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Abstract 

In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their 
propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that 
oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following behavior (CF). LCMs were 
predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas 
oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation 
propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially 
exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well-
developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, 
although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car-
following behavior: a deceleration wave of an oscillation affects a timid driver (with larger response time and minimum spacing) 
to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework 
of Newell’s CF is able to describe the regressive effects with two additional parameters with reasonable accuracy, as verified 
using vehicle trajectory data. 
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1. Introduction 

Traffic oscillations refer to the stop-and-go driving conditions in congested traffic that cause drivers to exhibit 
oscillatory trajectories with regular deceleration/acceleration cycles. These disturbances typically form near active 
freeway bottlenecks (Ahn & Cassidy, 2007) and propagate against traffic flow at relatively constant speeds of 10-20 
km/hr without fanning out (Mauch & Cassidy, 2002; Ahn, 2005; Lu & Skabardonis, 2007; Schonhof & Helbing, 
2007). They often grow in amplitude as they propagate (Mauch & Cassidy, 2002) and adversely impact traffic safety 
(Zheng, Ahn & Monsere, 2010).  

Traditional wisdom indicates that traffic oscillations are induced by instabilities in longitudinal vehicle 
interactions (e.g., Herman, Motroll & Potts, 1959). In support of this premise, oscillations were observed on a 
single-lane facility (Smilowitz, Daganzo, Cassidy, & Bertini, 1999), a test-track (Sugiyama et al., 2003) and a tunnel 
where lane-changing maneuvers (LCMs) were prohibited (Edie and Baverez, 1958). Other studies (Kerner & 
Rehborn, 1996, Mauch & Cassidy, 2002; Ahn & Cassidy, 2007) provide empirical evidence that LCMs are 
primarily responsible for oscillations’ formations and growths on multilane freeways. In particular, Ahn and Cassidy 
(2007) analyzed several instances of formations and growths using trajectory data and confirmed that LCMs are 
indeed a primary factor. However, they also observed that oscillations often grew in amplitude without LCM. Laval 
and Leclercq (2010) showed that the growth without LCM is attributed to driver characteristics (timid vs. 
aggressive).  

Several car-following (CF) models have recently been proposed to replicate oscillations by assuming 
probabilistic headways during decelerations (Del Castillo, 2001) or probabilistic reaction time (Kim & Zhang, 
2008). In addition to the free-flow and congested regimes, Orosz, Wilson, Szalai, and Stépán (2009) defined a third 
regime, called the “excitable regime.” Traffic flow in this regime is stable but sensitive to external perturbations, 
which leads to oscillations’ formations. Yeo and Skabardonis (2010) proposed an asymmetric traffic theory in which 
five traffic states are defined: acceleration, deceleration, coasting, stationary, and free flow.  During a coasting state, 
a vehicle changes its spacing at a constant speed. Other states are self-explanatory. In their conjecture, stop-and-go 
waves generate near a deceleration curve in congested traffic. The waves propagate upstream (or dissipate) if the 
following traffic is near the deceleration (acceleration) curve. They have tested their theory by plotting and visually 
checking trajectory data. Laval and Leclercq (2010) criticized the lack of physical meaning of these models and 
proposed an extended framework of Newell’s CF theory (2002) to incorporate different driver characteristics.  

Despite numerous studies on oscillations, our understanding of oscillations is not sufficient. Most existing studies 
were conducted using loop detector data, whose resolution is not adequate to reveal the mechanism of oscillations. 
Sugiyama et al. (2003) and Ahn and Cassidy (2007) are among the first studies to explicitly show that oscillations 
can be triggered by either car-following or lane-changing. However, these studies were conducted in a controlled 
environment (a circular track in Sugiyama et al., 2003) or using a small sample of vehicle trajectory data on a single 
location (Ahn and Cassidy, 2007). Moreover, trajectory data are noisy due to wide variations in driver behavior. 
Thus, analyzing the trajectory data in a systematic and reproducible way has been challenging, and subjective 
judgment was often applied in interpreting the data. Finally, existing (microscopic) models are often calibrated and 
validated using simulations, macroscopic data (i.e., loop detector data), or limited trajectory data. This is due to the 
fact that there is lack of systematic methods to analyze oscillations at the individual vehicle level.  

