by a matrix WK×N of weights (Fig. 2b). �is matrix–vector product yields 
a vector of output activations ( y , of length N). Most DNN accelerators process vectors in B-sized batches, where 
the inputs are represented by a matrix XB×K . �e FC layer then becomes a matrix–matrix multiplication (XB×K · 
WK×N ). CONV layers can also be processed as matrix multiplications, e.g., with a Toeplitz  matrix9.

In matrix multiplication, fan-out, where data is read once from main memory (DRAM) and used multiple 
times, can greatly reduce data movement and memory access. �is amortization of read cost across numerous 
operations is critical for overall e�ciency, since retrieving a single matrix element from DRAM requires two to 
three orders of magnitude more energy than the  MAC11. A simple input-weight product illustrates the bene�t of 
fan-out, since activation and weight elements appear repeatedly, as highlighted by the repetition of X11 and W11:
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Figure 1.  Number of parameters, i.e., weights, in recent landmark neural networks 1,2,31–43 (references dated by 
�rst release, e.g., on arXiv). �e number of multiplications (not always reported) is not equivalent to the number 
of parameters, but larger models tend to require more compute power, notably in fully-connected layers. 
�e two outlying nodes (pink) are AlexNet and VGG16, now considered over-parameterized. Subsequently, 
e�orts have been made to reduce DNN sizes, but there remains an exponential growth in model sizes to solve 
increasingly complex problems with higher accuracy.
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Consequently, DNN hardware design focuses on optimizing data transfer and input and weight matrix ele-
ment reuse. Accelerators based on conventional electronics use e�cient memory hierarchies, a large array of 
tightly packed processing elements (PEs, i.e., multipliers with or without local storage), or some combination 
of the these approaches. Memory hierarchies optimize temporal data reuse in memory blocks near the PEs to 
boost performance under the constraint of chip  area9. �is strategy can enable high throughput in CONV  layers5. 
With fewer intermediate memory levels, a larger array of PEs (e.g., TPU  v18) can further increase throughput 
and lower energy consumption on workloads with a high-utilization mapping due to potentially reduced over-
all memory accesses and a greater number of parallel multipliers (spatial reuse). �erefore, for workloads with 
large-scale matrix multiplication such as those mentioned in the Introduction, if we maximize the number of 
available PEs, we can improve e�ciency.

Digital optical neural network architecture. Our DONN architecture replaces electrical interconnects 
with optical links to relax the design constraints of reducing inter-multiplier spacing or colocating multipliers 
with memory. Speci�cally, optical elements transfer and fan out activation and weight bits to electronic multi-
pliers to reduce communication costs in matrix multiplication, where each element Xbk is fanned out N times, 
and Wkn is fanned out B times. �e DONN scheme shown in Fig. 2c spatially encodes the �rst column of XB×K 
activations into a column of on-o� optical pulses. At the �rst time step, the activation matrix transmitters fan 
out the �rst bit of each of the matrix elements Xb1, ∀b ∈ {1 . . .B} to the PEs (here, k = 1 ). Simultaneously, a 
row of weight matrix light sources transmits the corresponding weight bits W1n to each PE. �e photons from 
these activation and weight bits generate photoelectrons in the detectors, producing the voltages required at the 
inputs of electronic multipliers (either 0 V for a ‘0’ or 0.8 V for a ‘1’). A�er 8 time steps, a multiplier has received 
2 × 8 bits (8 bits for the activation value and 8 bits for the weight value), and the electronic multiplication occurs 
as it would in an all-electronic system. �e activation-weight product is completed, and is added to the locally 
stored partial sum. �e entire matrix–matrix product is therefore computed in 8 × K time steps; this data�ow 
is commonly called ‘output stationary’. Instead of this bit-serial implementation, bits can be encoded spatially, 
using a bus of parallel transmitters and receivers. �e trade-o� between added energy and latency in bit-serial 
multiplication versus increased area from photodetectors for a parallel multiplier can be analyzed for speci�c 
applications and CMOS nodes.

