
Mathematical Modelling and Analysis Publisher: Taylor&Francis andVGTU

Volume 20 Number 4, July 2015, 443–456 http://www.tandfonline.com/TMMA

http://dx.doi.org/10.3846/13926292.2015.1064486 ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2015 eISSN: 1648-3510

Freezing of Biological Tissues During

Cryosurgery Using Hyperbolic Heat

Conduction Model

Sonalika Singh and Sushil Kumar

Department of Applied Mathematics and Humanities, S. V. National

Institute of Technology

Surat-395007, India

E-mail(corresp.): singhsonalika01@gmail.com

E-mail: sushilk@ashd.svnit.ac.in

Received June 5, 2013; revised June 11, 2015; published online July 15, 2015

Abstract. This paper considers hyperbolic heat conduction model for biological
tissue freezing during cryosurgery with non ideal property of tissue, metabolism and
blood perfusion. Mathematical model is solved numerically using finite difference
method to obtain temperature distribution and phase change interfaces in tissue dur-
ing freezing. The effects of phase lag of heat flux in hyperbolic bio-heat model on
freezing process are studied. Comparative study of parabolic and hyperbolic bio-heat
models is also made here.
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1 Introduction

Phase change heat transfer is a broad field that finds applications in vari-
ous engineering disciplines like in the making of ice, the freezing of food, the
solidification of metals and alloy, thermal energy storage, cryosurgery and cry-
opreservation. Freezing and thawing processes are two most important process
of phase change associated with high heat transfer rate. The heat transfer in-
volved in phase change is essential in biomedical applications. Two potential
applications of heat transfer with phase change in biomedical are cryopreser-
vation and cryosurgery. Cryopreservation is applied to enhance survival of
biological materials such as cell, tissues, organs, etc; while cryosurgery is ap-
plied to destruct undesired tissues using a freezing process. Cryosurgery is a
technique to treat tumor and can be used inside the body and on the skin using
extreme cold which is obtained using liquid nitrogen through cryoprobe into
or on the target region. The aim of cryosurgery is to maximize the damage
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to undesired tissues within the define domain and minimize the injury to the
surrounding healthy tissues [4, 9].

Various models have been proposed to model the heat transport phenom-
ena in blood perfused tissue e.g. Pennes model [31], The Chen and Holmes
(CH) model [8], The Weinbaum, Jiji and Lemons (WJL) model [20, 42], The
Weinbaum and Jiji (WJ) model [20, 41, 42]. Pennes bio-heat equation is the
most widely applied model for temperature distribution in the living biological
tissues. This is the earliest model for energy transport in tissues and is given
as [31]

ρc
∂T

∂t
= −

∂q

∂x
+ (ρc)bwb(Tb − T ) +Qm, (1.1)

where ρ is density of tissue; k, thermal conductivity; cb , specific heat of blood;
wb, blood perfusion; T , temperature; t, time; Tb, arterial blood temperature
and Qm is the metabolic heat generation in the tissue. In Pennes bio-heat
equation, the heat conduction in biological tissue is modeled by using Fourier’s
law

q(t, x) = −k∇T (t, x), (1.2)

where q(t, x) and T (t, x) represents heat flux and temperature at position x

and time t respectively.
Fourier’s law assumes that heat flux q and temperature change ∇T at any

point x appear at the same time instant t. This implies that thermal signals
propagate with an infinite speed [25]. In fact, heat is always found to propagate
at finite speed. On the other hand, biological tissue are inhomogeneous where
heat flux responds to temperature gradient via relaxation behavior. This has
led to work of searching for new constitutive models. Cattaneo [7] and Ver-
notte [39] simultaneously suggested a modified heat flux model as

q(t+ τ, x) = −k
∂T (t, x)

∂x
, (1.3)

where τ is thermal relaxation time for heat flux. The first order Taylor expan-
sion of q in the equation (1.3) gives

q + τ
∂q

∂t
= −k

∂T

∂x
. (1.4)

Equation (1.4) is well known as Cattaneo-Vernotte’s constitutive relation.
Suppose τ is small in the equation (1.4), so the first order Taylor expansion of
q(t+ τ, x) is an accurate representation for the conduction heat flux. Elimina-
tion of q between equations (1.1) and (1.4) gives

τρc
∂2T

∂t2
+ (ρc+ τρbcbwb)

∂T

∂t
= k

∂2T

∂x2
+Qm + ρbcbwb(Tb − T ). (1.5)

This equation (1.5) is well known as single phase lag bio-heat equation. It
is also called as hyperbolic bio-heat equation as it is hyperbolic in nature and
reduced to parabolic equation for τ = 0.

