
FreeMAC: Framework for Multi-Channel MAC Development
on 802.11 Hardware

Ashish Sharma, Elizabeth M. Belding
Department of Computer Science

University of California, Santa Barbara CA 93106
{asharma, ebelding}@cs.ucsb.edu

ABSTRACT
Exponential growth in the number of wireless devices that oper-
ate in the limited unlicensed frequency spectrum necessitates the
next generation of radio devices to be reconfigurable and sensitive
to changes in network conditions and spectrum availability. Most
modern wireless devices offer increased software programmability
and control over radio communication parameters. Since a large
portion of the MAC protocol is implemented in software, with the
firmware providing a set of functional primitives, it is possible to
design and implement alternate MAC protocols in real testbeds
equipped with commodity 802.11 devices. This paper describes
FreeMAC, a reconfigurable MAC protocol development framework
that enables the design and implementation of a general class of
multi-channel MAC protocols on a typical Linux system. FreeMAC
provides support for frequent channel switching and fine control
over the timing of packet transmissions. We also propose a mecha-
nism to reduce the latency in the scheduling of periodic operations
of a software MAC protocol that have strict timing requirements.
Results from our six node testbed indicate that using our approach,
the scheduling latency of slot transitions in a TDMA-style MAC
can be improved by up to an order of magnitude, with minimal
overhead. FreeMAC also exports a number of radio configura-
tion parameters as API functions to enable cross layer interactions
among wireless networking protocols. As a proof of concept, we
implement a simple multi-channel TDMA MAC on our testbed to
demonstrate the utility of FreeMAC as a development framework.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]:
COMPUTER-COMMUNICATION NETWORKS Network Archi-
tecture and Design Wireless communication

General Terms
Design, Experimentation, Measurement

Keywords
MAC, TDMA, multi channel, wireless networks, medium access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

1. INTRODUCTION
The explosive growth in the popularity of 802.11 technology in

recent years has given WiFi devices a ubiquitous presence around
the world. The operation of 802.11 devices in the unlicensed fre-
quency spectrum has been a major factor contributing to the large
scale adoption of WiFi technology. Further, the economies of scale
have dramatically reduced the cost of hardware and resulted in easy
availability of 802.11 devices even in rural areas of the world.

Most 802.11 hardware manufacturers offer increased software
programmability and control over several radio communication pa-
rameters. The increasing number of wireless devices in the unli-
censed spectrum necessitates the next generation of radio devices
to be reconfigurable and sensitive to changing network conditions
and spectrum availability. In the future, the trend of increasing the
programmability of the hardware is expected to grow due to the
emergence of cognitive and software defined radio networking.

Several recent efforts have focused on the customization of the
default 802.11 MAC to achieve significant performance improve-
ment in specific network scenarios. 2P [11] and WildNet [10] are
examples of a custom TDMA-style MAC on 802.11 hardware for
long distance WiFi-based rural mesh networks. There are sev-
eral radio communication parameters, such as transmit power, fre-
quency channel, transmission rate, number of retries, slot duration,
backoff intervals, per-packet acknowledgements and reception of
erroneous frames, that can be used to improve the performance of
different types of wireless networks. Since a large portion of the
802.11 MAC is implemented in software, with the firmware provid-
ing a set of functional primitives, it is even possible to design and
implement new MAC protocols on commodity 802.11 devices [8,
14, 4].

Despite the promise of 802.11 devices as an affordable platform
to build new MAC protocols, the real world implementation of new
MAC protocols still faces many challenges. To date, most modi-
fications to the 802.11 MAC focus on achieving specific function-
ality, making it difficult to adapt an existing solution to implement
a different protocol. The shortage of generic wireless MAC proto-
col development frameworks and the high cost of software defined
radios has forced most researchers to rely on simulations for eval-
uation of new MAC protocols. However, simulations not only fail
to accurately capture the characteristics of a wireless medium, but
also adopt an indifferent approach to the design and implementa-
tion constraints that arise when dealing with a real world system.
Factors like the extent of support offered by the operating system,
degree of programmability offered by a hardware manufacturer,
cost and availability constraints of the suitable hardware often pro-
hibit a MAC layer design from being deployed on a real testbed.

