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Connected and autonomous vehicles (CAVs) are on the way to the field application. In the beginning stage, there will be a mixed
traffic flow, containing the regular human-driven vehicles and CAVs with a low penetration rate. Recently, the discussion about
the impact of a small proportion of CAVs in the mixed traffic is controversial. *is paper investigated the possibility of applying
the limited data from these lowly penetrated CAVs to estimate the average freeway link speeds based on the Kalman filtering (KF)
method. First, this paper established a VISSIM-based microsimulation model to mimic the mixed traffic with different CAV
penetration rates. *e characteristics of this mixed traffic were then discussed based on the simulation data, including the sample
size distribution, data-missing rate, speed difference, and fundamental diagram. Accordingly, the traditional KF-based method
was introduced and modified to adapt data from CAVs. Finally, the evaluations of the estimation accuracy and the sensitive
analysis of the proposed method were conducted. *e results revealed the possibility and applicability of link speed estimation
using data from a small proportion of CAVs.

1. Introduction

Autonomous vehicle (AV) technology is a hot and practical
research spot. When AVs embedded with the feature to
communicate with others including vehicles, roadside in-
frastructures, or traffic control centers, they are defined as
connected and autonomous vehicles (CAVs). It is expected
that CAVs can provide faster responses and keep shorter
headways, which lead to an increased overall roadway ca-
pacity [1]. Other expected benefits of CAVs include im-
proved mobility to people with disabilities, enhanced
productive use of travel time, better fuel efficiency, fewer
emissions, and flexibility in parking [2, 3]. However, it is
estimated that the market penetration rate of CAVsmight be
able to reach between 24% and 87% by 2045 [4, 5].*erefore,

there will be a long period of mixed traffic condition
comprising CAVs and regular human-driven vehicles (RVs).

A majority of research works have been dedicated to the
impact analysis of AVs/CAVs in the mixed traffic. Some
focused on the impact on the traffic efficiency, i.e., capacity
and throughput. For instance, Davis explored the contri-
bution of adaptive cruise control (ACC) vehicles to the
reduction in the jam formation [6]. Shladover et al. proved
that the Cooperative Adaptive Cruise Control (CACC)
technology has the potential to increase lane throughput
from the average 2000 veh/h to approximately 4000 veh/h
with high market penetrations [7]. Friedrich found that the
traffic volume could be increased to about 3900 veh/h/lane
when AVs are in application compared with current
designed capacity values of a lane of 2200 veh/h [8]. Both
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Zhou et al. and Xiao et al. found that a cooperative control of
AVs would improve the traffic efficiency of the merging area
[9, 10]. Some focused on modelling the different traffic
behaviours of CAVs, such as fundamental diagram and
longitudinal and latitudinal movements. For example,
Baskar et al. demonstrated that RVs and ACC-equipped
intelligent vehicles had the different fundamental diagrams
[11]. Liu et al. changed the lane-changing rules in the cellular
automata to simulate the autonomous vehicles [12]. Lu and
Aakre proposed a smart driver model to simulate the car-
following behaviour of CAVs [13]. Moreover, some dis-
cussed the influence on other aspects, i.e., safety and en-
vironment. For example, Morando et al. investigated the
safety performance of AVs with varying penetration rates in
two different cases, i.e., a roundabout and a signalized in-
tersection [14]. Lu et al. improved the ACC model of CAVs
and validated that these CAVs performed better than RVs in
fuel economy [15, 16].

Obviously, these works admitted that CAVs had different
behaviours compared with RVs. Most of them expected the
CAVs to have a faster reaction time, and thus, CAVs could
keep a smaller distance with the front vehicle and be safer.
*ese works have validated that the application of CAVs is
definitely beneficial when CAVs take a high proportion of
traffic, but the impact of CAVs with a low penetration rate is
controversial. If the penetration rate of CAVs is high in the
mixed traffic, the information from CAVs is definitely suffi-
cient to identify the traffic state. What if CAVs only take a low
proportion ofmixed traffic, will their information be enough to
acquire or estimate the traffic state? Since the penetration rate
of CAVs grows slowly, it is meaningful to explore whether
these CAVs in low penetration rates are a new data source to
assist the surveillance of the traffic condition.