Various authors have studied the phase change phenomena in tissues using
classical Pennes equation [21, 22, 24, 44]. The heat transfer in tissues, using
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hyperbolic bio-heat equation without phase change has also been studied by
Liu [26]. Ahamdikia et al. [2] presented the analytical solution of the Fourier
and non-Fourier bio-heat transfer models of laser irradiation of skin tissue.
Čiegis et al. [11] used the hyperbolic two step model to describe the interaction
of ultrashort laser pulses with metals and semiconductors. Torabi et al. [36,38]
solved two dimensional hyperbolic heat conduction equations analytically and
numerically. Ahamdikia et al. [1] studied the freezing in tissue using hyperbolic
heat conduction model. In their study, they assumed the temperature disconti-
nuity at solid-liquid interface and neglected the source of the heat due to blood
perfusion and metabolism. They applied isothermal and non-isothermal phase
change in order to simulate heat transfer in cryopreservation. Blood perfusion
and metabolic heat generation also have important effect on heat transfer in
tissues [15, 34,35,44].

In present study, non-Fourier heat conduction model for biological tissue
freezing has been proposed. Non-ideal properties of tissue, metabolism and
blood perfusion in tissues have been taken into consideration. Enthalpy formu-
lation and finite difference method are used for numerical solutions. To study
the effect of relaxation time for heat flux on freezing, temperature profiles in
tissue and position of phase change interfaces are obtained for different values
of relaxation time for heat flux τ .

2 Mathematical Model

2.1 Governing equation

Using the equation (1.5) the non-Fourier bio-heat equation in frozen region and
unfrozen region are given below.
In frozen region:

τρfcf
∂2Tf

∂t2
+ ρfcf

∂Tf

∂t
= kf

∂2Tf

∂x2
for 0 ≤ x < s(t). (2.1)

In unfrozen region:

τρucu
∂2Tu

∂t2
+ (ρucu + τρbcbωb)

∂Tu

∂t
= ku

∂2Tu

∂x2
+Qm + ρbcbωb (Tb − Tu)

for s(t) < x ≤ l (2.2)

Conditions at phase change interface x = x(t) are

kf
∂Tf (s, t)

∂x
− ku

∂Tu(s, t)

∂x
= ρL

ds

dt
+ τρL

d2s

dt2
(2.3)

and
Tf (s(t), t) = Tu

(

s(t), t
)

= Tph, (2.4)

where subscripts u, f and ph denote frozen, unfrozen and phase change respec-
tively.

Major difficulties that arise in phase change heat transfer of biological tis-
sue are its non-linearity due to variable disconnection between different phase

Math. Model. Anal., 20(4):443–456, 2015.



446 S. Singh and S. Kumar

region and unknown position of phase change interfaces. Enthalpy method,
a non-front tracking method is used to formulate the mathematical model for
freezing. Enthalpy is defined as a sum of sensible and latent heat. The basic fea-
ture of enthalpy method is that the evaluation of the latent heat is accounted
by the enthalpy as well as the relation between enthalpy and temperature.
The enthalpy method gives accurate solution, especially, for solidification of
material in which a phase change exists over temperature range. Thus, for
the solution purpose we consider the enthalpy formulation of single phase lag
bio-heat equation for phase change problem associated with biological tissue
freezing.

The relationship between the enthalpy and temperature can be defined in
terms of the latent heat release as a linear function for non-isothermal phase

change cases. Using enthalpy H(T ) =
∫ T

Tr
cdT , where Tr is reference tempera-

ture, temperatures are transformed into enthalpies in the following manner:

(i) Frozen region (T < Tms):

H =

∫ T

Tms

cfdT = cf (T − Tms) .

(ii) Mushy region (Tms ≤ T ≤ Tml):

H =

∫ T

Tms

cadT +
L

∆T

∫ T

Tms

dT = ca(T − Tms) +
L

∆T
(T − Tms).

(iii) Unfrozen region (T > Tml):

H = L+

∫ Tml

Tms

cadT +

∫ T

Tml

cudT = L+ ca∆T + cu (T − Tml) .