To enable research that has the potential for significant impact
in the real world, the networking community needs platforms that

69

allow researchers to not only use the wide array of radio configu-
ration parameters, but also develop new protocols than can be vali-
dated on real testbeds. Recent research has shown that by increas-
ing cross layer interaction between MAC and upper layer network-
ing protocols, significant improvement in the system performance
can be achieved [1, 15]. Thus, exporting the functionality avail-
able at the MAC layer to the upper layers of the networking stack,
by means of API functions, can pave the way for better protocol
designs. Further, multi-channel MAC protocols can result in im-
proved spatial reuse of the available channels in a network.

In this paper, we describe the design and implementation details
of FreeMAC – a framework for the development of multi-channel
MAC protocols, with strict timing requirements. We use the Open-
HAL [9] port of MadWiFi [6] - an open source driver for Atheros
chipset-based commodity 802.11 wireless devices. FreeMAC lever-
ages the methodology described in the SoftMAC [8] development
platform and our previous work on MadMAC [14]. However, un-
like previous approaches that either focus on specific TDMA-style
MAC development [11, 10] or provide MAC development frame-
works for single-channel MAC protocols [8, 4, 14], we address
a general class of MAC protocols that may require strict control
over the timing of MAC protocol functions and/or the ability of the
radio device to switch between different frequency channels. In
summary, this paper makes the following key contributions:

1. We develop a framework for the implementation of multi-
channel MAC protocols on commodity 802.11 hardware.

2. We propose a new implementation mechanism for software
TDMA-style MAC protocols that improves the unpredictable
latency in the scheduling of time-sensitive TDMA functions.
Our approach reduces the system response time towards pe-
riodic time-critical functions from up to several hundred mil-
liseconds to a sub-millisecond predictable delay, with mini-
mal additional system overhead.

3. We provide a set of API functions that export a number of ra-
dio configuration parameters to the MAC protocol developer
and other network applications.

The rest of the paper is organized as follows. Section 2 gives an
overview of the FreeMAC framework and the supported feature set.
In Section 2.1, we highlight the challenges in the implementation
of any multi-channel MAC in software on a typical Linux system.
Section 2.2 describes the implementation details of FreeMAC plat-
form. In Section 3, we implement a simple multi-channel TDMA
style MAC on a testbed of six nodes and present some experimental
results. Section 4 presents the related work in the field. We con-
clude by summarizing our contributions and ideas for future work
in Section 5.

2. FREEMAC DESIGN
FreeMAC is a framework for the design and implementation

of wireless MAC protocols on a Linux system using commodity
802.11 devices. It allows tight control over several radio parame-
ters, enabling the development of a general class of multi-channel
MAC protocols that require time-critical scheduling of periodic
MAC functions. The FreeMAC system design is based on three
main principles. First, the system should focus on providing mech-
anisms to implement a wide variety of MAC protocols, rather than
specific customizations. Second, all mechanisms proposed should
be implementable on a typical Linux system with commodity WiFi
cards, without the need for any additional hardware. Third, the sys-
tem should refrain from relying on any proprietary modifications to
the device firmware.

The FreeMAC development platform provides fine control over
the timing of packet transmissions by exporting API functions to
the MAC layer designer that manipulate the hardware queue size
and control the contention backoff periods. It achieves precise
control over the scheduling of time-critical MAC functions by pro-
gramming service routines of periodic beacon interrupts instead of
using software timers in the kernel. FreeMAC provides support for
frequent channel switching by eliminating any scanning or neigh-
bor discovery operations associated with the IEEE 802.11 protocol,
as the ability to do so lies at the core of any multi-channel MAC
protocol that requires a single node to communicate with several
other nodes operating on different channels [16, 2].