We illustrate an exemplary experimental DONN implementation in Fig. 3. Each source in a linear array of 
vertical cavity surface emitting lasers (VCSELs) or µLEDs emits a cone of light into free space, which is col-
limated by a spherical lens. A di�ractive optical element (DOE) focuses the light to a 1D spot array on a 2D 
receiver, where the activations and weights are brought into close proximity using a beamsplitter. ‘Receiverless’ 
 photodetectors48 convert the optical signals to the electrical domain. An electronic multiplier then multiplies 
the values. �e output is either saved to memory, or routed directly to another DONN that implements the next 
layer of computation. Note that the data distribution pattern is not con�ned to regular rows and columns. A 
spatial light modulator (SLM), an array of micromirrors, scattering waveguides or a DOE can route and fan out 
bits to arbitrary locations. Since free-space propagation is lossless and mirrors, SLMs and di�ractive elements 
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Figure 2.  Digital fully-connected neural network (FC-NN) and hardware implementations. (a) FC-NN with 
input activations (red, vector length K) connected to output activations (vector length N) via weighted paths, i.e., 
weights (blue, matrix size K × N ). (b) Matrix representation of one layer of an FC-NN with B-sized batching. 
(c) Example bit-serial multiplier array, with output-stationary accumulation across k. Fan-out of X across 
n ∈ {1 . . .N} ; fan-out of W across b ∈ {1 . . .B} . Bottom panel: all-electronic version with fan-out by copper 
wire (for clarity, fan-out of W not illustrated). Top panel: digital optical neural network version, where X and 
W are fanned out passively using optics, and transmitted to an array of photodetectors. Each pixel contains two 
photodetectors, where the activations and weights can be separated by, e.g., polarization or wavelength �lters. 
Each photodetector pair is directly connected to a multiplier in close proximity.
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are highly e�cient (> 95%), most length- or receiver-number-dependent losses can be attributed to imperfect 
focusing, e.g., from optical aberrations far from the optical axis. �ese e�ects can be mitigated through judicious 
optical design. We assume for the remainder of our analysis that energy is length-independent.

Bit error rate and inference experiments. We used a DONN implementation similar to Fig. 3a to test 
optical digital data transmission and fan-out for DNNs, as described in “Methods”. In our �rst experiment, we 
determined the bit error rate of our system. Figure 4a shows an example of a background-subtracted and nor-
malized image, captured on the camera when the digital micromirror devices (DMDs) displayed random vectors 
of ‘1’s and ‘0’s. �e camera’s de-Bayering algorithm (described in “Methods”), as well as optical aberrations and 
misalignment, caused some crosstalk between pixels (see Fig. 4b). Using a region of 357 × 477 superpixels on the 
camera, we calculated bit error rates (in a single shot) of 1.2 × 10

−2 and 2.6 × 10
−4 for the blue and red channels, 

respectively. When we con�ned the region of interest to 151 × 191 superpixels, the bit error rate (averaged over 
100 di�erent trials, i.e., 100 pairs of input vectors) was 4.4 × 10

−3 and 4.6 × 10
−5 for the blue and red arms. See 
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Figure 3.  Possible implementation of digital optical neural network. (a) Digital inputs and weights are 
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Supplementary Note 1 for more details on bit error rate and error maps. Because crosstalk is deterministic, and 
not a source of random noise, we can compensate for it. We applied a simple crosstalk correction scheme that 
assumes uniform crosstalk on the detector and subtracts a �xed fraction of an element’s nearest neighbors from 
the element itself (see Supplementary Note 2). �e bit error rates for the blue and red channels then respectively 
dropped to 2.9 × 10

−3 and 0 for the 357 × 477-pixel, single shot image and 2.6 × 10
−5 and 0 for the 151 × 191

-pixel, 100-image average. In other words, a�er crosstalk correction, there were no errors in the red channel, and 
the errors in the blue channel dropped signi�cantly.