In this paper we address the shortcomings of previous studies and identify oscillations’ triggers at the vehicle 
level and analyze the propagation features in a comprehensive and systematic manner using Wavelet Transform 
(WT). Zheng, Ahn, Chen, and Laval (2011a) demonstrate using small samples that WT is effective for analyzing 
bottleneck activations, regime transitions, and traffic oscillations. In view of this, we adopt WT to analyze a large 
number of oscillations (53 cases) in a systematic and efficient way, while minimizing subjective judgment in data 
processing. Our findings elucidate to what extent LCMs or instabilities in CF are responsible for formations. We 
also investigate propagation characteristics for different triggers, including the transition mechanism from precursor 
to well-developed phases of oscillations. Finally, this study investigates the impact of oscillations on driver 
behavior.  

The remainder of this paper is organized as follows. Section 2 presents a summary of the theoretical background 
of WT and its adaptation to analyze traffic data. Section 3 describes the study sites and data. Section 4 discusses 
findings related to oscillations’ formations. Section 5 describes the characteristics (i.e., duration, amplitude, and 
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intensity) of oscillations along their propagation paths and the effects of LCMs and CF behavior. Finally, 
conclusions and future research are summarized in Section 6. 

2. Background: Wavelet Transform (WT) 

As we note in the previous section, existing methods have limitations in analyzing oscillations in ways that are 
efficient, objective, and reproducible. Li, Peng, and Ouyang (2010) and Zheng et al. (2011a) provide comprehensive 
reviews on existing techniques. Zheng et al. (2011a) describe the mathematical theory of WT and demonstrate its 
potential applications for analyzing various features of congested traffic including bottleneck activations, regime 
transitions, and traffic oscillations. Here, we adopt this method to analyze oscillations in depth. A summary of WT 
described in Zheng et al. (2011a) follows.  

As a time-frequency decomposition tool, WT is effective in extracting local information from non-stationary time 
series because in the wavelet framework, any local changes can be captured by moving the wavelet along the time 
domain and changing the scale (i.e., squeezing or dilating the wavelet). With such time-scale representation of a 
noisy and aperiodic time series data (e.g., oscillatory traffic data), WT can preserve underlying features while 
removing trivial events.  

A wavelet is a (real or complex) mathematical function, ߰ሺݐሻ, that transforms continuous time series data into 
various scale components. The Mexican hat wavelet, as defined in (1), is selected in this study because of its similar 
shape to a typical cycle of traffic oscillation and small Shannon entropy (Addison 2002; Fugal 2009). 
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where ܽ is a scale parameter that governs the dilation and contraction of the wavelet, and ܾ is a translation parameter 
that governs the movement of the wavelet along the time dimension. Note from (1) that the Mexican hat mother 

wavelet (ܽ ൌ 1 and ܾ ൌ 0) is the second derivative of Gaussian distribution function, eି
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For our analysis, time series speed of a vehicle, ߭ሺݐሻ, is a continuous signal function. A WT coefficient of ߭ሺݐሻ is 
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where ݓሺܽሻ is a weighting function and typically set to 1/√ܽ to ensure that the wavelets at all scales have the same 
energy. T(a, b) is a transformed signal at location b and scale a in the wavelet dimension. Then, the average wavelet-
based energy at b is computed based on the WT coefficients for different scales, as defined in equation (3). 
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where max (a) represents the maximum scale, which is set to avoid potential distortion of the overall energy due to 
large scale trends (see Zheng et al. (2011a) for details). An abrupt speed change in time generates a sharp peak in 
temporal distribution of wavelet-based energy. As demonstrated hereafter, this property is used to identify vehicles 
that initiate disturbances and trace oscillation waves that accompany sudden decelerations or accelerations.  