The FreeMAC development framework provides fine control over
a number of radio communication parameters, which can be used
to improve cross layer interaction between networking protocols.
FreeMAC supports the following feature set:

• Flexible frame formats

• Disabling of per-packet ACKs

• Disabling of virtual carrier-sense

• Support for rapid channel switching

• Disabling/control of random backoff intervals

• Predictable scheduling of time-critical functions

• Fine control over the time of packet transmission

• Device driver and hardware queue size manipulation

• Enable/disable per-packet successful transmit interrupt

• Per-packet control of the number of retransmissions, transmit
power and rate

As a proof of concept, we use the FreeMAC framework to im-
plement a simple prototype multi-channel TDMA based MAC on a
testbed of six nodes. Multi-channel MAC protocols aim to improve
the capacity of a wireless network by time-multiplexing the opera-
tion of nodes on orthogonal channels. While a full fledged multi-
channel TDMA MAC protocol has to deal with a whole array of
issues, such as distributed versus centralized scheduling, time syn-
chronization, clock drifts, dissemination of schedules, static versus
dynamic scheduling and admission control, we focus our attention
on enabling the primitives for the deployment of such a MAC pro-
tocol on existing systems.

2.1 Challenges
In the absence of inherent support from the device hardware,

there are several challenges in implementing a TDMA-based MAC
protocol in software. In this section we discuss the challenges in
implementing a multi-channel TDMA MAC protocol on a Linux
system, using commodity 802.11 hardware. Section 2.2 describes,
in detail, our solutions to the challenges discussed below.

A. Insufficient support for time scheduling
Essential to the implementation of a TDMA style MAC protocol
in software is the ability to precisely control the timing of state
transitions at slot boundaries. In the case of multi-channel MAC
protocols, where a node is required to switch to a different channel
to communicate with a neighbor, the timing requirements become
even more stringent. If a node fails to switch to the destined chan-
nel at the scheduled time, it will be unable to communicate with the
neighboring nodes. This can lead to network partitions. The slot

70

duration of a TDMA style MAC implemented in software is typi-
cally of the order of tens of milliseconds (20-60 ms) [10, 14]. Patra
et al. observe that in their WiLDNet [10] deployments, the UDP
throughput levels off beyond a TDMA slot size of 20 ms. On the
other hand, for a constant send window size, TCP throughput tends
to reduce at higher slot sizes due to an increased bandwidth-delay
product of the long distance link. Thus an inaccuracy of even a few
milliseconds can have an observable impact on the performance of
the TDMA MAC.

The Linux kernel, by default, does not allow fine control over
the scheduling of time critical functions, required for TDMA based
MAC schemes. Timers are handled in the kernel using deferrable
functions that may be executed, depending on system load, a long
time after the expiration of the timer. The kernel timers guarantee
best effort scheduling of the timer tasks, ensuring only that the task
will be scheduled for execution either at the moment of the timer
expiration, or after a variable delay of up to tens or even hundreds
of milliseconds [3]. For the above mentioned reasons conventional
kernel software timers are unsuitable for applications that require
the expiration time to be strictly enforced, such as a TDMA-style
MAC.

B. Insufficient control over transmission time
There is a variable queueing delay, both in the device driver and
hardware queues, between the time a packet is delivered by the soft-
ware TDMA scheduler to the device driver and the time the packet
is actually transmitted. The Clear Channel Assessment (CCA) and
CSMA/CA backoff procedures, preceding a packet transmission in
the 802.11 protocol, further add to an unpredictable delay before
the packet is finally transmitted. In WiLDNet [10] and Overlay
MAC [12] implementations, the TDMA scheduler is implemented
as a Click [5] module between the network layer and the device
driver. Such an approach may lead to an additional delay because of
scheduling latency between the Click module and the device driver
processes in the operating system. By providing TDMA scheduling
support in the device driver and controlling the backoff thresholds
and queue sizes, transmission timing of a packet can be controlled
to a large extent.

C. State Transition Overhead
In a software TDMA style MAC, transitions between a transmit and
a receive slot may incur a non-negligible overhead. State transitions
at slot boundaries may involve several operations like changing the
antenna configuration in multi-antenna systems, beacon transmis-
sion or channel switching. In the case of multi-channel MAC pro-
tocols, the channel switching delay may result in significant over-
head, as discussed in detail in Section 2.2. The system must not
only wait for any ongoing transmissions or receptions to finish, but
also allow any DMA operations to complete ongoing transfers be-
tween the system memory and the wireless device. Depending on
the system load, this delay may vary from time to time.