Data provided by CAVs resemble the data collected
through the traditional human-driven probe vehicles, such
as global positioning system- (GPS-) based data and cell-
phone-based data. Traffic state estimation based on these
probe vehicles is one of the most effective methods because
probe vehicles have a wide coverage over space and time
[17–21]. *ere are two common categories of traffic state
estimation methods, i.e., the model-based methods and the
data-driven methods. *e model-based methods are made
up of two parts.*e first part is the traffic flowmodel, such as
the Lighthill-Whitham-Richards (LWR) model [22], Payne
model [23], and their successors. *e second part is a data
assimilation method to realize the estimation, such as
Kalman filtering (KF) and its extensions [19, 24]. *e data-
drivenmethodsmine the relationship between estimates and
observations from the historical big data. *e commonly
used data mining techniques include the statistical analysis
algorithms for the time-series data and the artificial intel-
ligence models [20]. However, it should be noted that the
traditional probe-based methods are under the human-
driven mode, and the probe and non-probe vehicles are
supposed to have similar driving behaviour. As mentioned
before, the driving behaviours of CAVs are expected to be
different from those of RVs, so the applicability of the tradi-
tional probe-based estimation methods is uncertain. *e data-
driven methods require vast amount of historical data.

However, the CAVs have not been put into the market offi-
cially, so it is hard to achieve sufficient historical CAV data.
Regarding these factors, this study would like to focus on the
model-based estimation method using CAV data. *ere has
been some research using the model-based method. For in-
stance, Wang et al. compared the first-order and second-order
models to estimate the mixed traffic state with different AV
penetration rates [25], but they did not discuss the low pen-
etration specifically. Considering the controversy under the low
penetration condition, this study aims to furtherly discuss how
to use the model-based estimation method with information
from a small proportion of CAVs in mixed traffic.

More specifically, this study would firstly contribute to set
up a simulation platform. Hereafter, this study would explore
the sampling characteristics of CAV probes under a low
penetration rate, such as their sample size, data-missing rate,
and their speed difference with the average link speeds. Fur-
thermore, whether their limited information is supportive to
the traffic state estimation would be discussed. Afterwards,
although the KF technique is widely used, this study makes the
following adjustments to adapt the lowly penetrated CAVs: a
recursive model to fulfil the missing parts, calculation methods
for state, and measurement noise. Its performance and accu-
racy are going to be evaluated.

Accordingly, the rest of this paper is organized as follows:
Section 2 introduces a simulation platform of mixed traffic to
generate the data for the following investigations. *e different
characteristics of traffic with CAVs are discussed in Section 3.
Section 4 presents the exploration of KF-based estimation.
Finally, Section 5 summarizes the main conclusions and
provides some plans for the improvement and future study.

2. Simulation Platform for Mixed Traffic

2.1. Simulation Settings

2.1.1. Assumptions. *e highly or fully automated CAVs
referring to Level 4 or Level 5 in the SAE autonomy level
definitions [26] are still in development or test. *e simu-
lation method provides a possibility to studying the mixed
traffic condition with CAVs. *ere is a bunch of expected
types of highly or fully automated CAVs. Different types of
CAVs would lead to different influences on traffic.*erefore,
this study made some preceding assumptions to clarify the
studied object and situation.

First, CAVs are supposed to behave more assertively
than RVs, and thus, they can maintain a shorter distance
with the front vehicle.

Second, CAVs have a stronger ability to sense the traffic
environment compared with RVs. *is ability could be en-
hanced either by the communication with everything
(roadside unit, other vehicles, traffic management center, and
so on) or by the advance sensing facilities. As a result, this
sensing range is supposed to be within ± 500m in this study.

*ird, since this study is based on the simulation, the
latency and packet loss of the communication between
CAVs and everything (roadside unit, other vehicles, traffic
management center, and so on) would not be considered this
time.

