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Abstract

In melting and assimilation of a cylindrical shaped additive in an agitated hot melt bath during

the process of preparation of cast iron and steel of different grades, an unavoidable step of transient

conjugated conduction-controlled axisymmetric freezing and melting of the bath material onto the

additive immediately after its dunking in bath occurs. Decreasing the time of completion of this step

is of great significance for production cost reduction and increasing the productivity of such

preparations. Its suitable mathematical model of lump-integral type is developed. Its nondimensional

format indicates the dependence of this step upon independent nondimensional parameters- the bath

temperature, θb the modified Biot number, Bim denoting the bath agitation, the property-ratio, B and

the heat capacity-ratio, Cr of the melt bath-additive system, the Stefan number, St pertaining to the

phase-change of the bath material. The model provides the closed-form expressions for both the

growth of the frozen layer thickness, ξ onto the additive and the heat penetration depth, η in the

additive. Both are functions of these parameters, but when they are transformed to the growth of the

frozen layer thickness with respect to the heat capacity ratio per unit Stefan number; and the time per

unit property-ratio, B, their expressions become only a function of single parameter, the conduction

factor, Cof consisting of the parameters, B, Bim and θb. The closed-form expression for the growth of

the maximum thickness of the frozen layer, its time of growth, the time of the freezing and melting;

the heat penetration depth are also derived. When the heat penetration depth approaches the central
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axis of the cylindrical additive in case of the complete melting of the frozen layer developed Cof≤

11/72. It is found that the decreasing Cof reduces both the time of this unavoidable step and the

growth of the maximum frozen layer thickness and at Cof=0, the frozen layer does not form leading

to zero time for this step. If the bath is kept at the freezing temperature of the bath material, only

freezing occurs. To validate the model, it is cast to resemble the freezing and melting of the bath

material onto the plate shaped additive. The results are exactly the same as those of the plate.

Keywords- Mathematical modeling; Melt-additive system; Freezing and melting.

1. introduction

Reducing the time of production with

decrease in the cost of production without

compromise of the quality of the cast iron

and steel of a required grade produced is of

prime importance for global

competitiveness. Here, before following a

prescribed route to manufacture these

products, their melt of a desired composition

is prepared by melting and assimilating solid

additives in the hot melt bath after they are

immersed in the bath. This process

comprises different stages. In the first stage

soon after the immersion of the additive in

the bath, the contact interface between the

surface of the additive and the melt bath

attains an equilibrium temperature, Te, the

bath material freezes onto the surface of the

additive and the heating of the additive

initiates. Then the growth of the frozen layer

with its subsequent melting occurs, the

interface temperature builds up and the heat

penetrates the solid additive. The second

stage consists of further heating of the

additive to its melting temperature after its

emergence at an elevated temperature. The

melting and assimilation of the additive in

the bath take place in the third stage. These

stages are completed in a certain time called

production time and regulated by the

temperatures of the bath and the additive, the

bath condition, the thermo-physical

properties of the bath-additive system and

the geometry of the additive. It can be

accomplished by decreasing the time of

completion of the undesirable step of

freezing and melting of the bath material

onto the additive which always occurs due to

the heat conducted to the additive far

exceeding the convective heat supplied by

the bath during the initial period of this

process. The excess amount of conductive

heat is compensated by latent heat of fusion

released owing to the freezing of the bath

material onto the additive. At the later time,

the conductive heat to the additive becomes

less than the convective heat supplied

leading to the melting of the frozen layer by

the excess of the convective heat.

Consequently, for a specified melt bath-

additive system, the convective heat

available from the bath acts as a regulating

factor to determine the time of completion of

the freezing and melting.

In view of these, its high value permits the

development of smaller frozen layer and

decreases the time of freezing of this layer

with its subsequent melting and, in turn,

reduces the production time. This can be

achieved once the bath is made highly

agitated due to its giving high heat transfer
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co-efficient and associated higher rate of

convective heat transfer.