Thus, enthalpy and tissue temperature are related as [5, 17]

H =















cf (T − Tms), T < Tms,

ca(T − Tms) +
L

∆T
(T − Tms), Tms ≤ T ≤ Tml,

L+ ca∆T + cu(T − Tml), T > Tml,

(2.5)

where L is latent heat of fusion, ca =
cf+cu

2 and ∆T = Tml − Tms. Figure 1
shows the graphical interpretation of the relation between enthalpy and tem-
perature. Using equation (2.5), equations (2.1)–(2.4) reduce in single equation
as

τρ
∂2H

∂t2
+
(

ρ+
τρbcbwb

c

) ∂H

∂t
= k

∂2T

∂x2
+Qm + ρbcbwb(Tb − T ). (2.6)

2.2 Assumptions

(i) Heat conduction follows non-Fourier law of heat conduction.
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Figure 1. Graphical interpretation of enthalpy versus temperature.

(ii) Heat source due to metabolism and blood perfusion is present when tissue
is not frozen [14,15].

(iii) Non-ideal property of tissue is used with liquidus and solidus temperature
as −1 ◦C and −8 ◦C respectively [32].

(iv) Thermo-physical properties are different in frozen and unfrozen region.

(v) One-dimensional model has been considered.

2.3 Initial condition and boundary conditions

Initial and boundary conditions for equation (2.6) are as follows:

Tp(x, t) = T0, p = u, f at t = 0, (2.7)

∂Tp(x, t)

∂t
= 0, p = u, f at t = 0, (2.8)

Tp(x, t) = Tc, p = u, f at x = 0, (2.9)

∂Tp(x, t)

∂x
= 0, p = u, f at x = l, (2.10)

where T0 is body core temperature 37 ◦C and Tc is cryoprobe temperature
−196 ◦C.

3 Numerical Solution

Phase change problems can be solved using finite difference method (FDM)
[1,15,16,21,22,22,23,28,34], finite element method(FEM) [6,12,19,29,30,35,40,
43], boundary element method(FEM) [14,18] or finite volume method (FVM).
The finite element method and boundary element method successfully handle
complex geometries, but it is recognize that they are consuming more time in
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computing and programming. Because of their simplicity in formulation and
programming, finite difference techniques are still the most popular at present.
Finite volume method is used for hyperbolic heat conduction model in [11].
Čiegis et al. [10] have discussed about finite difference schemes for hyperbolic
heat conduction equations.

Finite difference approximation has been used to solve the mathematical
model. The space length l is discretizing into N equal parts with N = l

△x
.

Considering xi = i△x and tn = n△t, where i and n are space and time indexes
respectively; △x and △t are the increment in space and time respectively.
Introducing forward difference approximation to time derivative and central
difference approximation to space derivative and second order time derivative
at point (xi, tn) in equation (2.6), we get

Hn+1
i =

(

1 +An
i F

n
i

)

Hn
i −An

i F
n
i H

n−1
i +Dn

i F
n
i

(

Tn
i+1 + Tn

i−1 − 2Tn
i

)

+ EFn
i

(

Tb − Tn
i

)

+ Fn
i Qm, (3.1)

where An
i =

τρn
i

(△t)2 ; Bn
i = [

ρn
i

(△t) +
τρbcbwb

cni (△t)
]; Fn

i = 1
An

i
+Bn

i

; Dn
i =

kn
i

(△x)2 ;

E = ρbcbwb.
Equation (3.1) gives the enthalpy at (n+ 1)th time step. After getting the

enthalpy at (n+1)th level, temperature at (n+1)th time step can be obtained
by reverting equation (2.5) as follows.

T =































H

cf
+ Tms, H < 0,

H∆T

ca∆T + L
+ Tms, 0 ≤ H ≤ L+ ca∆T,

H − L− ca∆T

cu
+ Tml, H > L+ ca∆T.

(3.2)

Once the new temperature field is obtained from enthalpy the process re-
peats. Isotherms at −1◦C and −8◦C give the position of upper and lower phase
change interfaces respectively.

4 Stability Analysis

The stability analysis is important for the numerical solution of differential
equation. Sharma et al. [37] and Hossein et al. [3] discussed stability anal-
ysis in case of finite difference method. On the basis of their study, in the
present section we discuss the stability of finite difference scheme given by
equation (3.1). The finite difference method is called stable in the form of ‖ . ‖,
if there exists a constant C > 0, independent of the space step and time step
such that

∥

∥Hn
∥

∥ ≤
∥

∥H0
∥

∥, n = 1, 2, . . . .