2 Journal of Advanced Transportation



2.1.2. Simulation Parameters. *is study uses VISSIM
(version 9) to simulate the mixed traffic containing CAVs
and RVs. PTV Group has stated that CAV behaviour could
be modelled using VISSIM internally or externally [27]. *is
study implements the internal way, which is to modify the
VISSIM default driving behaviour parameters. Compara-
tively speaking, the internal way is simpler and more con-
venient to use, whereas the external approach is used when
researchers want to define their own driving behaviour
models in VISSIM. Since the focus of this study is to estimate
speeds from data generated by CAVs with a low penetration
rate, the internal way is more suitable and achievable.

PTV Group has given some recommendations to set the
internal model by changing the car-following and lane-
changing behaviour parameters for the CAVs [28]. In ap-
plication, there have been some works that are based on the
internal model in VISSIM to explore the impact of CAVs.
Table 1 summarizes their adjusted parameters as well as the
corresponding default value in VISSIM 9. It should be noted
that both this study and the works in Table 1 use the
Wiedemann 99 model as the car-following model for the
freeway traffic.

Since no empirical data are available, these applications
have indicated the possibility of modelling CAVs in VISSIM
internally, to some extent. Although it seems that each study
has made different adjustment to the default values, they
have something in common. For instance, they would let the
CAV keep a shorter distance with the front vehicle, have
faster and smoother reactions, observe more around vehi-
cles, and realize the cooperative lane changing. Some dif-
ferences might be caused by the different versions of
VISSIM. For example, the maximum speed difference is
different between VISSIM version above 9 and below 9.
Within the threshold present in these existing studies, this
study made the following modifications to the internal
models in VISSIM 9, as shown in Table 2. RVs use the default
values, while some parameters are adjusted for CAVs. Be-
sides, the desired speed is reset as well, which is 80 km/h for
RVs and 90 km/h for CAVs.

2.2. Simulation Scenarios. A simplified freeway is simulated,
which contains a 6-km three-lane mainline in one travel
direction, a one-lane on-ramp, and a one-lane off-ramp, as
shown in Figure 1. *e simulation duration is 15300 s with a
900 s warm-up period. Data collected from 900 s to 15300 s
are used for analysis.

To analyse the impact from CAV penetration rates, this
study proposes six scenarios with different compositions of
RVs and CAVs, as shown in Table 3. To indicate a traffic
condition with a low proportion of CAVs, the largest ratio of
CAVs in mixed traffic is set as 10%. In each scenario, the
mixed traffic is loaded on mainline and on-ramp, which is
varying over time, as shown in Table 4.*e input traffic is set
to approach the designed freeway lane capacity from the
simulation time 8100 s and last to 10700 s. Besides, in all
scenarios, 15% of mainline traffic is assigned to leave the
freeway at off-ramp.

3. Discussions on Mixed Traffic

*e 6 km mainline is divided by 500m into 12 links. *ose
links are then labelled from Link 1 to Link 12 same as the
travel direction, as shown in Figure 1. Data are integrated by
the time interval of one minute. *e average ground-truth
link speeds could be calculated by the ratio of the link length
to the average travel time of all vehicles.*e average speed of
CAVs on a link during a time interval is calculated using the
position and the timestamps of CAVs. Here are some sta-
tistical findings about the simulated mixed traffic.

3.1. Sample Size and Data-Missing Rate. *e boxplot in
Figure 2 shows the distribution of the sample size per minute
under different CAV penetrations. *e median sample size
per minute under the penetration rate of 1%, 3%, 5%, 7%,
and 10% is 1, 2, 4, 5, and 7, respectively. When the pene-
tration rate is 1%, sample size per minute would mostly
appear as a number within [1, 2]12. Similarly, it can be seen
that the most frequent sample size for the penetration rate of
3%, 5%, 7%, and 10% is [1, 3], [2, 5], [3, 7], and [5, 10],
respectively. Besides, it seems that the variation of the
sample size adds with the increase of penetration rate.