3. Sites and Data 

For this study, we analyzed the vehicle trajectory data collected by FHWA’s Next Generation Simulation 
(NGSIM) program (FHWA 2008). Study sites consist of a 1650-ft section on northbound I-80 in Emeryville, 
California (Figure 1(a)) and a 2100-ft section on southbound US-101 in Los Angeles, California (Figure 1(b)). At 
each site, the trajectory data were collected for 45 minutes near or under congestion with 0.1-sec resolution. These 
high resolution trajectory data are ideal for a microscopic investigation of formation and propagation of oscillations. 
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For our analysis, we exclude 1) the LCMs that lasted less than 5 sec because they are likely noises (Thiemann, 
Treiber, & Kesting, 2008), 2) the HOV lane (Lane 1) at I-80 because driving behavior in the HOV lane might be 
different from that in regular-use lanes.  

 
 

 
(a) 

 
(b) 

Figure 1 Schematic illustration of study sites; (a) northbound I-80 in Emeryville, California; (b) southbound US-101 in Los Angeles, 
California; Lane numbering is incremented from the left-most lane. 

4. Formations of Traffic Oscillations 

This section describes the ways in which we identified oscillation formations and their causes. We define an 
oscillation as a deceleration phase followed by an acceleration phase. Thus, approximate times and locations of 
oscillation formations can be identified using speed contours. For instance, Figure 2 shows a speed contour plot 
constructed for lane 1 (median lane) on US-101 by aggregating the trajectory data with resolution of 50 ft by 5 sec. 
Each time-space region is shaded based on the corresponding mean speed according to the gray scale shown in the 
legend. The dark regions correspond to states with low speeds. The figure clearly reveals several instances of 
oscillation formations (with periods of about 2 minutes) near location 1500 ft and their orderly propagations against 
traffic flow. We identified 53 cases of oscillation formations across all lanes and sites.  

For each oscillation case, we use temporal distributions of wavelet-based energy for individual vehicles to trace 
the origin, more precisely the vehicle that initiated a deceleration state. The maximum scale is set at 64 (6.4 s in the 
time domain since the time resolution is 0.1 sec) to ensure that a wavelet window does not include more than one 
deceleration or acceleration phase (Zheng et al., 2011a; Mallat, 2009). Any speed change due to a sudden 
deceleration or acceleration is translated to a spike in the temporal energy distribution. Thus, the origin of an 
oscillation can be traced by identifying the first vehicle that displays a noticeable energy spike. For instance, Figure 
3(a) shows vehicle trajectories on lane 1, US-101, which display formation and propagation of a noticeable 
oscillation. We magnify a subset of these trajectories (Figure 3(b)) to better isolate the origin; however, the origin of 
the deceleration wave is still not apparent to naked eye and debatable between vehicle 2 (a lane-changer) and vehicle 
39. The wavelet-based energy distributions in Figure 3(c) reveal that vehicle 2 did not cause the deceleration wave. 
(Note that each energy distribution is separated vertically by adding a constant to reveal a spatial pattern of energy 
peaks.) The energy peaks displayed by the lane-changer reflect speed changes during maneuvering; however, these 
speed changes were isolated to the lane-changer and did not affect the following vehicles (vehicles 10-27). Another 

1650 ft

1230 ft420 ft

Powell St. Ashby Ave.

Lane 1 (HOV lane)
Lane 2
Lane 3
Lane 4
Lane 5
Lane 6

2100 ft

698 ft578 ft

Ventura Blvd.
Cahuenga Blvd.
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noticeable energy peaks appeared with vehicle 39 and propagated to following vehicles 43 and 54. Thus, we 
conclude that this deceleration wave was triggered by the car-following behavior of vehicle 39.  
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Figure 2 Speed contour for lane 1, US 101. 