Next, we experimentally tested the DONN’s e�ect on the classi�cation accuracy of 500 MNIST images using 
a three-layer (i.e., two-hidden-layer), fully-connected neural network (FC-NN), with the dataset and training 
steps described in Supplementary Note 3. We compared our uncorrected experimental classi�cation results with 
inference performed entirely on CPU (ground truth) in two ways. �e simplest analysis, reported in Table 1, 

Figure 5.  Experimentally measured 3-layer FC-NN output scores, otherwise known as confusion matrix, 
for 500 MNIST images from test dataset. �e values along the diagonal represent correct classi�cation by the 
model. Each column is an average of ∼ 50 vectors. (a) DONN output scores (no crosstalk correction applied). 
(b) Ground-truth (all-electronic) output scores. (c, d) Box plot of the diagonals of sub�gures (a) and (b) 
respectively. (e) Di�erence in diagonals of DONN output scores versus ground-truth output scores. Box plots 
represent the median (orange), interquartile range (IQR, box) and ‘whiskers’ extending 1.5 IQRs beyond the �rst 
and third quartile; outliers are displayed as yellow circles.

Table 1.  MNIST classi�cation accuracy of DONN (no crosstalk correction applied) versus all-electronic 
hardware with custom fully-connected neural network models.

2 layers (%) 3 layers (%)

Electronic (ground truth) 95.8 96.4

DONN 95.4 95.8
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shows a 0.6% drop in classi�cation accuracy for the DONN versus the ground truth values (or 3 additional 
incorrectly classi�ed images). Figure 5 illustrates more detailed results, where we analyzed the network output 
scores. An output score is roughly equivalent to the assigned likelihood that an input image belongs to a given 
class, and is de�ned as the normalized (via the so�max function) output vector of a DNN. We found that, along 
the matrix diagonal, the �rst and third quartiles in the di�erence in output scores between the DONN and the 
ground truth have a magnitude < 3%. �e absolute di�erence in average output scores is also < 3%. We also 
performed this experiment with a single hidden layer (‘2-layer’ case), and achieved similar results (a 0.4% drop 
in accuracy, or 2 misclassi�ed images). No crosstalk error correction was applied to these results to illustrate the 
worst-case impact on accuracy.

Energy analysis: DONN compared with all-electronic hardware. In this section, we compare the 
theoretical interconnect energy consumption of the DONN with its all-electronic equivalent, where intercon-
nects are illustrated in green in Fig. 6. We assume an implementation in a 7 nm CMOS process for both cases. 
�e interconnect energy, which must include any source ine�ciencies, is the energy required to charge the 
parasitic wire, detector, and inverter capacitances, where a CMOS inverter is representative of the input to a 
multiplier. See “Methods” for full energy calculations. In the electronic case, a long wire transports data to a 
row of multipliers using low-cost (0.06 fJ/bit) repeaters (see Supplementary Note 6). �e wire has a large para-
sitic capacitance, but also produces an e�ective electrical fan-out. In the DONN, the energetic requirements 
of the detectors contrast with those of conventional optical receivers, which aim to maximize sensitivity to the 
optical input �eld, rather than minimize the energetic cost of the system as a whole. �e parameters used for 
electronic and optical components are summarized in Table 2, where hν/e must be greater than or equal to the 
bandgap Eg of the detector material (here, we have chosen silicon as an example, and set hν/e = Eg ). Cwire/µm 
is the wire capacitance per micrometer, VDD is the supply voltage and Cdet is a theoretical approximation of the 
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Table 2.  Parameters. † We assume a square multiplier and scale reported 8-bit multiplier areas in a 45 nm 
 node59–61 to a 7 nm node (the current state of the art) with the scaling factors from  literature58. A MAC unit 
comprises both an 8-bit multiplier and a 32-bit adder, so we are placing a lower bound on the minimum length 
of Lwire . Recent  work62 optimizes MAC units for DNNs, and reports a 337µm

2 area in a 28 nm node, where the 
MAC unit comprises an 8-bit multiplier and a 32-bit adder. Extrapolated to a 7 nm node with a fourth-order 
polynomial �t of the scaling factors from  literature58, the MAC unit is of size ( 7µm)2 , which falls within the 
5-8 µ m range. *EMAC , the energy required for one multiply-and-accumulate, shown for reference.