Except for the sample size, another very concerned issue
in the discussion of traffic probe with low penetration rate is
the missing data rate. *is study defines the data-missing
rate on a link as the rate between the number of time in-
tervals that have collected CAV data and the total number of
time intervals. Figure 3 presents the data-missing rate on
different links and under different CAV penetrations.

Figure 3 shows that if the CAV penetration rate is small,
the sample size is really small and there will be a serious data
loss. Especially, when the proportion of CAVs is 1%, the
data-missing rate almost reaches fifty percent. It requires
that the estimation method is capable of filling the missing
parts.

3.2. Speed Difference. Afterwards, this study looks into the
difference between the average speeds of CAVs and the
mixed traffic speeds on a link.*is difference is calculated by
the following equation:

dij � vcij − vij, (1)

where dij is the difference between the average speed of
CAVs and the average link speed at the ith time interval and
jth link, vcij is the average speed of CAVs at the ith time
interval and jth link, and vij is the average link speed at the
ith time interval and jth link.

Table 5 summarizes the speed differences and their
variances. *e desired speed of CAV is higher than that of
RV, so it could be referred that the average speeds of CAVs
would bemost likely higher than the average link speeds. It is
proved by the average and median speed differences in
Table 5. *e maximum and minimum differences indicate
that the average speeds of CAV might also overestimate and
underestimate the link speeds. It would be vital to establish a
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right relationship model between speeds of CAVs and link
speeds. Accordingly, the variance of speed differences is
calculated as shown in Table 5, which could be applied to
calibrate the relationship model. *e variance shows the
expectation of the squared deviation of the speed difference
from its mean difference, and Table 5 indicates the deviation
decreases with the increase in the CAV penetration rate.

3.3. Fundamental Diagram ofMixed Flow. *is section aims
to discuss the impact of CAVs on the fundamental diagram.
Taking Link 7 as an example, Figure 4 shows the speed-flow
diagrams under different penetration rates of CAVs. It seems
that an increase in the CAV penetration rate has a slight
impact on the shape of the speed-flow fundamental diagram.
*e largest traffic volume (approaching the link capacity) is
7860, 7620, 7980, 7560, 7920, and 8040, respectively, when
CAVs account for 0%, 1%, 3%, 5%, 7%, and 10%. It indicates
that an increase in the CAV penetration rate would not
definitely contribute to the increase in traffic flux, when the
penetration rate is under 10%. Moreover, when the pene-
tration rate increases, the number of the scatter dots on the
left side reduces. To some extent, it indicates that the in-
crease of CAVs in the mixed flow could relief the traffic
congestion.

Besides, the critical speed to identify the free-flow state
seems to remain the same at 80 km/h, as shown in Figure 4.
Since the lowly penetrated CAVs do not have a significant
impact on the critical speed and volume, this study would
assume that the traditional estimation method (i.e., Kalman
filtering-based estimation method) might be effective when
the proportion of CAV in the mixed flow is low.

4. Kalman Filtering-Based Estimation
Method for Mixed Traffic

4.1. Basic Kalman Filtering Algorithm. *e traditional Kal-
man filtering-based estimation method is applied. For ap-
plication in this study, the discrete form of the KF in the
linear speed model is given by

xt � Atxt−1 + ωt, (2)

yt � Htxt + vt, (3)

where xt is the average link speed at the tth time interval. For
simplicity, it is originally assumed that it has a linear re-
lationship with the speed value at the previous time interval.
yt is the collected speed which is the average speed of CAVs
at the tth time interval. Similarly, the CAV speed is supposed

Table 1: Existing studies on CAV simulation by the internal model.