In the literature, study of such an

occurrence which yields negligible thermal

resistance of the frozen layer with respect to

that of the cylindrical additive and is

frequently encountered in manufacturing

practices, is seldom reported. Nevertheless,

the first stage for the plate [1], cylindrical [2]

and spherical [3] shaped solid additives is

investigated in case of the thermal

resistances of the frozen layer developed on

these additives are comparable with those of

the additives. In this condition, it was stated

that increasing the heat transfer co-efficient

of the bath decreases the frozen layer

thickness and the time of the first stage for

the plate shaped [1] additive. These findings

are implicit for the spherical additive [3]. For

the cylindrical steel additive-liquid steel bath

system [4] the experimental results exhibit

that increasing the temperature before

immersion of such an additive the maximum

thickness of the frozen layer and the time of

its growth and melting decrease when the

heat supplied from the bath to the additive

was by natural convection. Similar behavior

is exhibited for increasing the diameter of the

additive. In titanium cylindrical additive-

liquid steel bath system [5]., numerical

results indicate decreasing the time of

freezing and melting of the bath material

once heat transfer coefficient from the bath

increases. For this additive-bath system, [5]

comprehensive theoretical study for the

growth of the frozen layer with its

subsequent melting [6] was undertaken. It

states that for a given diameter of the

additive at a prescribed heat transfer

coefficient from the bath to the additive, the

time of freezing and melting of the bath

material reduces as the temperature of the

additive before its immersion in the bath

increases or diameter of the additive at its

particular temperature and heat transfer

coefficient decreases. The behavior is found

to be similar for increasing heat transfer

coefficient or bath temperature. A closed-

form expression for the attainment of the

instant interface temperature [7] between the

cylindrical additive and the developing

frozen layer of the bath material onto the

additive soon after the immersion of the

additive in the bath also appeared.

The present investigation is intended to

develop a suitable mathematical model of the

Lump-integral form for the freezing and

melting of the bath material onto the surface

of a cylindrical shaped additive dunked in an

agitated bath. The thermal resistance of the

frozen layer grown is of negligible thermal

resistance with respect to that of the

cylindrical additive. The model is non-

dimensionalised exhibiting the dependence

of this situation upon the independent

parameters namely, the Biot number, Bi

signifying the bath agitation, the Stefan

number, St denoting the phase-change of the

bath material, the bath temperature, θb and

the property-ratio B of the melt bath-additive

system and gives closed-form solutions for

the frozen layer with its melting, its time of

completion and the heat penetration

thickness. In the solutions, these parameters

appear only as a conduction factor, Cof. The

expressions for the maximum frozen layer

thickness, its time of growth, the total time of

freezing and melting are obtained. The

solution for only freezing of the bath

material is also derived. For validation, the
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solutions are reduced to those of the freezing

and melting of the bath material onto the

plate shaped additive giving exactly the same

expressions as those of the plate.

2. Mathematical Model

Considering the above facts, this section

develops an appropriate mathematical

model. Here, a cylindrical shaped solid

additive of radius ra at a uniform

temperature, Tai less than its melting

temperature, Taf is dipped in a hot melt bath

of temperature, Tb greater than melting

temperature, Taf of the additive with the

freezing temperature, Tmf of the bath

material smaller than Taf (Tmf <Taf) and in

the additive-melt bath system shown in

Fig.1, a temperature field Tb>Taf>Tmf>Tai is

established. Immediately after the immersion

of the additive in the bath, the bath material

freezes onto the cylindrical additive surface,

the contact interface between the bath and

the additive arrives at an elevated

temperature, Te, less than the melting

temperature of the additive and the

temperature gradients are set up both on the

additive and bath sides of the interface. With

passing of time, the interface temperature, Te

rises, the frozen layer grows in thickness and

heat penetrates in the solid until the heat

conducted to the additive is more than the

convective heat given by the bath. Once the

rate of heat conduction equals the rate of

convective heat supplied the growth of the

frozen layer ceases. Beyond this time the

convective heat becomes greater than the

heat conducted to the additive through the

frozen layer resulting in the melting of the

frozen layer but the interface temperature, Te

and the heat penetration depth continue to

increase. Eventually, the frozen layer

completely melts leaving the cylindrical

additive at an elevated temperature.

