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Freeze-thaw durability of repair mortars
and porous limestone: compatibility issues
Ákos Török1* and Balázs Szemerey-Kiss2

Abstract

Freeze-thaw cycles can cause considerable damage to porous materials and thus have an adverse effect on the durability of
mortars and porous stone. To assess the behavior and frost resistance of two types of porous limestone, three commercially
available repair mortars and four mixtures of laboratory-prepared repair mortars were subjected to freeze-thaw cycles
according to EN 12371. During the test, samples of stone and mortar were bonded together and the weight loss was
continuously monitored. The adhesion bond between the stone and the mortar was also observed during the cycles.
Petrographic analysis and thin sections were also made before and after the freeze-thaw test. The pore size distribution
(mercury intrusion porosimetry, MIP) of mortars and stones was also measured. The test showed that most of the repair
mortars were damage more than porous limestone due to frost action. Two exceptions are two commercial available repair
mortars. These mortars were able to keep the adhesion with the stone, and the frost did not modify significantly the cubic
shape of the test specimens, only rounding of the edges was observed. All other samples were broken during the frost tests;
stone/mortar interface was dismounted. Other typical damage features such as delamination, blistering, powdering, and
granular disintegration were also observed leading to the gradual surface loss of the material. Our tests proved that low
pozzolanic cement content in mortars decreases the material durability. According to the pore size distribution (MIP), the
small pores (around 0.1 μm) control the weathering behavior of tested porous materials.
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Introduction

Phase transition of water to ice causes severe damage to

stones, causing frost damage which has been already de-

scribed many years ago (Schaffer 1932). The weathering

mechanism of porous materials is almost the same in the

case of frost and salt crystallization. Some of the salt tests

could cause higher structural stress on the stone matrix than

frost damage—what suggests, that weathering process is fas-

ter in a salt-rich environment (Cárdenes et al. 2013). Stone

and mortar damage depends on relative humidity (RH),

temperature, and pore structure in salt-rich environment

(Linnow 2007), while in region, the damage is mainly con-

trolled by the presence of the water, the porosity, the pore

size distribution, and the saturation rate (Ruedrich et al.

2011, Al-Omari et al. 2015, Gökçe et al. 2016). Frost damage

can lead to material loss, and in addition, it also decreases

the stone durability against other stress factors such as salts

(Yu and Oguchi 2010). Earlier test results showed that car-

bonate stones have higher resistance against frost than salt

crystallization (Thomachot-Schneider et al. 2010, 2011, Cár-

denes et al. 2013). It has been also outlined that pore sizes

play an important role in frost resistivity of stones, namely,

pore throat sizes control the resistance of rock against

weathering (Benavente et al. 2007, 2011 Martínez-Martínez

et al. 2013). The sensitivity to salt weathering was linked to

pore sizes. Various authors denoted various pore ranges that

make the stone/mortar prone to salt weathering (Age and

Oguchi 2011). Yu and Oguchi (2010) emphasized that pores

of 0.1 μm in diameter are damaged the most during salt

crystallization, similarly to Ordonez (1997), while Steiger

(2005a, 2005b) showed that materials characterized by

smaller pores of 0.05 μm are also sensitive to salt weathering.

Larger pore size (1 μm) was found to be responsible for salt

damage of porous stones (Benavente et al. 2004). The pore

size also controls the durability of mortars (Papayianni and

Stefanidou 2006, Grilo et al. 2014, Korat et al. 2015, Giosuè

et al. 2018). Thus, natural stone and mortar durability

are closely related (Klisińska-Kopacz et al. 2010, Rivas
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et al. 2010, Yu and Oguchi 2010, Schueremans et al.