Parameters
Default
value

Atkins
[29]

Aria et al.
[30]

Tibljaš et al.
[31]

Stanek et al.
[32]

Sukennik
[28]

Asadi
et al. [33]

Version of VISSIM VISSIM 9 VISSIM 8 DK DK VISSIM 9 VISSIM 11
VISSIM

10
CC0, standstill distance (m) 1.50 — — 1.00 1.25 1.00 1.00–1.50
CC1, headway time (gap between
vehicles) (s)

0.90 — 0.30 0.50 0.25 0.60 0.50–1.50

CC2, car-following distance/following
variation (m)

4 0 — 1.00 3 0 0

CC3, threshold for entering following
(s)

−8 — — — −12 −6 −8

CC4, negative following threshold
(m/s)

−0.35 0 −0.56 −0.10 — −0.10 0

CC5, positive following threshold
(m/s)

0.35 0 0.56 — — 0.10 0

CC6, speed dependency of oscillation
(1/(m/s))

11.44 0 — 0 0 0 0

CC7, oscillation during acceleration
(m/s2)

0.25 — — 0.40 — 0.10 0.15–0.45

CC8, standstill acceleration (m/s2) 3.50 — — 4 — 4 3.30–3.90
CC9, acceleration at 80 km/h (m/s2) 1.50 — — 2 — 2 1.30–1.90
Look-ahead distance 0 to 250m — 150–200m 0–105m 0–500m 0–250m 0–800m
Look-back distance 0 to 150m — 150–200m 0–280m 0–250m 0–150m 0–800m
Observed vehicles 2 10 6–8 — 10 99 10
Smooth close-up behaviour No — — Yes — — Yes
Accepted deceleration, trailing vehicle
(m/s2)

−1 — — — — −1.50 —

Minimum headway, front/rear (m) 0.50 — — — 0.40 0.50 0.20–0.70
Safety distance reduction factor 0.60 — — — 0.45 0.75 0.30–0.80
Maximum deceleration for cooperative
braking (m/s2)

−3 — — — −4 −6 —

Cooperative lane change No — — — Yes Yes Yes
Maximum speed difference (km/h) 3 — 3 — — 10.80 10.80
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to have a linear relationship with the average link speed. At
and Ht are the linear coefficients. ωt and vt represent the
state and measurement noises, respectively. Usually,
E(ωt) � 0, E(vt) � 0, E(ωs,ωt′) � Qt, E(vs, vt′) � Rt, and
E(ωs, vt′) � 0. *e state equation (2) shows the behaviour of
an n-dimensional state vector xt, and the measurement

equation (3) describes how the state vector is related to an
m-dimensional measurement vector yt. Obviously, in this
study, m and n are mostly not equal. Especially, when
CAVs account for 1%, m is far less than n. In the presence
of incomplete data, the following recursive formula is
used to solve the previous discrete model in this study:

Table 2: Car-following and lane-change parameters of RVs and CAVs in this study.

Parameters Default value for RVs Adjusted value for CAVs

CC0, standstill distance (m) 1.5 1.25
CC1, headway time (gap between vehicles) (s) 0.9 0.5
CC2, car-following distance/following variation (m) 4 3
CC3, threshold for entering following (s) −8 −12
CC4, negative following threshold (m/s) −0.35 −0.1
CC5, positive following threshold (m/s) 0.35 0.1
CC6, speed dependency of oscillation (1/(m/s)) 11.44 0
CC7, oscillation during acceleration (m/s2) 0.25 0.25
CC8, standstill acceleration (m/s2) 3.5 3.5
CC9, acceleration at 50 miles per hour (m/s2) 1.5 1.5
Look-ahead distance 0 to 250m 0–500m
Look-back distance 0 to 150m 0–500m
Observed vehicles 2 10
Smooth close-up behaviour Checked Checked
General behaviour Free lane selection Free lane selection
Maximum deceleration, own vehicle (m/s2) −4 −4
Maximum deceleration, trailing vehicle (m/s2) −3 −3
−1m/s2 per distance, own vehicle and trailing vehicle (m) 100 100
Accepted deceleration, own vehicle (m/s2) −1 −1
Accepted deceleration, trailing vehicle (m/s2) −1 −1
Waiting time before diffusion (s) 60.00 60.00
Minimum headway, front/rear (m) 0.5 0.37
Safety distance reduction factor 0.6 0.45
Maximum deceleration for cooperative braking (m/s2) −3 −4
Cooperative lane change Not checked Checked
Maximum speed difference (km/h) 3 3
Maximum collision time (s) 10 10
Collision time gain (s) 2 2
Minimum longitudinal speed (km/h) 1 1
Time before direction changes (s) 0 0
Overtake same lane vehicle, minimum lateral distance standing (m) at 0 km/h 1 0.75
Overtake same lane vehicle, minimum lateral distance driving (m) at 50 km/h 1 0.75