Cwire/µm ∼0.2 fF/µm48,55,56

CT
∼0.1 fF48,53

Cdet 0.1 fF48

hν/e 1.12 eV

WPE ∼0.551,52

Adet 1µm × 1µm48

Lwire_intra-chiplet 5-8 µ m†

Lwire_inter-chiplet 2.5 mm45

Lwire_inter-chip ∼5 cm57

VDD 0.80 V58

EMAC* 25 fJ/MAC11,58
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capacitance of a receiverless cubic  photodetector48 with surface area Adet = (1 × 1)µm
2 . Several past examples 

of small CMOS integrated detectors in older CMOS  nodes49,50 showcase the feasibility of receiverless detectors 
in advanced nodes. �e optical source power conversion e�ciency (wall-plug e�ciency, i.e., WPE) is a measured 
value for  VCSELs51,52. CT is an approximation for the capacitance of an  inverter48,53. Lwire is the distance between 
MAC units in various scenarios: with abutted MAC units (intra-chiplet), between chiplets (inter-chiplet) and 
between chips (inter-chip).

As shown in Fig. 7, we �nd that the optical communication energy is Ecomm ≈ 3 fJ/MAC, independent 
of length, when we use receiverless detectors in a modern CMOS process (limited by the photodetector and 
inverter capacitances). On the other hand, the electrical interconnect energy scales from Ecomm = 3–4 fJ/MAC 
for inter-multiplier communication for abutted MAC units, to ∼1000 fJ/MAC for inter-chiplet interconnects, to 
∼30,000 fJ/MAC for inter-chip interconnects. �e crossover point where the optical interconnect energy drops 
below the electrical energy occurs when Lwire ≥ 5µm . �e DONN therefore provides an improvement in the 
interconnect energy for data transmission and can scale to greatly decrease the energy consumption of data dis-
tribution with regular distribution patterns. In Fig. 7, we have also included the optical communication energy 
per MAC with a large, commercial photodiode, which illustrates the need for receiverless photodetectors in a 
7 nm CMOS process. In the future, plasmonic photodetectors may lower the capacitance further than 0.1 fF54.

Discussion
With minimal impact on accuracy, the DONN yields an energy advantage over all-electronic accelerators with 
long wire lengths for digital data transfer. In our proof-of-concept experiment, we performed inference on 500 
MNIST images with 2- and 3-layer FC-NNs and found a < 0.6% drop in accuracy and a < 3% absolute di�erence 
in average output scores with respect to the ground truth implementation on CPU. We attributed these errors to 
crosstalk due to imperfect alignment and blurring from the camera’s Bayer �lter. In fact, a simple crosstalk cor-
rection scheme lowered measured bit error rates by two orders of magnitude. We could thus transmit bits with 
100% measured �delity in the activation arm (better aligned than the weight arm), which illustrates that crosstalk 
can be mitigated and possibly eliminated through post-processing, charge sharing at the detectors, greater spac-
ing of receivers, or optimized design of optical elements and receiver pixels. In the hypothetical regime where 
error due to crosstalk is negligible, the remaining noise sources are shot and thermal noise. Intuitively, shot and 
thermal noise are also present in an all-electronic system, and the number of photoelectrons at the input to an 
inverter in the DONN is equal to the number of electrons at the input to an inverter in electronics. �erefore, 
if these noise sources do not limit accuracy in the all-electronic case, the same can be said for the  DONN48. For 
mathematical validation that shot and thermal noise have a trivial impact on bit error rate in the DONN, see 
Supplementary Note 7. �ese analyses demonstrate that the fundamental limit to the accuracy of the DONN is 
no di�erent than the accuracy of electronics, and thus, we do not expect accuracy to hinder DONN scaling in 
an optimized system.
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In our theoretical energy calculations, we compared the length-independent data delivery costs of the DONN 
with those of an all-electronic system. We found that in the worst case, when multipliers are abutted in a mul-
tiplier array, optical transmitters have a similar interconnect energy cost compared to copper wires in a 7 nm 
node. �e regime where the DONN shows important gains over copper interconnects is in architectures with 
increased spacing between computation units. As problems scale beyond the capabilities of existing single elec-
tronic chips, multiple chiplets or chips perform DNN tasks in concert. In the multi-chiplet and multi-chip 
cases, the costs to transmit two 8-bit values in electronics ( ∼1000 fJ/MAC and ∼30,000 fJ/MAC, respectively) 
are therefore signi�cantly larger than that of an 8-bit MAC (25 fJ/MAC)11,58. On the other hand, in optics, the 
interconnect cost ( ∼3 fJ/MAC, including source energy) remains an order of magnitude smaller than the MAC 
cost. Since multi-chiplet and multi-chip systems o�er a promising approach to increasing throughput on large 
DNN models, optical connectivity can further these scaling e�orts by reducing inter-chiplet and inter-chip com-
munication energy by orders of magnitude. We further discuss the scalability of the DONN in Supplementary 
Note 8. In terms of the DONN’s area, we assume the added chip area at the receiver is negligible, since the area 
of a photodetector Adet = 1µm