2011, Szemerey-Kiss and Török 2011a, 2012, 2017a;

Szemerey-Kiss et al. 2013, Isebaert et al. 2014). The

strength of mortars against crystallization pressure is

also controlled by microfabric, mineralogical compos-

ition, and pore structure (Arizzi and Cultrone 2012,

Szemerey-Kiss and Török 2011b, Pavia and Hanley

2010, Lanas et al. 2006). In terms of aggregate and

binder composition, the durability of mortars is very

different (Isebaert et al. 2014). Hydrated lime additions

to the cement-based mortars improve the workability,

the bond strength, and some cases the durability

(Duran et al. 2014). On the other hand, according to

Lanas et al. (2006), mortars with high porosity and low

Table 1 Abbreviation and composition of tested mortars

Name Binder Aggregate Unit
(C:L:LS:Q)Cement (C) Lime (L) Limestone sand (LS) Quartz sand (Q)

A Portland cement Hydrated lime Ø 1–2 Ø 0.25–0.5 1:1:3:1

B Portland cement Hydrated lime Ø 1–2 – 1:1:4:0

C Portland pozzolanic cement Quicklime Ø 1–2 – 1:1:4:0

D Portland pozzolanic cement + portland cement – Ø 1–2 – 1 + 0.25:0:4:0

T Portland cement Hydrated lime – Ø 0.2–0.4 1:0.25:0:4

T50 Portland cement Hydrated lime Ø 1–2 Ø 0.2–2.0 1:0.25:5:4

R Portland cement Hydrated lime – Ø 0.3–0.5 1:0.3:0:3

R50 Portland cement Hydrated lime Ø 1–2 Ø 0.2–2.0 1:0.3:4:3

K Portland pozzolanic cement Hydrated lime – Ø 0.3–0.5 1:0.3:0:3.5

K50 Portland pozzolanic cement Hydrated lime Ø 1–2 Ø 0.2–2.0 1:0.3:4:3.5

Limestone sand was 1–2mm in diameter, while quartz sand was 0.2–2 mm. Last column shows the proportions of binder and aggregate (C, L, LS, and Q)

Fig. 1 Samples of repair mortars/limestone prisms (dashed lines represent the boundaries). a Coarse-grained limestone and repair mortar R. b
Coarse-grained limestone and repair mortar T50. c Fine-grained limestone and repair mortar T. d Fine-grained limestone and repair mortar T50
(explanation for sample codes are given in Table 1)
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strength are more susceptible to degradation due to

freeze-thaw cycles. The susceptibility of lime mortars to

frost damage is well known, especially of young

non-carbonated mortars.

The present paper compares the frost durability of por-

ous limestone and mortars. It is a key question when re-

pair mortars are applied in heritage structures (Isebaert et

al. 2014). The aim is to assess the compatibility of three

commercial available repair mortars and four mixture of

laboratory-prepared repair mortars with porous limestone

under harsh environmental conditions. The tested mortars

are suggested to be used to repair porous stone. During

the tests, not only the individual behavior of mortars and

porous limestone is tested but also the strength of the

bond between limestone substrate and mortar is also eval-

uated. The bond between mortar and stone and the com-

patibility of physical properties are also important issues

that control the long-term behavior of loss compensation

(Griswold and Uricheck 1998, Van Balen et al. 2005). The

compatibility is also assessed in terms of changes in

microfabric and weight loss of specimens. In addition, the

pore size distribution of test specimens was also assessed

to link the porosity to the frost resistance of mortars and

porous limestone.

Methods/Experimental

Sample preparation

The stones and the used aggregates were collected from

Sóskút quarry. It is located 38 km to the southwest of

the city Budapest. Two main types of porous limestone

were used for tests: (i) a fine-grained oolitic limestone

(FL) and (II) a coarse-grained bioclastic oolitic limestone

(CL). The detailed description of limestone types is given

by Török (2003) and Pápay and Török (2015, 2018).

Mortar specimens were also tested. Ten types of mix-

tures were prepared. Two mixtures were made using

portland cement and various proportion of hydrated

lime, limestone sand, and quartz sand (types A and B)

(Table 1).

Two additional mixtures were prepared adding portland

pozzolanic cement (types C and D). The materials that

were used for types A–D were hydraulic lime with density

Fig. 2 Images (top) and thin section photographs (bottom) of porous limestones: coarse-grained limestone (a, c) and fine-grained limestone (b, d)
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of 2.24 g/cm3 and portland pozzolanic cement with mater-

ial density of 3.14 g/cm3 and fine limestone aggregate of 1–

2mm or less in size with material density of 2.69 g/cm3 or

quartz sand with a material density of 2.65 g/cm3. Three

additional ready-to-mix mortars were also tested marked as

T, R, and K. Their composition is also given in Table 1.