 
          (a)                                                              (b)                        (c) 

Figure 3 Example of identifying oscillation formation (lane 1, US-101) (a) Vehicle trajectories displaying a noticeable oscillation; (b) Vehicle 
trajectories near the origin of the oscillation; (c) Temporal distributions of wavelet-based energy for the vehicles near the oscillation’s origin; The 
energy distribution for each vehicle is separated with a vertical displacement to better display the propagation of energy peaks. 

In contrast, for the case shown in Figure 4(a), the origin can be traced back to a lane-changer. The wavelet-based 
energy in Figure 4(b) reveals that the first perceptible energy peaks occurred with vehicle 2389, a follower of two 
lane-changers, vehicles 2376 and 2384. These energy peaks propagated to the following vehicles upstream. 
Therefore, this oscillation was apparently triggered by the LCMs. 
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     (a)                                                                (b)  

Figure 4 Example of identifying oscillation formation (lane 1, US-101) (a) Vehicle trajectories displaying a noticeable oscillation; (b) 
Temporal distributions of wavelet-based energy for the vehicles near the oscillation’s origin; The energy distribution for each vehicle is separated 
with a vertical displacement to better display the propagation of energy peaks. 

 
The analysis results from all 53 formation cases are summarized in Table 1. On 1-80, the majority of the cases 

were originated by LCMs rather than instabilities in driver behavior (16 vs. 2 cases). In contrast, approximately 66% 
of the cases were originated by instabilities in driver behavior on US-101. The results suggest that oscillations can 
be instigated by different factors and that the predominant trigger is site-specific. Notably, the study site on I-80 is a 
relatively straight segment on a level terrain but features multiple merges (a freeway merge, an on-ramp, and a lane-
reduction) and a diverge within or nearby the study section. Thus, the effect of geometric alignment is presumably 
minimal, but many LCMs are expected. In contrast, the US-101 site is on an uphill segment and includes a merge 
and a diverge within the study site. Moreover, video footage of the study site shows some maintenance activity in 
the median during the data collection period. Besides the distraction, the uphill segment is likely to accentuate 
differences in vehicle characteristics, such as acceleration capability, which may instigate oscillations spontaneously 
without LCMs.  

 

Table 1 Summary of the oscillations’ triggers 

 Lane-changing Non-lane-changing Total 

US-101 12 23 35 

I-80 16 2 18 

Total 28 25 53 
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5. Propagations of Traffic Oscillations 

In the previous section, we showed that oscillations can be instigated by different factors. Here, we investigate 
how these oscillations propagate in space and if different causal factors lead to distinct patterns of oscillation 
propagations.  

5.1. The effect of oscillation triggers on propagation features 

To study the propagation features of oscillations, we first trace the propagation paths of deceleration and 
acceleration waves through vehicles using WT. The arrival of a (deceleration or acceleration) wave is marked by an 
energy peak in the temporal energy distribution (characteristic point hereafter). Thus, the propagation of an 
oscillation is identified by tracing the energy peaks between vehicles.  

Figure 5(a) shows the propagation of the oscillation shown in Figure 3. The first propagation path marks the 
passage of a deceleration wave, which is followed by another path marking an acceleration wave. Note that these 
paths correspond to the starting points of decelerations and accelerations (indicating wave arrivals), rather than 
peaks as one might identify visually from trajectories. The spatiotemporal development of this deceleration state 
initially exhibits a precursor phase, during which speed changes of vehicles are rather moderate, and the waves 
propagate with nearly zero speed (i.e., the oscillation in the precursor period propagates from vehicle to vehicle, but 
not in space). Emerging from the precursor period, the oscillation becomes more developed with larger speed 
changes and propagates backward in space in a more stable manner. (The existence of a precursor phase is also 
demonstrated in Laval and Leclercq (2010).) Of note, the precursor and the subsequent phases are distinguished 
using the Bottom-Up algorithm. It searches a break point that minimizes mean-squared-error of linear regressions in 
the two phases. The average wave speed in the identified precursor state is close to zero (< 1 mph).   