2 is ∼50× smaller than a MAC unit of size (Lwire_intra-chiplet)
2 . Furthermore, for 

many practical applications (e.g., workstations, servers, data centers), chip area, which sets fabrication cost, and 
energy e�ciency are much more important than overall packaged volume. In data centers today, space is required 
between chips for heat sinks and air�ow, and the addition of lenses need not increase this volume signi�cantly. 
Finally, as discussed in Supplementary Note 9, optical devices do not restrict the clock speed of the system since 
their bandwidths are > 10 GHz. In fact, the clock speed of a digital electronic system is generally limited to 
∼ 1 GHz due to thermal dissipation requirements; it could be improved in the DONN, since greater component 
spacing for thermal management would not increase energy consumption.

Because length-independent data distribution is a tool currently unavailable to digital system designers, 
relaxing electronic constraints on locality can open new avenues for DNN accelerator architectures. For example, 
memory can be devised such that numerous small pieces of memory are located far away from the point of com-
putation and reused many times spatially, with a small �xed cost for doing so. Designers can then lay out smaller 
memory blocks with higher bandwidth, lower energy consumption, and higher yield. If memory and computa-
tion are spatially distinct, we have the added bene�t of allowing for more compact memories that consume less 
energy and area, e.g., DRAM, which is fabricated with a di�erent process than typical CMOS to achieve higher 
density than on-chip memories. Furthermore, due to its massive fan-out potential, the DONN can, �rstly, reduce 
overhead by minimizing a system’s reliance on a memory hierarchy and, secondly, amortize the cost of weight 
delivery to multiple clients running the same neural network inference on di�erent inputs. Additionally, some 
newer neural network models require irregular connectivity (e.g., graph neural networks, which show state-of-
the-art performance on recommender systems, but are restricted in size due to insu�cient compute  power64,65). 
�ese systems have arbitrary connections with potentially long wire lengths between MAC units, representing 
di�erent edges in the graph. �e DONN can implement these links without incurring additional costs in energy 
from a complex network-on-chip in electronics. Yet another instance of greater distance between multipliers is 
in higher-bit-precision applications, as in training, which require larger MAC units.