A common approach to minimize the effect of transition over-
head and to overcome synchronization errors due to variable clock
drift rates is to introduce a grace period (guard band) between con-
secutive time slots. Sharma et al. [14] study the effect of different
guard time durations on throughput, in a single channel TDMA
MAC implementation, and show that for slot durations between
20-60 ms, the observed UDP throughput decreases with increasing
guard durations.

D. Time Synchronization
The greatest challenge in implementing a TDMA MAC protocol
lies in synchronizing the clocks of nodes in the network. Different
MAC protocols define different constraints on the precision lev-
els expected from the clock synchronization technique used in the
network. Raman et al. use special marker packets to achieve syn-

chronous transmissions among nodes. Patra et al. synchronize the
TDMA slots by adopting a notion of virtual time indicated in the
first packet of each transmission slot. The Overlay MAC [12] and
SSCH [2] protocols argue the case for employing advanced tech-
niques from the sensor network research literature to achieve syn-
chronization among nodes over multiple hops.

Broadly, time synchronization among nodes in a network may
be achieved in two ways. In the first approach, an in-system com-
munication protocol, as proposed extensively in the sensor network
community, achieves time synchronization in a centralized or dis-
tributed fashion [13]. The other alternative approach is to employ
an external channel to synchronize the nodes, such as through GPS
based clock synchronization. Because our goal is to enable oper-
ating system support for a software implementation of a TDMA
MAC, a detailed discussion of the various synchronization tech-
niques is beyond the scope of this paper.

2.2 Implementation
In this section, we describe the internal implementation details of

the FreeMAC programmable MAC development framework. The
degree of programming flexibility of hardware varies from one man-
ufacturer to the other. The FreeMAC platform uses the features
of Atheros chipset-based 802.11 devices. In our system, we use
the AR5212 chipset-based commodity 802.11 a/b/g hardware. The
Atheros chipset provides a high degree of software control over
several aspects of the radio device. To comply with wireless spec-
trum regulations, Atheros restricts all access to the hardware through
a software Hardware Abstraction Layer (HAL), which is distributed
in the form of a binary file. FreeMAC builds on top of the Mad-
WiFi open source driver, which has the support of a large com-
munity of open-source developers. Recently, there have been at-
tempts by the MadWiFi developer community to develop Open-
HAL [9] - an open source project that aims to replace the propri-
etary Atheros HAL, mainly by reverse engineering, to directly ac-
cess the hardware. FreeMAC is developed using only open source
references and contains no proprietary code. We now describe,
in detail, how FreeMAC achieves the aforementioned functional-
ity and our approach to address the system challenges described in
Section 2.1.

Precise event scheduling: To overcome the limitations of kernel
timers in scheduling time-sensitive MAC functions, we devise a
method to generate periodic hardware interrupts from the Atheros
wireless device. Atheros hardware allows the creation of differ-
ent types of hardware queues, one of which is a beacon queue. A
beacon queue is initialized with a beacon interval (bintval) value
that specifies the duration at which a periodic hardware interrupt
(HAL_INT_SWBA) is generated. The default handler for this in-
terrupt invokes a beacon generating function in the MadWiFi driver
code. FreeMAC exploits this periodic hardware interrupt to exe-
cute the time-critical functions of the software TDMA MAC. This
is done by substituting the default beacon interrupt handler with a
custom handler in the interrupt service routine. Although the pe-
riodicity of beacon intervals can be programmed dynamically us-
ing FreeMAC API functions, such an approach of using beacon
interrupts is most suited for operations that are periodic in nature
such as TDMA slot transitions, instead of individually scheduled
events.

The tradeoff in executing MAC functions in the interrupt context
of kernel is that these operations take precedence over other system
tasks. Thus, it is important to keep the number of operations in the
interrupt handler to a minimum. Since interrupt handlers, by their
nature, run concurrently with other system code, it is also essential
to implement proper locking mechanisms in the MAC code. This

71

avoids concurrency related issues due to simultaneous contention
for kernel data structures and device hardware.