Note that the slope of each path represents the wave propagation speed. The estimated average speed (after the 
precursor period) via regression is 11.8 ft/s (8 mph) for the deceleration wave (R2=0.96) and 17 ft/s (11.6 mph) for 
the acceleration wave (R2=0.98). Based on the wave propagation paths, we measure the amplitude, duration, and 
intensity of each vehicle in a deceleration state. Figure 5(b) presents the oscillation duration for each vehicle, which 
is estimated as the duration between two characteristics points. The figure reveals that the duration of the 
deceleration state increases slightly for the first 31 vehicles and then decreases, with an average of about 16 seconds. 
A similar trend is observed for the amplitude (see Figure 5(c)), which is measured as the speed difference between 
the first and the second characteristics points. However, the intensity in Figure 5(d), which is defined as 
amplitude/duration to measure the rate of speed decrease, displays a relatively stable trend. 

Independent of the trigger, all 53 oscillations exhibited a precursor phase. Of 53 oscillations, 22 eventually 
emerged from the precursor phase and became well-developed. For the 22 well-developed oscillations, the 
propagation speed, duration, and amplitude are summarized by the trigger in Table 2. It shows that 1) the 
propagation speed and duration are consistent throughout the 22 cases; and 2) the propagation characteristics are 
similar between oscillations with two different triggers. 2) is confirmed statistically: assuming that wave propagation 
speed is normally distributed, the differences between the two groups of oscillations are not significant at the 95% 
confidence level. Findings suggest that oscillations propagate in a similar manner independent of the trigger.  
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(a) 

 

 
(b)      (c) 

 
(d) 

Figure 5 Example of the propagation of a decelerated state (lane 1, US-101); (a) the wave propagation paths; (b) the duration of the 
decelerated state; (c) the amplitude of the decelerated state; (d) the intensity of the decelerated state. 
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Table 2 Propagation speed, amplitude and duration of oscillations triggered by CF or LCM 

Oscillations triggered by CF Oscillations triggered by LCM 

ID 
Propagation 
Speed (ft/s) 

Amplitude    
(ft/s) 

Duration 
(sec) 

ID 
Propagation 
Speed (ft/s) 

Amplitude  
(ft/s) 

Duration  
(sec) 

1 17.54 52.06 10.75 13 14.26 37.83 11.34 

2 12.75 30.86 10.21 14 14.97 29.08 7.023 

3 14.91 52.52 16.90 15 15.63 36.28 11.58 

4 14.63 47.19 12.90 16 13.71 30.62 12.69 

5 17.59 53.05 11.26 17 12.58 27.94 8.06 

6 15.15 41.66 11.07 18 14.95 30.02 8.09 

7 15.90 41.20 14.94 19 17.55 46.18 13.82 

8 15.12 28.52 9.45 20 17.21 21.20 8 

9 13.78 28.54 14.55 21 16.20 32.48 9.65 

10 15.61 22.56 11.45 22 16.54 28.93 11.85 

11 13.48 31.09 9.81 Mean 15.36 32.06 10.21 

12 12 31.33 14.58 Std. Error 0.456 1.951 0.678 

Mean 14.87 38.38 12.32 
 

Std. Error 0.494 3.141 0.693 

 

5.2. The effects of LCMs on oscillation propagation 

Here we demonstrate that LCMs are primarily responsible for the transition from a precursor to a well-developed 
phase. For example, a closer inspection of Figure 5 reveals that the precursor phase ended with the insertion of 
vehicle 194, and the oscillation started to propagate backward in space with increasing amplitudes. Similar examples 
are shown in Figure 6, which present several cycles of oscillations. The deceleration state bounded by waves 1 and 2 
(denoted as w1 and w2 in the figure) initially underwent a precursor phase and then became well-developed after the 
insertion of vehicle 313. This same lane-changer also ended the precursor phase of the deceleration state bounded by 
waves 3 and 4. For 15 cases out of 22, transition into the well-developed phase was attributable to LCM (more 
precisely, vehicle insertions), though transition also occurred without LCM in 7 cases. 