Travel direction

1500m3000m1500m

On-ra
mp

O�-ramp

Figure 1: Simulated freeway network diagram.

Table 3: Simulation scenarios of traffic composition.

Scenarios Proportion of RVs (%) Proportion of CAVs (%)

1 100 0
2 99 1
3 97 3
4 95 5
5 93 7
6 90 10
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x̂tt �
x̂t−1t +

Pt−1t ·Ht
′

Ht · P
t−1
t ·Ht
′ + Rt

yt −Ht · x̂
t−1
t( ), if yt is collected,

x̂t−1t , if yt ismissing,


Ptt �

Pt−1t 1 −
Pt−1t ·Ht

′ ·Ht

Ht · P
t−1
t ·Ht
′ + Rt

( ), if yt is collected,

Pt−1t , if yt ismissing,


(4)

where Ptt is the error covariance matrix of state xt and
Pt−1t � At · P

t−1
t−1 · At′ + Qt. Usually, At, Ht, Qt, and Rt are

calibrated using the historical data. According to the
small average speed difference in Table 5, this study sets
both At and Ht as 1. As for the state noise Qt, this study
calibrates it separately based on the traffic condition.
With a mixed traffic of 1% CAV penetration rate as an

example shown in Figure 5, it is obvious that the vari-
ation of state error enlarges when speed falls below the
critical speed of 80 km/h. From the observations among
all fundamental diagrams across all penetration rates, the
application of CAVs does not have a significant impact
on the critical speeds when CAVs have a low penetration
rate. *erefore, the same critical speed is used to identify

Table 4: Traffic input in a scenario.

Simulation time interval (s) Mainline traffic input (three-lane) (veh) On-ramp traffic input (one-lane) (veh)

0∼2700 3000 300
2700∼4500 3600 300
4500∼6300 4500 300
6300∼8100 5100 300
8100∼9900 6000 300
9900∼11700 6300 300
11700∼12600 5100 300
12600∼13500 4500 300
13500∼14400 3600 300
14400∼15300 3000 300

�e distribution of CAV sample size

Number of CAVs under 1% penetration

Number of CAVs under 3% penetration

Number of CAVs under 5% penetration

Number of CAVs under 7% penetration

Number of CAVs under 10% penetration
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Figure 2: Distribution of sample size under different CAV penetration rates.
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the traffic state. *e state noise Qt is calibrated under
free-flow condition and non-free-flow condition sepa-
rately. *e measurement noise Rt could be calculated
using the variance of difference between CAV speeds and
ground-truth speeds, as shown in Table 5. Finally, the
initial state values are set as x0 = 85 and P0 =Qt under the
free-flow condition.

4.2. Estimation Results. Using the proposed KF-based esti-
mation method, the speed estimates are obtained. Taking the
scenarios of 1% and 10% as an example, Figure 6 exhibits the
ground-truth link average speeds, the average speeds of CAVs,
and the estimated speeds on Link 7. First, the results indicate
that the estimation method interpolates the missing parts of
CAV data. Second, the estimation method smooths and

1%

3%

5%

7%

10%

1 3 42 6 75 9 10 118 12

Link no.

0

0.1

0.2
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0.4
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M
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si
n

g 
ra
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Figure 3: Data-missing rate on different links.

Table 5: Speed difference.

Speed difference CAV penetration rate (%)
Link no.