Improved control over timing of packet transmissions: To pro-
vide fine control over the timing of packet transmissions, we reduce
the random backoff by setting the CWmin and CWmax parame-
ters to the minimum value (0 for beacons and 1 for normal traffic).
We also disable the random post-backoff (backoff specified in the
802.11 protocol that requires a sender to backoff after a successful
transmission), using the HAL_TXQ_BACKOFF_DISABLE flag in
the transmit queue descriptors. We export API functions in the
FreeMAC platform to specify the minimum and maximum CW
thresholds dynamically. We reduce the queueing delay in the hard-
ware by setting the queue size to one and buffer packets in the soft-
ware instead. In Atheros based devices, a channel switch operation
involves resetting of the hardware. Since all packets buffered in the
hardware queue are flushed during a hardware reset, a queue size
of one also prevents multiple packets from getting dropped during
a channel switch. However, if a MAC does not require frequent
channel switching then a small hardware queue size might incur a
penalty in the performance of the software MAC.

Rapid channel switching: Channel switching in 802.11 networks
is a rather infrequent operation and nodes typically have a dwell
period of tens of milliseconds. During this time they perform scan-
ning and neighbor discovery operations under the assumption that,
upon a channel switch, a node breaks communication with the present
wireless network. In multi-channel networks, the assumption that
a node disassociates from the present network during a channel
switch is invalid. FreeMAC enables the development of multi-
channel MAC protocols that require frequent switching of chan-
nels by eliminating any scan or neighbor discovery operations. Al-
though hardware specifications of several manufacturers indicate a
channel switching delay in the order of 200 µs [7], we observed that
on the AR5212 chipset, the channel switching operation requires a
full hardware reset which incurs a delay of approximately 1.2 ms.
An additional delay of about 3.2 ms is introduced in the channel
switching operation due to other system operations, such as flush-
ing any pending transmission buffers in the hardware queues and
waiting for any pending transmit or receive DMA operations to fin-
ish. Table 1 shows the results from our testbed running a simple
multi-channel TDMA MAC protocol.

FreeMAC provides the MAC designer with the choice to disable
per-frame ACKs. Disabling per-packet acknowledgements requires
two specific tasks. First, the receiver must be prevented from send-
ing an ACK for a received frame. This can be achieved by marking
the transmitted packet as a multicast packet, as described in [8, 4].
The second task is to prevent the sender from waiting to receive
an ACK from the receiver. This can be achieved by setting the
HAL_TXDESC_NOACK flag, which is set for broadcast and mul-
ticast packets, in addition to beacon frames. FreeMAC operates
in the monitor mode of the MadWiFi driver, which allows several
benefits such as transmission of raw packets (bypassing the default
802.11 frame format) and reception of control and data packets,
whether or not they pass the checksum. Monitor mode allows easy
manipulation of the frame format and disabling of virtual carrier
sense (NAV), as described in [4]. We implement the multi-channel
TDMA protocol using a custom frame format that extends Ethernet
header with sequence numbers. However, FreeMAC can be easily
programmed to support any other header format. In addition to the
above mentioned features, FreeMAC also exports primitives to con-
trol MAC level parameters such as hardware queue size, number of
retries, and transmission power and rate, by means of different API
functions.

Figure 1: Experimental Setup.

Figure 2: Multi-channel TDMA schedule.

3. MULTI-CHANNEL TDMA MAC
EXPERIMENTS

In this section, we implement a simple multi-channel TDMA-
style MAC protocol on a testbed of six IBM laptops to demon-
strate the utility of FreeMAC as a generic MAC development plat-
form. The goal of our experiments is to verify the correctness of
the primitives exported by the FreeMAC platform. We characterize
the improvement in scheduling latency of time-slot transitions due
to the beacon interrupt scheme and measure the overhead of using
such an approach. We also measure the channel switching delay
of commodity 802.11 devices and the constraints it imposes on a
multi-channel MAC protocol implementation. We now describe
the system setup and the TDMA scheduling scheme followed by
the results.