Additionally, samples with 50m% of limestone sand aggre-

gate were also prepared. Thus, in these types of specimens,

sand-sized porous limestone was used as aggregate

(Table 1). These mixtures are marked with T50, R50, and

K50 throughout the paper. Two types of samples were pre-

pared from mortars. First sets were cubes of mortars of 30

mm× 30mm× 30mm in size which were made in stain-

less steel casts. The second sets are prismatic specimens

of 40mm× 40mm× 80mm, where one half of the speci-

men is porous limestone and the other half is mortar, a

composite sample (Fig. 1). Both fine- and coarse-grained

limestone samples (FL, CL) were used for these test

specimens (Fig. 2). The textural properties of these lime-

stone types have been described in previous works (Török

2003, Pápay and Török 2010, Szemerey-Kiss and Török

2012). These limestone/mortar samples were also pre-

pared in stainless steel casts. During the curing, the

stone/mortar interface was kept in contact to provide

an excellent binding. Both types of samples (pure

mortars and stone/mortar composites) were kept in

the cast for 24 h prior to removing from the steel

frames. Once demolded, the specimens were cured

for 28 days at room temperature (20 °C ± 5 °C) under

controlled RH. All together, 48 samples were pre-

pared: 30 cubes of 30 mm × 30 mm × 30mm and 18

prismatic specimens of 40 mm × 40mm × 80 mm.

Mercury intrusion porosimetry and apparent porosity

The measurements were made with a Carlo Erba

2000 (GFZ Potsdam) porosimeter. The collected data

Fig. 3 Pore size distribution of the tested specimens. FL and CL are porous limestone and A, B, C, D, T, T50, R, R50, K, and KR50 are repair mortars,
detailed descriptions of samples are given in the text and in Table 1)
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evaluation was made by Pascal software (version

1.03). Cylindrical specimens of 10 mm in diameter

and different length samples were drilled from mor-

tars and from stone samples for the pore size distri-

bution analyses. Before the tests, samples were dried

in an oven to constant mass at 105 °C. The apparent

porosity of test specimens was also determined ac-

cording to EN 1936:2007.

Freeze-thaw test

For the freeze-thaw test, the European Norm Standard

used as a reference was EN 12371 natural stone

methods-determination of frost resistance. The samples

were initially dried and then submerged in distilled water

at 20 °C until full saturation. After this time, the samples

were placed in a freeze chamber at − 20 to − 22 °C for 6 h.

After freezing, the samples were removed and kept in

water for 6 h. These two steps comprised one cycle.

Weight of the specimens was measured before and after

each freeze cycle. Test specimens of mortars were sub-

jected to 25 freeze-thaw cycles.

Polarizing microscopy analyses

Thin sections were prepared from test specimens prior and

after the freeze-thaw cycles to detect microfabric changes.

Epoxy resin was used to impregnate the porous specimens,

and slices were cut after impregnation. The microfabric

analysis of thin sections was performed by using polarizing

microscopy (ZEISS Axio Imager A2m microscope).

Results

Mercury intrusion porosimetry (MIP) porosity measure-

ments indicate that there are major differences in be-

tween the pore size distribution of limestone samples

and mortars (Fig. 3). Larger pores (larger than 10 μm)

prevail in limestones (more than 55%) while the pores of

the mortars are in the lower size ranges (Table 2). In the

mortar samples, the prevailing pore ranges are in be-

tween 0.1 and 1 μm with the exception of T, R, and R50

mortars. In the former one, 0.01–0.1 pores are the most

common, while in the latter ones, (R, R50) larger pores

(1–10 μm) predominate. The apparent porosity of mor-

tars is less than 30%, with the exceptions of T50, R50, K,

and K50 mortars (Table 2).

The freeze-thaw tests showed that most of the limestone

samples are hardly affected even after 25 frost cycles.

Damages are observed in the form of minor rounding of

edges. Tested commercial mortars of T and R have higher

frost resistance than any of the tested limestone samples.