The finite difference scheme (3.1) can be written as

Hn+1
i =

(

1 +An
i F

n
i

)

Hn
i −An

i F
n
i H

n−1
i +Dn

i F
n
i

(

Tn
i+1 + Tn

i−1 − 2Tn
i

)

+ Fn
i Qm + EFn

i

(

Tb − Tn
i

)
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or

cn+1
i Tn+1

i =
(

1+An
i F

n
i

)

cni T
n
i −An

i F
n
i c

n−1
i Tn−1

i +Dn
i F

n
i

(

Tn
i+1 + Tn

i−1 − 2Tn
i

)

+ EFn
i

(

Tb − Tn
i

)

+ Fn
i Qm

=
(

cni + cni A
n
i F

n
i − 2Dn

i F
n
i − EFn

i

)

Tn
i −An

i F
n
i c

n−1
i Tn−1

i + EFn
i Tb

+Dn
i F

n
i

(

Tn
i+1 + Tn

i−1

)

+ Fn
i Qm,

or

∣

∣cn+1
i Tn+1

i

∣

∣ =
∣

∣cni + cni A
n
i F

n
i − 2Dn

i F
n
i − EFn

i

∣

∣

∣

∣Tn
i

∣

∣−
∣

∣An
i F

n
i c

n−1
i

∣

∣

∣

∣Tn−1
i

∣

∣

+
∣

∣EFn
i Tb

∣

∣+
∣

∣Dn
i F

n
i

∣

∣

∣

∣Tn
i+1 + Tn

i−1

∣

∣+
∣

∣Fn
i Qm

∣

∣.

Taking the norm ‖ . ‖ of the above equation, it gives

∥

∥cn+1
i Tn+1

i

∥

∥

∞

L
≤ sup

i

∣

∣cni + cni A
n
i F

n
i − 2Dn

i F
n
i − EFn

i

∣

∣ sup
i

∣

∣Tn
i

∣

∣+ sup
i

∣

∣Fn
i Qm

∣

∣

− sup
i

∣

∣An
i F

n
i c

n−1
i

∣

∣ sup
i

∣

∣Tn−1
i

∣

∣+ sup
i

∣

∣Dn
i F

n
i

∣

∣ sup
i

∣

∣Tn
i+1 + Tn

i−1

∣

∣

+ sup
i

∣

∣EFn
i Tb

∣

∣

or

cn+1
i

∥

∥Tn+1
i

∥

∥

∞

L
≤ sup

i

∣

∣cni + cni A
n
i F

n
i − 2Dn

i F
n
i − EFn

i

∣

∣ sup
i

∣

∣Tn
i

∣

∣+ sup
i

∣

∣Fn
i Qm

∣

∣

− sup
i

∣

∣An
i F

n
i c

n−1
i

∣

∣ sup
i

∣

∣Tn−1
i

∣

∣+ sup
i

∣

∣Dn
i F

n
i

∣

∣ sup
i

∣

∣Tn
i+1 + Tn

i−1

∣

∣

+ sup
i

∣

∣EFn
i Tb

∣

∣.

The above finite difference method is stable, if |cni + cni A
n
i F

n
i − 2Dn

i F
n
i −

EFn
i | ≥ 0, which implies that

max
(△t)2

{

2k + ρbcbwb(△x)2
}

(△x)2 {2cτρ+ cρ(△t) + τρbcbwb(△t)}
≤ 1.

5 Results

In this study, the numerical results are shown for the non-Fourier’s bio-heat
transfer with phase change during the solidification process. The values of
parameters used are given in Table 1 [13,23,28,32,33,34]. The relaxation time
for the numerical solution are taken as τ = 0s, τ = 1s , τ = 5s, τ = 10s and
τ = 15s [2,13,25,27,28]. The hyperbolic model reduces to parabolic model for
τ = 0.

The temperature distributions of the tissue at time t = 400s and t = 800s
for different values of time relaxation are presented in Figure 2 and Figure 3
respectively. It is recognizable that when the value of τ move towards to zero,
the hyperbolic solution move towards the parabolic solution. In Figure 2 and
Figure 3 the temperature profiles for τ = 0s and τ = 1s are almost identical,
but for increased value of τ difference between the hyperbolic and parabolic

Math. Model. Anal., 20(4):443–456, 2015.
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Table 1. Thermal properties of tissue.