3.1 System Setup
FreeMAC is implemented on six IBM laptops, each running pre-

emptible Linux kernel version 2.6.15.7 on Ubuntu distribution. Each
laptop is equipped with an AR5212 chipset-based LinkSys 802.11
a/b/g PCMCIA card. In our testbed, we implement both single and
multi-channel TDMA-style MAC protocols as described below. As
shown in Figure 1, nodes 1 and 4 run a multi-channel TDMA pro-
tocol in which the nodes alternate between two different channels.
Nodes 2 and 3 run a single channel TDMA protocol. Nodes 5 and 6
passively monitor the network activity on the two channels in use.
In Figure 1, nodes 3 and 5 operate on channel 40 in the 802.11a
5GHz band, while nodes 2 and 6 operate on channel 60. All the
nodes are synchronized using the Ethernet interface of each of these

72

Average (ms) Standard Deviation (µs)
Channel switch delay 4.378 12.061
Hardware reset delay (ath_hal_reset) 1.162 4.971

Interrupt Periodicity (bintval = 25)
CPU usage = 1% 25.6 12.407
CPU usage = 99% 25.6 13.460

Table 1: Experimental results from the multi-channel TDMA implementation.

nodes, which provides an out-of-system synchronization channel.
We use the synchronization protocol described in [13], which pro-
vides an accuracy of 25 µs on our system.

The above setup demonstrates the capability of the FreeMAC
framework to implement both single-channel (for nodes 2 and 3) as
well as multi-channel (for nodes 1 and 4) TDMA-style MAC pro-
tocols. There are four time-slots in our TDMA schedule and two
orthogonal channels. Each node transmits in two of these slots and
receives on the remaining two. In the case of nodes 1 and 4, which
run a multi-channel TDMA protocol, the two transmit slots are as-
signed different channels such that only one node transmits on a
particular channel at any time. The nodes switch channels at the
beginning of each transmit slot. In the case of nodes 2 and 3, which
run a single channel TDMA protocol, the transmit and receive slots
alternate in each cycle. Nodes 5 and 6 are each assigned a separate
channel to monitor and verify the correct operation of the proposed
system. Figure 2 shows the state of the multi-channel TDMA sys-
tem over time. Tx denotes a transmission slot where the receiver is
node x. Similarly Ry denotes a receive slot, where the transmitter
is node y.

We choose a time slot duration of 25 ms with a guard band in-
terval of 5 ms preceding each slot (as described in Section 2.1).
To demonstrate the ability to build a MAC protocol that uses a
different frame format than that of the 802.11 protocol, we use a
custom frame format. In the new frame format, we extend the Eth-
ernet header to include a MAC sequence number field. IP packets
from the network layer are encapsulated in the custom frame for-
mat using Click [5] and transmitted in monitor mode to allow raw
frame transmissions. We disable per-packet ACKs and retries for
the transmitted packets. A node buffers all incoming packets from
the network layer and only transmits packets in its scheduled trans-
mit slot. We disable random backoff and virtual carrier sensing.
The following section describes the experimental results from our
testbed.

3.2 Results
A. Timing Accuracy

Our experiments show that the hardware beacon interrupt can be
used to schedule periodic time-critical events with a sub-millisecond
accuracy. Beacon interrupts are generated by the Atheros hardware
using an internal timer that has a frequency of 210 ticks per sec-
ond. The supplied bintval parameter b translates to a periodicity of
a milliseconds according to Eqn 1 with a standard deviation of less
than 15µs.

a = 1.024 ∗ b (1)

Figure 3 shows the periodicity at which the custom beacon interrupt
handler was called for slot transition functions in a standard Linux
machine with a preemptible kernel. It is also worth noting that in
our system, the periodicity of interrupt handler execution remained
consistent, even during high system load conditions, as shown in
Table 1.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 30 40 50 60 70 80 90 100 110

In
te

rr
up

t I
nt

er
va

l (
m

s)

bintval

99% Confidence Interval = ± 0.1 μs

Figure 3: Interrupt periodicity as a function of bintval.

B. Channel Switching Delay
Most hardware manufacturers claim that the channel switching de-
lay is of the order of 80-90 microseconds [7]. However, our exper-
iments indicate that for AR5212 chipset based 802.11 a/b/g cards,
using the MadWiFi driver, a channel switch results in an average
end-to-end delay of 4-5 ms. In addition to the actual hardware re-
set, which takes about 1.2 ms on average, a delay of 3.2 ms occurs
to account for any pending DMA operations between the system
memory and the hardware to finish up.