In future work, we plan to assess the performance of the DONN on state-of-the-art DNN workloads, such as 
the models described in  MLPerf66. Firstly, we will benchmark the DONN against all-electronic state-of-the-art 
accelerators by using  Timeloop67. �rough a search for optimal mappings (ways to organize data and computa-
tion), this so�ware can simulate the total energy consumption and latency of running various workloads on 
a given hardware architecture, including computation and memory access. Timeloop therefore enables us to 
perform an in-depth comparison of all-electronic accelerators against the proposed instances of the DONN, 
including variable data transmission costs for di�erent electronic wire lengths. Second, we will design an optical 
setup and receiver to reduce experimental crosstalk, power consumption and latency. We can then test larger 
workloads on this optimized hardware. Finally, beyond neural networks, there are many examples of matrix mul-
tiplication which a DONN-style architecture can accelerate, such as optimization, Ising machines and statistical 
analysis, and we plan to investigate these applications as well.

In summary, the DONN implements arbitrary transmission and fan-out of data with an energy cost per 
MAC that is independent of data transmission length and number of receivers. �is property is key to scaling 
deep neural network accelerators, where increasing the number of processing elements for greater throughput in 
all-electronic hardware typically implies higher data communication costs due to longer electronic path length. 
Contrary to other proposed optical neural  networks21–25, the DONN does not require digital-to-analog conver-
sion and is therefore less prone to error propagation. �e DONN is also recon�gurable, in that the weights and 
activations can be easily updated. Our work indicates that the length-independent communication enabled by 
optics is useful for digital neural network system design, for example to simplify memory access to weight data. 
We �nd that optical data transfer begins to save energy when the spacing of MAC computational units is on 
the order of > 10 μm. More broadly, further gains can be expected through the relaxation of electronic system 
architecture constraints.

Methods
Digital optical neural network implementation for bit error rate and inference experi-
ments. We performed bit error rate and inference experiments with optical data transfer and fan-out of 
point sources using cylindrical lenses. Two digital micromirror devices (DMDs, Texas Instruments DLP3000, 
DLP4500) illuminated by spatially-�ltered and collimated LEDs (�orlabs M625L3, M455L3) acted as stand-
ins for the two linear source arrays. For the input activations/weights, each 10.8 µm-long mirror in one DMD 
column/row either re�ected the red/blue light toward the detector (‘1’) or a beam dump (‘0’). �en, for each 
of the DMDs, an f = 100mm spherical lens followed by an f = 100mm cylindrical achromatic lens imaged 
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one DMD pixel to an entire row/column of superpixels of a color camera (�orlabs DCC3240C). Each camera 
superpixel is made up of four pixels of size (5.3 µm)2: two green, one red and one blue. �e camera acquisi-
tion program applies a ‘de-Bayering’ interpolation to automatically extract color information for each sub-pixel; 
this interpolation causes blurring, and therefore it increases crosstalk in our system. In a future version of the 
DONN, a specialized receiver will reduce this crosstalk and also operate at a higher speed.

To process the image received on the camera, we subtracted the background, normalized, then thresholded 
by a �xed value for each channel. (We acquired normalization and background curves with all DMD pixels in the 
‘on’ and ‘o� ’ states, respectively. �is background subtraction and normalization could be implemented on-chip 
by precharacterizing the system, and biasing each receiver pixel by some �xed voltage.) If the detected intensity 
was above the threshold value, it was labeled a ‘1’; below threshold, a ‘0’. For the bit error rate experiments, we 
compared the parsed values from the camera with the known values transmitted by the DMDs, and de�ned 
the bit error rate as the number of incorrectly received bits divided by the total number of bits. In the inference 
experiments, the DMDs displayed the activations and pre-trained weights, which propagated through the opti-
cal system to the camera. A�er background subtraction and normalization, the CPU multiplied each activation 
with each weight, and applied the nonlinear function (ReLU a�er the hidden layers and so�max at the output). 
We did not correct for crosstalk here, to illustrate the worst-case scenario of impact on accuracy. �e CPU then 
fed the outputs back to the input activation DMD for the next layer of computation. We used a DNN model 
with two hidden layers with 100 activations each and a 10-activation output layer. We also tested a model with 
a single hidden layer with 100 activations.