Damage of mortar samples is seen after 10 freeze-thaw cy-

cles, but major damage is observed at several samples after

25 freeze-thaw cycles (Fig. 4).

The visible signs of frost damage appeared in the forms

of surface spalling or microcrack formation (Fig. 5).

The weight loss of laboratory-prepared mortar samples

related to frost action is different. D mortar with no

added lime has the highest frost resistance, while hy-

drated lime-containing samples (sample set A and B)

have the lowest frost durability (Fig. 6).

The commercially available mortars seemed to be

relatively frost resistant, but the K mortar showed a

weight loss of nearly 20% after 25 freeze-thaw cycles

(Fig. 7). When limestone aggregate was added, the

frost resistance of these mortars was reduced in dif-

ferent rates (Fig. 7.). The lowest durability was found

at K50 mortar, which completely disintegrated after

25 freeze-thaw cycles. The damage of pure cement

and hydrated lime-based mortars (T and R) during

freeze-thaw cycling was lower.

Microscopic analyses of limestone samples suggest

that frost action causes the formation of microcracks

and these cracks tend to open (Fig. 8). The cracks were

found in the porous Hungarian limestone in the carbon-

ate cement between the grains and also within the car-

bonate grains. Larger cracks (80–100 μm) and networks

of smaller intragranular microcracks were also visualized

by using a microscope (Fig. 8).

Mortar specimens have slightly different microcrack

patterns according to microscopic images. Many

cracks are formed parallel to the surface of the mor-

tar (Fig. 9).

Damage and disintegration of bonds between mortar

and limestone during freeze-thaw cycling were not

Table 2 Pore-size distribution and apparent porosity of stone
and mortar

Abbreviation
of tested
samples/pore
ranges (in
micrometer)

0.001–0.01 0.01–0.1 0.1–1 1–10 10–100 Apparent
porosity
(V%)

FL 4.16 11.31 5.41 18.14 60.98 38.8

CL 7.44 13.36 5.27 18.23 55.69 33.9

A 1.35 16.37 51.23 27.33 3.66 22.6

B 0.97 10.08 35.70 49.10 4.15 24.6

C 16.06 16.54 32.45 32.35 1.60 27.6

D 0.55 26.54 52.67 17.65 2.59 22.5

T 5.31 40.00 39.41 13.88 1.41 25.5

T50 5.52 23.56 51.09 16.67 3.15 32.5

R 5.84 13.20 30.22 39.55 1.21 29.8

R50 5.87 19.96 32.08 41.09 1.01 32.8

K 4.79 16.38 38.02 38.98 1.82 35.6

K50 4.01 13.95 54.81 24.1 3.12 39.7

Pore sizes are given in micrometer, while apparent porosity is in V%. FL and

CL are porous limestone, while A, B, C, D, T, T50, R, R50, K, and KR50 are repair

mortars, detailed descriptions of samples are given in the text and in Table 1

Török and Szemerey-Kiss Progress in Earth and Planetary Science            (2019) 6:42 Page 5 of 12



gradual. Comparing the results of the failure of the

tested mortar/stone composite samples, it is evident

that visible cracks are not necessarily formed prior

to the separation of stone/mortar interface (Table 3).

There were composite specimens that showed the

formation of microcracks prior to the dismounting

(e.g., C and D, Table 3), but there were mortars

where the bounds between the stone and mortar

were eliminated without any sign of crack formation

(e.g., K50, Table 3). The most common failure was

the forms of cracks at the stone/mortar interface

(Fig. 10).

Discussion

Previous studies suggest that the porosity and pore size dis-

tribution have an important role in the durability of con-

struction materials under laboratory conditions (Benavente

et al. 2004; Chen and Wu 2013; Chen et al. 2013; Martí-

nez-Martínez et al. 2013; Al-Omari et al. 2015; Pápay and

Török 2018) and also in exposed buildings (Thoma-

chot-Schneider et al. 2011, Vázquez et al. 2015, Gökçe et al.