Results from our testbed highlight an important limitation in the
software implementation of multi-channel MAC protocols that re-
quire channel switching every few milliseconds. SSCH [2] sug-
gests channel switching every 10 ms, while MMAC [16] suggests
a channel switch every 100 ms. The current draft of the 802.11s
standard for wireless mesh networks also mentions a multi-channel
operation mode where nodes may rapidly switch channels for data
transactions. Each of these protocols rely on the ability to switch
channels within a period of 100-200 µs. While the millisecond
delay in channel switching may be a limitation of the specific hard-
ware used in our system, the waiting period for pending DMA op-
erations may be a more generic issue. We note that while designing
a multi-channel MAC protocol, either this limitation must be taken
into account or specific system improvements may need to be de-
signed. We plan to investigate this issue in our future work.

C. Interrupt Overhead
We use beacon interrupts to service time-sensitive MAC operations
such as TDMA slot transitioning and initiate channel switching.
Since we only modify the interrupt handler of beacon interrupts
that occur in a conventional wireless access point, the only ad-
ditional overhead this technique imposes on the system is due to
the increase in the frequency at which such interrupts occur. The
normal Linux kernel handles 1000 (HZ=1000) software timer in-
terrupts per second in addition to hardware interrupts caused by
other peripheral devices. In our system, we set the beacon inter-
rupt interval equal to the time slot value of 25 ms. This results in
the generation of at most 40 interrupts per second, as opposed to
20 received by a conventional wireless access point that sends out
beacons every 50 ms, indicating that such an overhead is minimal.

73

4. RELATED WORK
Easy availability, low cost and open-source drivers have led re-

searchers to use 802.11 hardware in ways that far surpass the in-
tended use case scenarios of the 802.11 protocol. Several research
efforts have been made to harness the programmability offered by
802.11 hardware to customize the MAC protocols for case-specific
scenarios.

802.11 enhancements: In [11, 10], the authors implement a TDMA
style MAC protocol on 802.11 hardware for long distance WiFi
links. The 2P protocol [11] is a TDMA-style MAC protocol based
on synchronous node transmissions, where special marker packets
are used to indicate synchronous transmission slots. Patra et al.
proposed WiLDNet [10], which extends 2P with bulk ACKs and
FEC-based adaptive loss recovery mechanisms. In [12], an overlay
MAC on top of 802.11 is proposed to improve fairness issues in
802.11. Both [10, 12] use Click [5] to loosely implement a notion
of time slots by controlling the time at which a packet is handed to
the device driver for transmission.

Reconfigurable MAC platforms: Neufeld et al. proposed Soft-
MAC [8] as a platform for building experimental MAC protocols.
MultiMAC [4] builds on top of SoftMAC to implement multiple
MAC protocols. In MadMAC [14], Sharma et al. developed a sim-
ilar platform to implement a TDMA MAC protocol. Both [8, 14]
allowed frame formats to differ from those of the 802.11 protocol
and, unlike the approaches in [11, 10, 12], provided direct control
of MAC operations and the timing of packet transmissions.

Multi-channel MAC protocols: A number of multi-channel MAC
protocols have been proposed that require a node with a single ra-
dio to switch between different channels on a per-packet or per-
timeslot basis [2, 16]. MMAC [16] requires all the nodes in the
network to periodically switch to a common control channel, nego-
tiate their future channel selections, and then resume the channel
contention mechanism of the IEEE 802.11 protocol after switching
to the destination channel. The current draft of the upcoming IEEE
802.11s standard for wireless mesh networks also mentions a sim-
ilar Common Channel Framework (CCF). In the proposed draft,
nodes negotiate switching to a channel with little activity using
RTX-CTX messages and return to the common channel period-
ically. SSCH [2] uses a distributed rendezvous protocol that re-
lies on a pseudo-random generator to construct a channel hopping
schedule.