1 2 3 4 5 6 7 8 9 10 11 12

Average difference (km/h)

1 3 1 1 2 2 1 1 1 2 3 2 2
3 3 2 2 2 2 2 1 1 1 3 3 3
5 3 2 2 2 2 2 2 2 2 4 3 3
7 3 2 2 2 2 2 2 2 2 4 3 3
10 3 2 3 2 2 2 2 2 2 3 3 3

Median difference (km/h)

1 3 1 1 1 2 1 1 1 2 2 1 1
3 3 1 1 1 1 1 1 1 1 3 2 2
5 3 2 2 2 1 1 1 1 1 4 3 3
7 3 2 2 2 2 1 1 1 1 3 3 3
10 3 2 2 2 2 2 2 1 2 3 3 3

Maximum difference (km/h)

1 21 32 12 17 29 19 19 20 22 18 14 14
3 16 16 15 22 27 19 16 27 23 23 27 18
5 14 11 16 16 13 22 20 22 22 21 17 14
7 14 12 15 16 17 21 19 19 16 18 16 15
10 15 17 14 13 26 15 16 18 22 15 23 14

Minimum difference (km/h)

1 −10 −24 −13 −14 −8 −9 −20 −13 −12 −8 −7 −6
3 −9 −6 −8 −12 −9 −9 −10 −15 −39 −9 −4 −6
5 −3 −5 −8 −8 −4 −9 −12 −15 −12 −12 −9 −5
7 −6 −5 −4 −8 −4 −5 −8 −21 −20 −4 −6 −3
10 −3 −5 −5 −6 −6 −14 −10 −5 −18 −7 −4 −4

Variance (km/h)2

1 23 32 20 30 27 20 26 27 33 22 19 17
3 14 13 14 27 18 16 19 24 41 18 22 19
5 9 8 11 14 11 13 14 18 20 16 14 13
7 8 7 7 12 9 10 12 16 19 12 10 10
10 6 6 6 8 8 8 8 8 17 8 9 10
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CAVs account for 1%
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Figure 5: An example for speed difference between (i–1)th and ith time interval.
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Figure 4: Speed-flow diagrams on Link 7. (a) No CAVs. (b) CAVs account for 1%. (c) CAVs account for 3%. (d) CAVs account for 5%.
(e) CAVs account for 7%. (f ) CAVs account for 10%.
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modifies the CAV speeds, and thus, the estimated speeds are
closer to the ground truth.

Furtherly, the ground-truth speeds, estimated speeds,
and CAV speeds are illustrated in the time-space form, as
shown in Figure 7. According to the speed values, traffic state
is divided into three conditions which are represented by
three different colors, i.e., green, yellow, and red. Figure 7
shows that the estimates (i.e., Figures 7(a) and 7(d)) almost
copy the ground-truths (i.e., Figures 7(b) and 7(e)). If not for
the data missing, CAV speeds could almost tell the traffic
condition, as shown in Figures 7(c) and 7(f ). Especially, 10%
CAVs (i.e., Figure 7(f )) seem to be able to visualize the traffic
state in a rough three-color map compared with the ground-
truth speed map (i.e., Figure 7(e)).

4.3. Accuracy. *is section will further evaluate the esti-
mation accuracy. It is measured by RMSE (Root Mean
Squared Error) and MAE (Mean Absolute Error). *ey can
be obtained by

RMSE �

�������������
1

m
∑m
i�1

xi − x̂i( )2
√√

,

MAE �
1

m
∑m
i�1

xi − x̂i
∣∣∣∣ ∣∣∣∣.

(5)

Figure 8 presents the RMSE and MAE of estimated
speeds at each penetration rate. Comparatively, the scenario
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Figure 6: Ground-truth speeds, CAV speeds, and estimated speeds on Link 7. (a) CAVs account for 1%. (b) CAVs account for 10%.
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with 10% CAVs has smaller RMSE and MAE than other
penetration scenarios. However, RMSE and MAE of the 3%,
5%, and 7% scenarios are quite approaching those of the 10%
scenario. Although RMSE and MAE of the 1% scenario are a
bit larger than other scenarios, their values remain within a
small value, i.e., RMSE is less than 7 and MAE is less than 5.
In general, the estimationmethod with limited CAV data has
a reasonable performance, even when the proportion of
CAVs in mixed traffic is only 1%.