The heating of the additive and the

freezing of the bath material around the

additive are regulated by transient

conjugated axisymmetric heat conduction.

The dimensionless integral form of heat

conduction equation governing the

temperature field in the heated region of the

additive can be written as

(1)

Its associated initial and boundary

conditions are

(2)

(3)
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Fig. 1. Schematic of freezing and melting of

the bath material onto the cylindrical shaped

solid odditive in an agitated bath



(4)

Since the agitated bath is associated with

a large value of heat transfer coefficient, it

gives a large amount of convective heat

h(Tb-Tmf) resulting in the requirement of a

small amount of latent heat of fusion to

compensate the deficient amount of heat due

to the difference between the heat conducted

to the cylindrical additive and the convective

heat supplied by the bath. It is affected once

the frozen layer of a very small thickness [1,

8] is grown. Such a situation provides the

thermal resistance of the thin frozen layer

insignificant with respect to the convective

thermal resistance of the melt bath leading to

the development of uniform temperature [9,

10, 11] in the entire thickness of the frozen

layer. It is equal to the freezing temperature,

Tmf of the bath material because the freezing

front in contact with bath always remains at

Tmf. Due to this reason, the contact interface

temperature, Te between the cylindrical

additive and the frozen layer also assumes

the freezing temperature, Tmf of the bath

material. In view of these, the frozen layer

behaves as a lump system that does not

absorb or release the sensible heat. An

energy balance employed to this lump makes

the heat conducted to the additive equal to

the sum of the latent heat of fusion evolved

due to freezing and the convective heat

provided by the bath. Its mathematical

expression in nondimensional form becomes

(5)

The initial condition related to this

equation is 

(6)

The conjugating conditions at the

interface between the frozen layer and the

additive are 

(7)

(7a)

In writing equations (1) to (7a) associated

with mathematical model of the present

problem, the thermo-physical properties of

the materials of the frozen layer and the

additive are taken to be uniform but

different. Moreover, the surface of the

cylindrical additive is assumed to be in

perfect contact with the surface of the frozen

layer and there is no interface resistance

between them. Choice of such assumptions

is realistic since in the previous studies of

freezing and the melting of the bath material

onto the spherical [3] and plate shaped

additive [1, 12] with comparative thermal

resistances of the frozen layer with respect to

the additive yielded accurate results. It may

be noted that this nondimensional model

indicates that the problem is dependent upon

the independent parameters, the bath

temperature, θb, the modified Biot number,

Bim, the Stefan number, St, the heat capacity-

ratio, Cr and the property-ratio, B of the bath-

additive system.

3. Solutions

As the model of this problem is

mathematically nonlinear due to the

appearance of moving phase-change

boundary denoted by equation (5) and is
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coupled owing to the conjugating conditions

at the interface represented by equations (7)

and (7a), they do not allow the model to

provide an analytical solution employing

exact analyses available in the literature.

Consequently, semi-analytical methods

become important. One of such methods

known as the integral method capable of

yielding simple and close-form expressions

for several heating and phase-change

problems in the past [13, 14, 15] is applied.