5. CONCLUSION AND FUTURE WORK
In this paper, we have described FreeMAC, a framework for

the design and implementation of a generic class of multi-channel
wireless MAC protocols, on a typical Linux system using com-
modity 802.11 devices. FreeMAC provides fine control over sev-
eral radio communication parameters using API functions. We also
propose a novel implementation approach to support the periodic
scheduling of time-sensitive MAC functions with high accuracy.
We implement a simple multi-channel TDMA MAC protocol using
the FreeMAC framework on a testbed of six nodes to demonstrate
the utility of FreeMAC as a platform to deploy new MAC protocols
on real testbeds. We plan to use the FreeMAC platform to design
and validate dynamic TDMA-style multi-channel MAC protocols
for deployment in rural mesh networks.

6. REFERENCES
[1] P. Acharya, A. Sharma, E. M. Belding, K. C. Almeroth, and

K. Papagiannaki. Congestion-Aware Rate Adaptation in
Wireless Networks: A Measurement-Driven Approach. In
SECON’08: Fifth Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, San Francisco, CA, USA, June 2008.

[2] P. Bahl, R. Chandra, and J. Dunagan. SSCH: Slotted Seeded
Channel Hopping for Capacity Improvement in IEEE 802.11
Ad-hoc Wireless Networks. In MobiCom ’04: 10th Annual
International Conference on Mobile Computing and
Networking, pages 216–230, Philadelphia, PA, USA, 2004.

[3] D. P. Bovet and M. Cesati. Understanding the Linux Kernel
(3rd Edition). O’Reilly, 2006.

[4] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. C. Sicker,
and D. Grunwald. MultiMAC - An Adaptive MAC
Framework for Dynamic Radio Networking. In DySPAN ’05:
First IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks, Baltimore, Maryland,
USA, November 2005.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. In ACM Transactions
on Computer Systems, volume 18, pages 263–297, August
2000.

[6] MadWifi. http://www.madwifi.org.
[7] Maxim 2.4GHz 802.11b Zero-IF Transceivers.

http://pdfserv.maxim-ic.com/en/ds/MAX2820-
MAX2821.pdf.

[8] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald.
SoftMAC - Flexible Wireless Research Platform. In
HotNets’05: Fourth Workshop on Hot Topics in Networks,
College Park, Maryland, USA, November 2005.

[9] OpenHAL. http://madwifi.org/wiki/About/OpenHAL.
[10] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian,

and E. Brewer. WiLDNet: Design and Implementation of
High Performance WiFi Based Long Distance Networks. In
NSDI ’07: 4th USENIX Symposium on Networked Systems
Design and Implementation, Cambridge, MA, USA, April
2007.

[11] B. Raman and K. Chebrolu. Design and Evaluation of a New
MAC Protocol for Long-Distance 802.11 Mesh Networks. In
MobiCom ’05: 11th Annual International Conference on
Mobile Computing and Networking, pages 156–169,
Cologne, Germany, August 2005.

[12] A. Rao and I. Stoica. An Overlay MAC Layer for 802.11
Networks. In MobiSys ’05: Proceedings of the 3rd
International Conference on Mobile Systems, Applications,
and Services, Seattle, Washington, USA, June 2005.

[13] S. Ganeriwal and R. Kumar and M. B. Srivastava.
Timing-sync Protocol for Sensor Networks. In SenSys’03:
ACM Conference on Embedded Networked Sensor Systems,
Los Angeles, CA, USA, November 2003.

[14] A. Sharma, M. Tiwari, and H. Zheng. MadMAC: Building a
Reconfigurable Radio Testbed Using Commodity 802.11
Hardware. In WSDR ’06: First IEEE Workshop on
Networking Technologies for Software Defined Radio
Networks, Reston, VA, USA, September 2006.

[15] I. Sheriff, P. Acharya, and E. M. Belding. Resource
Estimation on Wireless Backhaul Networks. In WICON’07:
Third Annual International Wireless Internet Conference,
Austin, Texas, USA, October 2007.

[16] J. So and N. H. Vaidya. Multi-Channel MAC for Ad Hoc
Networks: Handling Multi-Channel Hidden Terminals Using
A Single Transceiver. In MobiHoc ’04: Proceedings of the
5th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 222–233, Tokyo, Japan,
May 2004.

74