Moreover, this study would like to compare the accuracy
of estimates and CAV speeds. Since there are missing parts
in CAV speeds, RMSE and MAE are calculated using the

data that eliminates the data-missing time intervals. Taking
the data from Link 7 as an example, the accuracy comparison
results are shown in Figure 9. It is obvious that estimates
reduce the speed error compared with the CAV speeds.

4.4. Sensitivity Analysis. In the application of this KF-based
estimation method, some parameters might play an im-
portant role in the estimation accuracy. *ey are the state
and measurement noises. As mentioned in the KF-based
estimation method, the measurement noise is calibrated by
the historical data of the CAV speeds and the ground-truth
speeds on each link. In practice, the ground-truth speeds are
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Figure 7: Estimated speeds, the ground-truth speeds, and the CAV speeds in the color map. (a) Estimated speeds with 1% penetration rate of
CAVs (km/h). (b) Ground-truth speed when CAVs account for 1% (km/h). (c) CAV speeds with 1% CAVs in mixed traffic (km/h). (d)
Estimated speeds with 10% penetration rate of CAVs (km/h). (e) Ground-truth speeds when CAVs account for 10% (km/h). (f ) CAV speeds
with 10% CAVs in mixed traffic (km/h).
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Figure 8: (a) RMSE and (b) MAE of estimated speeds.
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usually not available on all links.*erefore, this study selects
out the minimum and maximum Rt from Table 5 and uses
these values in the estimation. *eir estimation accuracy is
compared with those using the calibrated Rt, as shown in
Figure 10. Obviously, the proposed method is the optimal,
but if Rt could not be calibrated on each link, a small value of
Rt calibrated on other links is suggested.

Another parameter is the state noise Qt. In the proposed
method, both the calibration and application of the state noise
would be separated based on the traffic condition. If this
separation is eliminated, this study finds that it will lead to
larger estimation errors as the comparison results in Figure 11.
It indicates the outperformance of the proposed method.

5. Conclusions and Future Works

It seems to be inevitable that CAVs will come into the
market and travel on the regular roads in the near future. It
also could be imaged that there will be mixed traffic
consisting of CAVs and RVs, and the proportion of CAVs
will be low at the beginning stage. *is study discussed the
application of the limited CAV data to estimate traffic state
at this beginning stage. At first, this study set up a
microsimulation platform of the mixed traffic flow using
the VISSIM. Five simulation scenarios with the CAV
penetration increasing from 1% to 10% were set to generate
the testing data. *en, a step-by-step discussion on the
characteristics of mixed traffic was conducted based on the
simulation data. *e sample size distribution under dif-
ferent CAV penetrations was found, and the data-missing
rate was calculated which was especially large when CAVs
only account for 1% of mixed traffic. *e analysis on the
speed difference between CAV speeds and the ground-
truth link speeds was an assistant in the following cali-
bration of the proposed estimation model . *e speed-flow
diagrams of mixed traffic indicated the possibility of ap-
plying the traditional estimation method. Accordingly, the
simple KF-based estimation method was used and adjusted
to adapt the incomplete CAV data. *e estimation results,
accuracy evaluations, and sensitivity analysis validated the
applicability and precision of the proposed estimation
method using limited CAV data.

Since the Level 4 and Level 5 CAVs are not ready to enter
the market, the simulation method is an alternative way to
make these investigations. With the developing technology
of CAVs, the driving behaviour model of CAVs needs to be
updated accordingly in the future. Besides, the simulated
roadway is oversimplified. *e complex merging and
weaving area from on/off-ramp to the mainline could be
discussed in detail. Moreover, the fusion of the measure-
ments from other existing sensors, such as loop detectors
and GPS probe vehicles, and the testing of other existing
estimation methods are also useful for the field application.
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