MNIST preprocessing. For the inputs to the network, a bilinear interpolation algorithm transformed the 
28 × 28-pixel images into 7 × 7-pixel images, which were then �attened into a 1D 49-element vector. �e follow-
ing standard mapping quantized both input and weight matrices into 8-bit integer representations:

where Quantized is the returned value, QuantizedMin is the minimum value expressible in the quantized data-
type (here, always 0), Input is the input data to be quantized, FloatingMin is the minimum value in Input, and 

Scale is the scaling factor to map between the two datatype ranges 
(

FloatingMax−FloatingMin
QuantizedMax−QuantizedMin

)

 . See gemmlowp 

 documentation68 for more information on implementations of this quantization. In practice, 8-bit representations 
are widely used in DNNs, since 8-bit MACs are generally su�cient to maintain accuracy in  inference8,69,70.

Electronic and optical interconnect energy calculations. When an electronic wire transports data 
over a distance Lwire to the gate of a CMOS inverter (representative of a full-adder’s input, the basic building 
block of multipliers), the energy consumption per bit is:

where VDD is the supply voltage, Cwire/µm is the wire capacitance per micrometer, Lwire is the wire length between 
two multipliers and CT is the inverter capacitance. Interconnects consume energy predominantly when a load 
capacitance, such as a wire, is charged from a low (0 V) to a high ( ∼1 V) voltage, i.e., in a 0 → 1 transition. If we 
assume a low leakage current, maintaining a value of ‘1’ (i.e., 1 → 1 ) consumes little additional energy. To switch 
a wire from a ‘1’ to a ‘0’, the wire is discharged to the ground for free (Supplementary Note 4). Lastly, maintaining 
a value of ‘0’ simply keeps the voltage at 0 V, at no cost. Assuming a random distribution of ‘0’ and ‘1’ bits, we 
therefore include a factor of 1/4 in Eq. (3) to account for this dependence on switching activity.

In the DONN, a light source replaces the wire for fan-out. �e low capacitances of the receiverless detectors 
in the DONN allow for the removal of receiving  ampli�ers48. �us, the DONN’s minimum energy consumption 
corresponds to the optical energy required to generate a voltage swing of 0.8 V on the load capacitance (i.e., the 
photodetector ( Cdet ) and an inverter ( CT)), all divided by the source’s power conversion e�ciency (wall-plug 
e�ciency, WPE). Subsequent transistors in the multiplier are powered by the o�-chip voltage supply, as in the 
all-electronic architecture. Assuming a detector responsivity of ∼171, the DONN interconnect energy cost is:

where hν is the photon energy and the number of photons per bit, np , is determined by:

As in the all-electronic case, we assume low leakage on the receiverless photodetector. Photons are received 
for every ‘1’ and therefore, to avoid charge buildup, charge on the output capacitor must be reset a�er every 
clock cycle. In Supplementary Note 5, we propose a CMOS discharge circuit that actively resets the receiver. 
(Another possible method is a dual-rail encoding  scheme48.) �us, the switching activity factor is 1/2 instead 
of 1/4: as for the all-electronic case, we assume a random distribution of bits, but here, both 1 → 1 and 0 → 1 
have a nonzero cost.

�e energy consumption per 8-bit multiply-and-accumulate ( Ecomm in fJ/MAC) is simply the energy per bit 
multiplied by 16, representative of transmitting two 8-bit values.

(2)Quantized = QuantizedMin +
(Input − FloatingMin)

Scale

(3)Eelec/bit =
1

4

(

Cwire

µm
· Lwire + CT

)

· V
2
DD

(4)EDONN/bit =
1

2·WPE · hν · np

(5)np =
(Cdet + CT) · VDD

e
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Data availability
�e data generated and analyzed in this study are available from the corresponding authors upon reasonable 
request.

Code availability
Code used for acquiring and processing the MNIST dataset can be found at https ://githu b.com/alexs ludds /Digit 
al-Optic al-Neura l-Netwo rk-Code. Code used for image processing, hardware control, and calculations for energy, 
crosstalk and bit error rate is available from the corresponding authors upon reasonable request.
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