It requires the prescription of the temperature

distribution in the heated region of the

additive. Here, the distribution is assumed to

be cubic,

(8)

It satisfies the boundary conditions,

equations (3) and (4) which also reduce the

integral equation (1) to 

(9)

Application of Eq.(8) to Eq.(9) leads to

(10)

whereas the conjugating condition, Eq.(7)

gives

(11)

Using Eq.(11), Eq.(5) takes the form

(12)

Since the interface temperature, θe in view

of the description appeared earlier is one

(θe=1), its application converts Eqs.(10) and

(12) respectively, to 

(13)

and 

(14)

Although these two equations are coupled

due to the presence of η in them, their close

examination indicates that they provide

closed form expressions in terms of η. Here,

Eq.(13) is rearranged to

(15)

giving readily the closed-form solution

(16)

It satisfies the initial condition, Eq.(2) and

states that the heat penetration depth (1- η) in

cylindrical additive is an inverse function of

time, τ. To solve Eq.(14), it is combined with

Eq.(13) leading to

(17)

Its rearranged form becomes

(18)

Its solution becomes

(19)

Note that it fulfils the initial condition,

Eq.(6). Substitution of Eq.(16) changes it in

terms of only heat penetration depth.

(20)
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Eqs.(16) and (20) represent, respectively,

the closed-form solutions for the heat

penetration depth in the cylindrical additive

and the growth of the frozen layer around the

surface of the additive.

3.1 Maximum thickness of the Frozen

layer and its growth time

To determine the growth of the maximum

frozen layer thickness and its time of

occurence,      is made zero. As Eq.(20) is a

function of η only,         is replaced by        

and is then made zero. Using Eq.(16)

(21)

whereas Eq.(20) leads to

(22)

In view of the above application of

Eq.(21) and (22) to

(23)

provides 

(24)

It results in the condition

(25)

for the maximum growth of the frozen

layer thickness as it satisfies the requirement

of                for the maximum growth. It is

transformed to 

(26)

where,

(27)

It is known as conduction factor and

signifies the ratio of the heat conduction to

the cylindrical additive,                         caused

by the temperature difference of the freezing

temperature of the bath material and the

initial temperature of the additive and the

convective heat,                     supplied by the

bath. It lies between 0 to ∞ (0≤ Cof ≤∞). Zero

represents the preheated additive at the

freezing temperature of the bath material

resulting in no conductive heat transfer to the

additive and there is no formation of the

frozen layer whereas ∞ is indicative of the

bath at the freezing temperature of the bath

material leading to non availability of the

convective heat from the bath. Owing to this

situation, only freezing occurs onto the

surface of the additive immersed in the bath

at its initial temperature, Tai. Using Eq.(26)

in Eq.(20) yields

(28)

whereas application of Eq.(26) to Eq.(20)

yields the maximum thickness of frozen

layer

(29)

Time of this maximum growth is readily

obtained once Eq.(26) is employed in
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Eq.(16)

(30)

3.2 Total Time Of Freezing And Melting

Of The Bath Material, tt :

At this time     , the frozen layer grown

melts completely giving         and the heat

penetrates the additive through the thickness

. Applying them to Eq.(28) yields

It is cast in the form

(31)

which is a quadratic equation in           . 

Its solution can be written as

(32)

As           remains below one 

for the heat not penetrating beyond the

central axis of the cylindrical additive, the

root from the Eq.(32) for any value of Cof

can be selected such that                . When it

is employed in Eq.(16), the total time of

freezing and melting,    is obtained. To

determine the range of values of Cof with

respect   to  these   conditions  of              and

Eq.(28) is again considered. Here,

for            it gives

(33)

To satisfy the condition of              , it

becomes

which leads to

(34)

It is noted that signifies the value

of Cof for which the heat penetration depth

reaches the central axis,          of the

cylindrical additive and the frozen layer

grew completely melts       . For this

condition, the maximum growth of the

frozen layer can readily be obtained from

Eq.(29) once Eq.(34) is employed.

(35)

3.3 Limiting case: Freezing without

subsequent melting

When the bath temperature is maintained

at the freezing temperature of the bath

material, no convective heat is available

from the bath owing to which the heat

conducted to the additive is met only by the

latent heat of fusion released due to freezing

of the bath material. It results in freezing the

bath material only and makes the conduction

factor, Cof infinity              . Using it in

Eq.(28) provides the growth of the frozen

layer thickness

(36)

when the heat penetration approaches the

central axis of the cylindrical additive, . 