2016). In this study, the most durable mortars were the

ones of D, T, and R (Figs. 6 and 7). These mortars have very

different pore size distributions (Table 2 and Fig. 3). D and

T mortars have a very high amount of pores in the pore

Fig. 4 Samples before the frost test (a), after the 5th freeze-thaw cycles (b), after the 10th freeze-thaw cycles (c), after the 15th freeze-thaw cycles
(d), after the 20th freeze-thaw cycles (e), and after the 25th freeze-thaw cycles (f)
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ranges of 0.01–0.1 μm (Table 2). This pore range was con-

sidered as one of the most sensitive ones in terms of salt

damage (Yu and Oguchi 2010), while Benavente et al.

(2004) suggested that larger pores (0.1–10 μm) all contrib-

ute to salt damage. Other authors (Steiger 2005a, 2005b;

Cárdenes et al. 2013) clearly noted that smaller pores can

be also considered in salt damage. Frost damage is also

linked to porosity, and there is a strong link between hu-

midity, capillary condensation, and frost damage of porous

materials (Al-Omari et al. 2015; Scrivano et al. 2018). Be-

sides porosity and pore size distribution, the composition

also controls the frost resistance of the tested mortars.

Mortars that contain pozzolanic cement with hydrated lime

are more sensitive to frost action (K, Table 1, Fig. 7) than

the ones that contain portland cement (T and R, Table 1,

Fig. 7). It was also documented for pozzolanic mortars that

the frost damage is clearly related to microcrack formation

(Siline et al. 2017). At the tested mortars, microcracking

Fig. 5 Frost damage of cubic mortar specimens: a scaling (K50 after 5 freeze-thaw cycles) and b rounding of edges, surface scaling, and cracking
(K50 after 11 freeze-thaw cycles) (red arrows show scaling, while white arrows point to microcracks)

Fig. 6 Average weight loss (%) of the tested specimens (A, B, C, and D, see sample description in Table 1) (please note that there is an overlap
between the symbols up to 10 cycles)
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and spalling occurred, and granular disintegration was also

observed (Fig. 5) after 10 to 15 cycles. Granular disintegra-

tion was also reported even after 5 freeze-thaw cycles when

lime mortars were tested (Nunes and Slízková 2016). The

fact that granular disintegration was only observed after 10

cycles and not earlier could be related to the presence of

portland cement in all tested specimens.

The freeze-thaw cycles cause somewhat similar dam-

age forms on mortars and artificial stones to the ones re-

lated to salt damage (Rusin and Swiercz 2017,

Husillos-Rodriguez et al. 2018). The latter one is also

characterized by microcracking, granular disintegration,

and scaling (Thomachot-Schneider et al. 2016). Similarly,

the frost damage in limestone also appears in the form of

Fig. 7 Average weight loss (%) of mortar samples (T, T50, R, R50, K, and K50, see legend in Table 1 and in the text) (please note that there is an
overlap between the symbols at 0.00 line up to 21 cycles)

Fig. 8 Cracks developed within the porous limestone due to frost damage. Microscopic images (crossed polars): a fine-grained oolitic limestone
(FL) with microcracks in between the grain boundaries crossing microsparitic cement and b opened microcrack at grain boundary coarse-grained
oolitic limestone (CL) (arrows show microcracks)
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crack formation under laboratory conditions (Martínez--

Martínez et al. 2013) and also in monuments (Török

2003, Laycock et al. 2008), while it was observed here

under the microscope (Fig. 8).

Similar cracks were observed by Martínez-Martínez et

al. (2013) studying six limestone types under simulated

frost weathering. Our observations are also in good

agreement with the findings of Al-Omari et al. (2015),

since in that paper, the damage of highly porous French

limestone due to frost action was recorded as micro-

crack formation.

Earlier tests have shown that the rate of the frost dam-

age in Miocene limestone depends on the different tex-

ture of this limestone type (Pápay and Török 2018).

There are fine-grained, medium-grained, and coarse

limestone types of porous limestone extracted the same

quarry—Sóskút (Török 2003, Török et al. 2004), and

these limestones have a different pore size distribution

that affects their durability and resistance to weathering

(Török and Rozgonyi 2004). According to Szemerey-Kiss

and Török (2011b) and Pápay and Török (2018), most of

the Miocene limestone is not frost resistant. The highly

porous limestone of Central France is similar to the stud-

ied ones since its frost resistance is also limited and con-

trolled by porosity (Hassine et al. 2018a) and relative

humidity (Al-Omari et al. 2015). The water infiltration

can also cause strain (Hassine et al. 2018b), but the strain

is much enhanced by frost action (Al-Omari et al. 2015)

that can lead to the formation of microcracks and damage

of the limestone (Martínez-Martínez et al. 2013).