Parameter Value

Density of unfrozen tissue (kg/m3) 1000
Specific heat of unfrozen tissue (J/kg◦C) 3600
Thermal conductivity of unfrozen tissue (W/m◦C) 0.5
Density of frozen tissue (kg/m3) 1000
Specific heat of frozen tissue (J/kg◦C) 1800
Thermal conductivity of frozen tissue (W/m◦C) 2
Density of blood (kg/m3) 1050
Specific heat of blood (J/kg◦C) 3770
Blood perfusion in tissue (ml/s/ml) 0.005
Metabolic heat generation (W/m3) 4200
Latent heat (J/m3) 250000
The upper limit of phase change temperature (◦C) −1
The lower limit of phase change temperature (◦C) −8
Arterial blood temperature (◦C) 37
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Figure 2. Temperature profile at t = 400s for the value of τ = 15s, τ = 10s, τ = 5s,
τ = 1s, τ = 0s.

solution is more evident. The tissue temperature for the hyperbolic model at
the same time is higher than the parabolic model. The temperature increases
in the tissue with an increase in the thermal relaxation time. It is clear that
the parabolic model predicts a lower temperature then that of the hyperbolic
model, and as the value of τ increases, the difference between the predicted
temperature through the parabolic and hyperbolic models becomes greater.

The liquidus and solidus interface position during the freezing process for
both parabolic and hyperbolic models are shown in Figure 4 and Figure 5 re-
spectively. The time required to reach interfaces at x = l are given in Table 2.
From Table 2 and Figure 4 and Figure 5 it is observed that phase change inter-
faces for hyperbolic model move slower than parabolic one. Further decrease
in phase change interfaces movement is observed with an increase of value τ

for hyperbolic model.

To study the effect of time relaxation parameter on temperature change
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Figure 4. Liquidus interface position for the value of τ = 15s, τ = 10s, τ = 5s, τ = 1s,
τ = 0s.

with respect to time at a point, temperature profiles are plotted in Figure 6
and Figure 7 at two test point P (x = 0.01m) and Q(x = 0.02m) respectively.
From Figure 6 and Figure 7, it is observed that the parabolic model predicts
lower temperature for tissues than the hyperbolic model at the same time.
It is observed, that the points closer to the cooling boundary have a lower
temperature then that of the further points. It is clear that the solidification
process for the area closer to the cooling boundary occurs in a shorter time
than that of the farther area to the cooling boundary, because the temperature
gradient at the closer points to the cooling boundary is higher. Also the effect of
thermal relaxation time on the temperature distribution is clear. The freezing
process for hyperbolic model is slower than parabolic model.

From the above study, it is observed that between the hyperbolic and
parabolic model freezing is faster for parabolic model based on Fourier’s law
which assumes infinite propagation speed of thermal disturbance i.e. heat is

Math. Model. Anal., 20(4):443–456, 2015.
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Figure 5. Solidus interface position for the value of τ = 15s, τ = 10s, τ = 5s, τ = 1s,
τ = 0s.

Table 2. Time to penetrate x = l during freezing interfaces for different values of relaxation
time τ for heat flux.

Time taken to reach interface at x = l
Relaxation time for heat flux τ liquidus solidus

0 1197.80 1248.81
1 1212.91 1263.18
5 1285.77 1334.46
10 1384.22 1431.76
15 1493.40 1540.64

transferred into the tissue without delay. However in case of hyperbolic model
the heat flux has a memory to keep track of time history and temperature gra-
dient due to time lag in heat flux. Since the heat flux at certain time t depends
on the entire history of temperature gradient, the freezing for hyperbolic model
is slower than parabolic model.

6 Conclusions

In this paper, an enthalpy formulation was used to develop the Fourier and non-
Fourier phase change heat conduction model in biological tissues during freezing
process considering heat source term due to blood perfusion and metabolism.
Non-ideal property of tissue is also taken in consideration. It is noticed that the
single phase lag solution for small value of relaxation time approaches to the
parabolic solution. The time required for complete tissue solidification in the
parabolic model is shorter than that of the hyperbolic model. Further decrease
in freezing position is observed with an increase of value τ . The area which is
near to the cooling boundary required a small time for freezing than that of
the farther area from the cooling boundary.
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Figure 6. Temperature history at the point x = 0.01m for the time relaxation value
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Figure 7. Temperature history at the point x = 0.02m for the time relaxation value
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