This equation gives the development of

the frozen layer thickness 

(37)

It is noted that for this condition of ,
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the growth of the maximum frozen layer

thickness when the freezing and melting of

the bath material takes place due to

availability of the convective heat from the

bath remains always less than Eq.(37)

4. validation

To confirm the efficacy of the model, the

present problem is converted to that of the

freezing of the bath material onto the

cylindrical [7] and plate [12] shaped

additives immediately after the immersion of

these additives in the bath. In such a situation

a thin frozen layer of the bath material onto

the additive grows and heat penetrates the

additive simulating the present problem.

Here, the heat penetration depth obtained in

Eq.(16) is exactly the same as that appeared

in [7]. For comparing with the plate shaped

additive the heated annular portion of the

cylindrical additive due to the assumption of

its radius-ratio, η→ 1 and the heat

penetration thickness, 1- η= th→ 0 resembles

a plate and Eq.(16) pertaining to this

penetration depth becomes

(38)

Applying the order of magnitude analysis

[11] of various terms with respect to each

other gives                    and Eq.(38) reduces

to

(39)

It truly represents the heat penetration

thickness in the plate. Note that it is the same

expression reported in the previous study for

plate additive [12].

5. results and discussion

A Lump-inetgral nondimensional form of

mathematical model for transient

conjugating axisymmentric freezing and

melting of the bath material around the

surface of the cylindrical additive

immediately after its immersion in the

agitated bath is evolved. It exhibits that this

process is controlled by independent

parameters namely, the bath temperature, θb

the modified Biot number, Bim, the property-

ratio B and heat capacity-ratio, Cr of the

melt-bath additive system and the Stefan

number, St. The modified Biot number

represents agitation of the bath which

increases the convective heat available from

the bath to the additive. The bath

temperature, θb signifies the thermal

potential of the bath. Its increasing value aids

to increase this heat transfer. The Stefan

number which is the ratio of the sensible heat

and the latent heat of fusion of the phase-

changing bath material is a phase-change

parameter. Its high value is indicative of the

material of low latent heat of fusion leading

to growth of large thickness of frozen layer

for the same convective heat supplied from

the bath. The property-ratio, B denotes the

thermal force of the bath. Its lower value

increases this force to transfer more heat to

the additive whereas the large heat capacity-

ratio, Cr permits the storage of less heat in

the heated region of the additive with respect

to that in the frozen layer. In the closed-form

solution, B, Bim and θb appear together as a

single parameter, the conduction factor, Cof.

It varies from zero to infinity (0 ≤ Cof ≤ ∞).

Cof=0 states that there is no conductive heat

transfer to the additive owing to which the
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freezing does not take place. Consequently,

the first step of this freezing and melting get

vanished. Such a condition is arrived once

the additive is preheated to the freezing

temperature of the bath material before its

immersion or the bath is made highly

agitated. Cof =∞ implies nonavailabilty of

the convective heat from the bath. It is

achieved by maintaining the bath at the

freezing temperature of the bath material.

Here, the conductive heat transferred to the

additive after its immersion in the bath is

provided by only latent heat of fusion

evolved owing to freezing of the bath

material. As a result, the frozen layer

continues to grow without its subsequent

melting. These facts allow to select Cof close

to zero for the growth of a smaller frozen

layer thickness in order that much less time

needed for the freezing of this layer along

with its melting. The values of independent

parameters stated above for different

cylindrical additive-bath systems employed

in the manufacture of the cast iron and steel

are also presented in Table1.

5.1 effect of the conduction factor, Cof

The closed-form solution for the frozen

layer thickness converted to the frozen layer

thickness with respect to the heat capacity-

ratio per unit Stefan number [ξ*= (ξ-Cr)/St]

with the time taken per unit property-ratio,

τ/B becomes only a function of the conductor

factor, Cof Eq.(28). The behavior of the

growth of such a frozen layer thickness and

the heat penetration with time, τ/B is

exhibited in Fig.2 for different values of Cof.