 

 

Figure 6  Illustration of LCM’s impacts on oscillation’s propagation on the basis of vehicle trajectories; a dashed line is a lane changer’s 
trajectory; a solid line is a non-lane-changer’s trajectory; a dotted line traces a wave propagation. 
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Figure 6 also uncovers other interesting effects of LCMs. The deceleration state bounded by waves 5 and 6 

propagated at speed of approximately 9 mph before the insertion of vehicle 313. The propagation speed then 
increased to about 14 mph after the insertion, indicating that LCMs may alter the propagation speed. In contrast, an 
exit maneuver may dampen oscillations. The decelerated state marked by waves 7 and 8, for example, disappeared 
(or returned to a precursor phase) with the exit of vehicle 219. The disappearance was short-lived, however, as 
another deceleration state (bounded by waves 3 and 4) emerged a few vehicles upstream. The above observations 
underline the importance of LCMs’ impact in traffic stream and warrant a more systematic investigation of LCMs. 
Zheng, Ahn, Chen, and Laval (2010b) offer some insights on this issue.  

5.3.  Regressive effect of oscillations on CF behavior  

This section describes the change in CF behavior when a driver crosses a deceleration wave, which results in a 
change in deceleration duration. We explain this change in CF behavior based on Newell’s CF theory (Newell, 
2002) and offer an extended framework to capture the change as we describe hereafter. 

Newell (2002) postulated that on a homogenous highway the trajectory of a vehicle (xn(t) in Figure 7) in 
congested traffic is identical to the preceding vehicle’s trajectory (xn-1(t) in Figure 7) except for shifts in space, ݀௡, 
and time, ߬௡ . Thus, ߬௡ represents the duration that vehicle n waits until it changes its speed in response to the 
leader’s change in speed, and ݀௡ represents the jam spacing. Newell further conjectured that (߬௡, ݀௡) vary between 
vehicles due to driver differences but are constant independent of speed for each driver. Then spacing of vehicle n, 
  ,i.e :ݒ ,௡, solely depends on speedݏ

 
௡ݏ ൌ ݀௡ ൅ ߬௡(4)  .ݒ 

 
Newell’s CF model is notable for its consistency with simplified kinematic wave theory (Newell, 1993).  

In this study, two sets of τ and d are measured for each vehicle; (τ1 and d1) and (τ2 and d2) based on the first and 
the second characteristics points, respectively, marking the arrivals of a deceleration followed by an acceleration 
waves. If Newell’s theory holds, (τ1 and d1) and (τ2 and d2) should be the same for each vehicle, and the deceleration 
duration should be constant across vehicles. Interestingly, we found that the deceleration duration, u, changes 
between vehicles and is significantly related to τ1 and d1. More specifically, Figure 8 shows τ1 vs. u for the 489 
vehicles involved in the 22 well-developed oscillations. A large variation in τ is observed, though the majority of τ 
lie between 0 and 5 sec. The figure also reveals a negative relationship between τ and u, which is significant at the 
99% confidence level, despite the noticeable variations. Thus, a vehicle with a larger value of τ exhibits shorter 
deceleration duration. This observation implies that unlike Newell’s premise, τ can change for a vehicle, especially 
when it goes through a major speed disturbance.  

 

Figure 7 Piecewise linear approximation to vehicle trajectories (Adopted from Newell (2002)) 
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Figure 8 Relationship between 1 and deceleration duration, u 

 
Based on the above finding, we predict the amount of change in τ due to oscillations and extend Newell’s model. 

Notably, Zheng, Ahn, Chen, and Laval (2011b) studied the impact of a lane-changing maneuver by analyzing 
anticipation and relaxation processes of the follower in the target lane and a change in the follower’s behavior 
induced by the maneuver. The change in behavior is measured by comparing  and d before and after the maneuver 
using Newell’s CF model. They found that a LCM has a regressive effect on driver CF behavior: a timid driver with 
larger response time () and minimum spacing (d) tends to become less timid and an aggressive driver less 
aggressive after a LCM. The extent of a behavioral change depends on the amount of deviation from the “average” 
driving behavior before experiencing a LCM. We postulate that an oscillation, more precisely a deceleration wave, 
has a similar effect.  