Garbalinska and Wygocka (2014) showed that these

cracks are related to the internal structure of the cement

mortars and pore size distribution, too. In this study, the

relationships between crack formation and pore size dis-

tribution cannot be clearly outlined. However, damage

patterns can be linked to porosity; namely, the mortar that

was the least durable (T50, Fig. 7) has the highest amount

of pores in the pore range of 0.1–1 μm (Table 2).

The previous test has demonstrated that various failure

modes exist between mortar and limestone (Szemerey-Kiss

Fig. 9 Surface parallel cracks (arrows) observed in mortar specimens. a Mortar A. b Mortar C (see sample description in Table 1). The boundaries
of split surfaces are marked by red lines

Table 3 Failure of the tested mortar/stone sample formation of
cracks and separation of stone/mortar interface (number of
freeze-thaw cycles are given)

Sample
abbreviation

Number of the freeze cycle, when

Cracks appear between the
mortar and the stone

Separation of the stone
and mortar

A1 9 12

A2 – 4

B1 – 9

B2 8 9

C1 9 10

C2 5 6

D1 8 9

D2 7 8

T1 – –

T2 16 17

T501 – 19

T502 20 21

R1 – –

R2 – 23

R501 – 19

R502 17 19

K1 8 9

K2 6 7

K501 – 5

K502 – 4
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and Török 2017a). The surface adherence of mortar

also depends on the surface pretreatment (wetting,

etc.), and it has been demonstrated that the adherence

strength of mortar to limestone is much lower

(Szemerey-Kiss and Török 2017a) than that of the

concrete (Sadowski and Hola 2015; Sadowski et al.

2016). The surface adherence also depends on surface

roughness (Sadowski and Mathia 2016), and it seems

that adding limestone sand to mortar increases surface

roughness and probably contributes to the increase of

frost resistance of mortar/limestone interface (Table 2).

The appearance of cracks does not necessarily predict

the failure at stone/mortar interface since there are

several specimens (A2, B1, R2, and R501 in Table 3)

where no cracks were observed prior to failure (separ-

ation of stone/mortar interface). The adherence of the

mortar to the stone surface is also controlled by the

durability of the mortar itself; mortars with low frost

durability (e.g., D (Fig. 6) or K50 (Fig. 7)) were sepa-

rated from the stone surface after a lower number of

freeze-thaw cycles (Table 3).

These tests also provide information on how many

freeze-thaw cycles are needed to assess the durability of

these mortars (Szemerey-Kiss and Török 2017b). Goudie

(1999) used 80 cycles in his study to guarantee that at least

two thirds of the samples were affected by the

freeze-thaw. In our study, 25 cycles were reached and

these provided a good hint to observe the differences in

durability; however, some authors emphasize the use of an

even higher number of freeze-thaw cycles to better under-

stand the frost durability of natural stones (Martínez-Mar-

tínez et al. 2013) and mortars (Siline et al. 2017).

Conclusions

The freeze-thaw test of repair mortars and porous lime-

stone indicates that there is a strong link between poros-

ity and frost durability. Adding limestone aggregate to

ready-to-mix mortars reduces the frost durability. The

mortars that contain pozzolanic cement are more sensi-

tive to frost than the ones of portland cement binders.

Adding hydraulic lime accelerates curing, but often re-

duces the frost durability of mortars. Frost damage of

limestone/mortar interface appears in the form of micro-

cracks and dismounting of the mortar from the stone.

Microcrack formation does not necessarily occur prior

to losing the adhesion of the stone surface. It could hap-

pen rapidly without visible signs.

Fig. 10 Cracks observed at and parallel to stone/mortar interface due to frost damage. a T and coarse porous limestone. b Coarse porous
limestone and T50. c Coarse porous limestone and K. d Coarse porous limestone and K50
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