The Fig.2 denotes that for each of Cof, the

freezing with melting takes a parabolic

shape. The height of its apex represents the

growth of the maximum frozen layer

thickness whereas the left of the apex gives

the time of growth of the frozen layer

thickness and its right corresponds to the

time of melting of this frozen layer.

Moreover, the frozen layer builds up with

much faster rate than that of its melting. For

Cof=11/72, this built up takes 25.3% of the

total time of the freezing and melting

whereas the melting of the frozen layer is

completed in 74.7% of this total time. These

imply that the time ratio of the growth of the

frozen layer and the melting of this layer is

approximately 1/3:3/4. It is found that this
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Bath Material Solid Additive
Non-Dimensional

parameters

Km ρm Cpm Lmx10-3 Tmf Tb Ka ρa Cpa Tai R0 θb B *Bi Cof St

W/mk Kg/m3 J/kgk J/ kg 0C 0C W/mk Kg/m3 J/kgk 0C m

Cast- Iron

4%C [11]  
51.9 7304 417 275.7 1433 1550 Ni [9]  90 8906 449.5 35 0.025 1.084 0.438 2.22 5.38 2.17

Hot-Metal

[16]  
35 6850 670 275.7 1150 1500

Ferro-Magnese

[16]
7.5 7200 700 35 0.025 1.314 4.25 26.66 0.12 2.79

Slag [3]  1.063 2890 920 544 1500 1600 DRI [3]  2.13 2600 820 35 0.025 1.068 0.622 93.9 0.16 2.54

Table1: Thermo-physical properties of typical Bath- Solid system [3, 9, 11, 16] and their

dimensionless parameters. 

*Based on heat transfer co-efficient, h= 8000 Wm-2k-1 and R0= 0.025m. 



ratio remains almost unaltered for all the

values of Cof (0<Cof≤11/72) taken. Similar

result was obtained in an earlier investigation

pertaining to the same process of the freezing

and melting onto the plate shaped additive

[1] with the cubic temperature profile taken

in the heated portion of the plate. Decreasing

Cof provides smaller parabola and reduces

both the total time of the freezing and

melting and the time for the growth of the

maximum frozen layer thickness, Eq.(30).

Also, the height of the apex of the parabola

signifying the maximum thickness of the

frozen layer gets shortened, Eq.(29), with the

apex moving towards the zero time. These

predictions can be corroborated from the

following facts. For a specified initial

thermal condition of the additive, a certain

amount of heat is conducted to, Eq.(27), the

additive whereas at a prescribed bath

temperature, reduction in Cof increases the

convective heat supplied by the bath

resulting in increase in the Biot number and

the agitation of the bath. Since the heat

conducted to the additive is met by the

convective heat available from the bath and

the latent heat of the fusion released due to

the freezing of the bath material onto the

additive, the availability of the increased

convective heat due to reduced Cof needs

smaller amount of latent heat of fusion to

match the above required conductive heat.

Consequently, a smaller thickness of the

frozen layer is built up, Fig.2. With respect to

time, the behavior of the heat penetration

depth, η is nonlinear and it lies on the same

plot for all Cof (0<Cof≤11/72), Fig.2.

Decreasing Cof decreases η at the time of the

completion of the freezing and melting of

bath material.

Fig.3 displays the behavior of the total

time τt/B of the freezing and melting of the

bath material, the time, τmax/B of the
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Fig. 2. Effect of conduction factor, Cof on the

time of development of the frozen layer

thickness,x’ of the bath material onto the

cylindrical shaped additive alongwith total time

of freezing and melting and the heat penetration

depth, (1-h) in the additive

Fig. 3. Variation of maximum frozen layer

thickness xmax, its growth time tmax/B and total

time of freezing with its subsequent melting tt/B

with conduction factor, Cof



growth of the frozen layer to its maximum

thickness and the maximum frozen layer

thickness, with the conduction factor

Cof≤11/72. It is observed that these times

increase with a faster rate as Cof increases

beyond its zero value whereas the growth

of the values of the maximum frozen layer

thickness shows almost linear feature

although in reality it follows the

nonlinearity behavior, Eq.(29).