In testing the regressive effect of a deceleration wave, we consider the following linear framework as in Zheng et 
al. (2011b) to keep the model parsimonious:  

 
߬ଶ െ ߬ଵ ൌ ሺ߬ଵߙ െ ߬ҧሻ ൅  (5)             ,ߚ
 

where ߬ҧ and ҧ݀ are the average 1 and d1 (1.98 sec and 24.61 ft, respectively) and assumed to represent average 
driving behavior. To cross-validate our model, we (randomly) divide the dataset into two subsets, Dataset I and 
Dataset II. As summarized in Table 3, for Dataset 1 linear relations exist between ሺ߬ଶ െ ߬ଵሻ and ሺ߬ଵ െ ߬ҧሻ as well as 
between ሺ݀ଶ െ ݀ଵሻ and ൫݀ଵ െ ҧ݀൯. Notably, all linear models are statistically significant at the 99% confidence level 
(p<0.01), with R2 ranging from 0.43 to 0.84. Considering that individual driving behavior varies considerably, these 
R2 values are quite reasonable, especially for d.  
 

Table 3 Summary of modelling results using Dataset I (Sample size: 244) 

Dependent 
Variable 

Coefficient p value 
Overall Goodness of Fit 
p value R2 

߬ଶ െ ߬ଵ 
  0.0934 0.38 

<.01 0.43  -0.526 <.01 

݀ଶ െ ݀ଵ 
 3.235 0.06 

<.01 0.84  -0.883 <.01 

 
As in Zheng et al. (2011b), Equation (5) can be rearranged to  
 
߬ଶ െ ߬ҧ ൌ ሺߙ ൅ 1ሻሺ߬ଵ െ ߬ҧሻ ൅           (6)      .ߚ
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Based on the results in Table 3, െ1 ൏ ߙ ൏ 0 (or 0 < α+1 < 1) and β ≈ 0, which indicates that the deviation of τ (or 
d) from the average driving behavior becomes smaller after crossing a deceleration wave because 0 < α+1 < 1. This 
relationship implies that a timid driver, who is characterized by ߬ଵ െ ߬ҧ ൐ 0, becomes less timid after experiencing a 
deceleration wave, though the driver remains timid because ߬ଶ െ ߬ҧ ൐ 0. The same results are obtained using d. 
Thus, the model results suggest that a deceleration wave of an oscillation has a regressive effect on the driver’s 
behavior by encouraging a timid (aggressive) driver to become less timid (aggressive), resulting in a change in 
deceleration duration of an oscillation. For verification, we estimate linear models using Dataset II (see Table 4 for 
the results) and compare the results to those based on Dataset I in Table 3. The coefficients estimated using the two 
datasets are similar, though a larger difference is observed for ߬ଵ െ ߬ҧ. All models based on Dataset II are also 
significant at the 99%, with R2 ranging from 0.49 to 0.75. Note that the β term for ݀ଶ െ ݀ଵ is statistically significant. 
However, the value is small relative to the range of d (-200-400 ft). Notably, the estimated coefficients in Tables 3 
and 4 are comparable to the estimated coefficients of the same modelling framework in Zheng et al. (2011b); 
coefficients of ߬ଵ െ ߬ҧ range from -0.780 to -0.670, and coefficients of ݀ଵ െ ҧ݀ ranges from -0.819 to -0.778 in that 
paper. This indicates that the regressive effect can be instigated by different types of disturbances and that a driver 
changes her behavior in a similar manner regardless of the cause.  