6. Conclusion

Lump-integral formulation in

nondimensional form for the transient

axisymmetric freezing and melting of the

bath material onto the cylindrical shaped

solid additive developed provides the

independent parameters controlling this

occurrence and gives closed-form

solutions for the time variant growth of

the frozen layer along with its melting and

the heat penetration thickness. With the

skillful arrangements of these parameters,

the solutions become dependent upon the

conduction factor, Cof. It is predicted that

the reduction in Cof decreases both the

growth of the maximum thickness of the

frozen layer and the total time of freezing

and melting. This occurrence almost

vanishes with no growth of the frozen

layer when the bath is made extremely

agitated, Cof →0. For the radius-ratio of

the heated annulus formed in the

cylindrical additive in the above

occurrence is of order of unity, the

expressions of the present solutions

become those of plate shaped additive

validating the present analysis.
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Appendix - nomenclature

R0 radius of the cylindrical shaped solid additive, m

B property ratio, (KmCm/KaCa)

Bi Biot number, (hR0/Ka)

Bim Modified Biot number, (hR0/Ka)*( KaCa/ KmCm )

Ca heat capacity of the cylindrical additive, Jm-3K-1

Cm heat capacity of the frozen layer, Jm-3K-1

Cof conduction factor, 1/ Bi (Өb-1)

Ra radius of the heat penetration front in the additive

at any time, m

Rm radius of the frozen layer front onto the additive

at any time, m

h heat transfer coefficient, Wm-2K-1

Ka thermal conductivity of the additive,Wm-1K-1

Km thermal conductivity of the frozen layer, Wm-1K-1

Lm latent heat of fusion of the frozen layer,JKg-1

Qm heat transfer from the frozen layer to the

additive, Wm-2

Qmn non-dimensional heat transfer from the frozen

layer to the additive, (QmR0/ Ka Tmf)/B

St Stefan number, Cm(Tmf – Tai)/ Lm ρm

t time, s

tmc time for freezing and its subsequent melting, s

T temperature, K

Ta temperature of the additive, K

Tai initial temperature of the additive, K

Taf freezing or melting temperature of the additive, K

Tb bulk temperature of the bath material, K

Te instant equilibrium temperature at the interface

between the additive and the frozen layer, K

Tem instant equilibrium temperature at the interface

between the additive and the frozen layer when the

frozen layer completely melted, K

Tmf freezing or melting temperature of the frozen

layer, K

ra radius within the heat penetration region in the

additive, m

rm radius within the frozen region, m

αa thermal diffusivity of the additive, m2s-1

αm thermal diffusivity of the frozen layer, m2s-1

ξ non-dimensional radius of the frozen layer front

at any time, (CmRm/ CaR0)

ξa non-dimensional radius in the heat penetration

region in the additive, (ra /R0)

ξm non-dimensional radius within the frozen layer

region, (Cm rm/ CaR0)

η non-dimensional radius of the heat penetration

front in the additive at any time, (Ra/R0)

ρm density of the frozen layer, Kgm-3

θ non-dimensional temperature, (T-Tai/ Tmf - Tai)

θa non-dimensional temperature of the additive at

any time, (Ta- Tai / Tmf- Tai)

θaf non-dimensional freezing or melting temperature

of the additive, (Taf-Tai /Tmf -Tai)

θb non-dimensional bulk temperature of the bath

material, (Tb -Tai /Tmf - Tai)

θe non-dimensional instant equilibrium temperature

at the interface between the additive and the frozen

layer, (Te- Tai /Tmf - Tai)

τ non-dimensional time, (KmCm/Ca
2 R0

2)t

τn non-dimensional time for heating of the additive

without freezing of the bath material, (αat/ R0
2)
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