 

Table 4 Summary of modelling results using Dataset II (Sample size: 245) 

Dependent 
Variable 

Coefficient p value 
Overall Goodness of Fit 
p value R2 

߬ଶ െ ߬ଵ 
  -0.0494 0.62 

<.01 0.49  -0.780 <.01 

݀ଶ െ ݀ଵ 
 5.488 <.01 

<.01 0.75  -0.828 <.01 

 
It is possible that the change may not necessarily be a long-term behavioral change. We could not investigate this 

because the study sites were not long enough. Nevertheless, our results suggest that parameters  and d for a driver 
are not fixed but time-dependent, especially around major disturbances like oscillations. This might be able to 
explain the spatial growth of disturbances, as recently theorized by Laval and Leclercq (2010).     

Finally, we cross-validate the models; i.e., the models based on one dataset are used to predict ߬ଶ and ݀ଶ in the 
other dataset. Figure 9(a) shows the prediction error in ߬ଶ, which is calibrated using Dataset I and applied to Dataset 
II; approximately 60% of the predictions are within 0.8 sec (about 40% error). The validation result in Figure 9(b) 
with the calibration and validation datasets switched shows a similar trend. A similar conclusion can be reached for 
݀ଶ, as shown in Figure 10. The validation results indicate that significant prediction errors exist, though the 
performance is reasonable given the simplicity of the model and large variations in driving behavior. Efforts to 
further improve the model’s performance are ongoing. However, it might be more advantageous to use this simple 
model for more straightforward calibrations and better transferability since a complex model may increase the risk 
of over-fitting the data.     
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Figure 9 Frequency distributions of prediction error in ߬ଶ: (a) ߬ଶ calibrated using Dataset I and applied to Dataset II; (b) ߬ଶ calibrated using 
Dataset II and applied to Dataset I. 

 

 
(a)      (b) 

Figure 10 Frequency distributions of prediction error in ݀ଶ: (a) ݀ଶ calibrated using Dataset I and applied to Dataset II; (b) ݀ଶ calibrated using 
Dataset II and applied to Dataset I. 

 

6. Conclusions 

In this paper, we adopted the WT method to systematically analyze oscillations’ origins and measure their 
propagation characteristics (i.e., propagation speed, duration, amplitude, and intensity) using vehicle trajectory data. 
The results from 53 oscillation cases show that traffic oscillations can be triggered by either LCMs or instabilities in 
driver CF behavior. However, the primary trigger was site-specific. Most oscillations were triggered by LCMs on I-
80, where no particular horizontal and vertical alignments were present. In contrast, a larger proportion of 
oscillations (~65%) formed spontaneously without LCMs on US-101, probably caused by rubbernecking due to the 
presence of workers on the side of the road.  

The analysis results also suggest that propagation features are similar between cases regardless of the trigger. All 
53 cases exhibited a precursor phase, in which oscillations were isolated at a nearly fixed location, and 22 eventually 
emerged from the precursor phase and propagated upstream with increased amplitudes. LCMs were primarily 
responsible for this transition into the well-developed phase (15 out of 22 cases), although some transitions did 
occur without LCMs (7 cases).  

Finally, we found some evidence suggesting that driver behavior may be different before and after the oscillation. 
A simple statistical model suggests that 1) the changes in  or d are linearly related to the deviations from the 
average driving behavior (represented by average  and d); 2) a timid (aggressive) driver with larger (smaller) 
response time and minimum spacing becomes less timid (aggressive) after experiencing a deceleration wave; and 3) 
an oscillation is unlikely to convert a timid driver to an aggressive one or vice versa. These findings are similar to 
those reported in Zheng et al. (2011b) with the exception that the regressive effect was induced by LCMs in that 
study. Thus, our findings imply that a driver corrects herself to drive more “normally” after experiencing a major 
disturbance regardless of the type of disturbance. This controversial finding, however, may be due to the limited 
spatial extent of trajectories, which might have precluded us from observing the full recovery after the oscillation.  
Nevertheless, our findings indicate that parameters  and d are time-dependent unlike the premise of Newell (2002). 
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