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1 Introduction

The moduli space of heterotic string compactifications with maximal supersymmetry con-
sists of different connected components which are labeled by the number of compact dimen-
sions d ≥ 1 and the rank r ≤ 16 + d of the gauge group. In rare cases there are more than
one component with the same values for d and r, e.g. for d = 7 and r = 3 there are two [1].
For each value of d there is one component with r = 16 + d, the so-called Narain moduli
space, which is realized by compactifying on T d [2, 3]. The components with reduced gauge
group rank can be realized by asymmetric orbifolds [4] of the T d compactification involving
outer automorphisms of the Narain lattice (most notably the CHL string [5, 6]), and for
larger d one generically finds more components with various values of r.

– 1 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
7

A natural question is what gauge groups can be realized in each component of this
moduli space. It has been known for a long time that in the case of T d compactifications
the allowed gauge algebras correspond to root lattices which embed into the Narain lattice
(see e.g. [7]). For each algebra, the global data that specifies the full gauge group (i.e.
its fundamental group) can similarly be obtained from the Narain lattice [8, 9]. These
statements generalize to the reduced rank components for which there are analogues of
the Narain lattice [1, 10], but in both cases some subtleties have to be taken into account,
ultimately due to the fact that these lattices are generically not self-dual [9, 11].

For d = 1 the Narain lattice Γ1,17 ' Γ1,1⊕E8⊕E8 is Lorentzian, and its automorphism
group is Coxeter, allowing to obtain all the possible gauge algebras from a Generalized
Dynkin Diagram (GDD) [12]. The situation for the CHL string is yet simpler, since the
momentum lattice is Γ1,9 ' Γ1,1⊕E8 [10], and one finds in particular that all gauge groups
are simply-connected (so that the algebras completely specify them) [9]. For d ≥ 2 however
the momentum lattices are not Lorentzian and such overarching GDDs do not exist. Instead
one finds that there are many different GDDs for each moduli space component, each giving
partial information [8, 9]. Still, however, these diagrams do not yield the full list of gauge
groups in a controlled way.

In order to obtain the full list of gauge algebras, an algorithm was developed in [8, 9, 13],
which basically works by taking a point in the moduli space with maximally enhanced gauge
symmetry, i.e. with no U(1) factors, and looking for others in its vicinity. By iterating this
algorithm one is able to obtain all such maximal enhancements in d = 1, 2, 3 for the Narain
and CHL components [8, 9, 13]. In [13] we obtained the full gauge groups for all the
moduli space components in d = 3, basing our methods on the results of [11] for those with
rank reduction.

It turns out that for d = 1, 2, 3 all the gauge groups of the reduced rank components
can be obtained from those of the Narain component by means of a suitable map. At the
level of the algebras this has been known for a long time, for d = 2, in the dual frame
of F-theory on K3, where reduced rank algebras are obtained by partially “freezing” the
singular fibers [14, 15]. This situation extends to d = 3 using M-theory on K3 [1, 16, 17]. In
the heterotic string these results can be reproduced by using lattice embedding techniques,
and in fact one can also see how the full gauge group is “frozen”. For d = 2 this extension
was done in [11], and we have found similar results for d = 3 in [13]. As explained in the
text, for d = 1 it suffices to delete an E8 factor in any gauge group containing it, and both
groups related by the map are simply connected.

The purpose of this work is to extend these results to d = 4, focusing on the map from
the Narain component to the rank reduced components of the moduli space. The main
novelty in d = 4 is that in order to apply the map one must know the fundamental group
of the gauge group explicitly. It cannot be naively applied at the level of the algebras as
in d = 1, 2, 3. This is due to the fact that the lattice which corresponds to the frozen
singularity in the heterotic frame is a root lattice for d = 1, 2, 3 but the weight lattice of
a non-simply-connected group for d = 4. Most remarkably, however, is the fact that the
maps seem to be exactly those which relate the “topologically nontrivial” components of
the moduli space of flat connections of a non-simply-connected gauge group over T 2 (and
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not T 4) to the “topologically trivial” component [18, 19], although to our awareness an
explanation for this is lacking.

For this work we have carried out an exploration of the possible maximally enhanced
gauge groups realized in six components of the moduli space of heterotic strings with 16
supercharges, which can be accessed at [23]. Although we cannot guarantee its exhaustivity,
it is extensive enough to check the freezing map we have derived.

This paper is structured as follows. In section 2 we explain how the freezing map is
constructed for generic d, reviewing the cases d = 2, 3 and deriving the case d = 4. We
also give the map for d = 1. In section 3 we extend the freezing map to the 6d heterotic
vacua obtained by compactifying the 7d holonomy triples of [1] to 6d. Our results are
summarized and discussed in section 4.

2 Mapping gauge groups from Narain to CHL

In this section we explain the general method for determining the map which connects the
Narain component with the CHL component and explicitly derive it for d = 1, 2, 3, 4. The
case d = 2 was first obtained in [11] and the case d = 3 in [13]. Extensions to other rank
reduced components are considered in section 3.

2.1 Setup and basic facts

In order to determine the map which applies to the gauge groups of the Narain component
of the moduli space to give those of the rank reduced components we have to relate the
way in which these are obtained in each case from the corresponding momentum lattices.
We will illustrate this procedure using the CHL string, and so the focus is on the Narain
lattice ΓN and the Mikhailov lattice ΓM , which can be written as

ΓN ' Γd,d ⊕ E8 ⊕ E8 ,

ΓM ' Γd−1,d−1(2)⊕ Γ1,1 ⊕ E8 .
(2.1)

Here Γd,d '
⊕d

i=1 Γ1,1 is the unique even self-dual lattice with signature (+d,−d), where
Γ1,1 is the hyperbolic lattice with Gram matrix

( 0 1
1 0
)
. The symbol (2) denotes a rescaling

of the lattice by
√

2, hence a rescaling of the Gram matrix by 2. The lattice E8 is just the
lattice generated by the roots of the algebra e8, but for the later, as well as for the groups,
we will use the symbol E8 when there is no risk of ambiguity. The same applies for any
other root lattice of A-to-G type. We convene in taking the momentum lattices to have
signature with mostly pluses, unless stated otherwise.

For the Narain component of the moduli space one obtains all the possible gauge
algebras by finding embeddings of root lattices L into ΓN such that the intersection of L⊗R
with ΓN is an overlattice M ←↩ L whose maximal root sublattice is L itself. Here we mean
by overlattice any lattice of the same rank containing the lattice in question. Intersections
of real slices such as L⊗R with ΓN give lattices which are said to be primitively embedded,
in this case in ΓN , hence the embedding M ↪→ ΓN is primitive but L ↪→ ΓN is not unless
M = L. By roots we mean vectors v ∈ ΓN with norm v · v = 2, since these are the ones
associated to root states in the adjoint representation of the gauge algebra.
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This discussion extends to the CHL component of the moduli space, with the only
difference being that roots are not only vectors with norm 2 but also vectors v with norm 4
satisfying the condition v · u = 0 mod 2 for all vectors u ∈ ΓM [10]. This last condition is
equivalent to the statement that the coroot v∨ = 1

2v is in the dual lattice Γ∗M , which is the
language used in [11]. Note that v∨ ·v∨ = 1, hence this condition cannot be satisfied by any
vector in the Narain lattice which is even and self-dual. The same applies to ΓM when d = 1.
For d ≥ 2, however, ΓM is not self dual and Γ∗M indeed contains vectors with norm 1. The
appearance of non-simply-laced algebras seems therefore to be intimately connected with
the non-self-duality of the momentum lattice for the moduli space component in question.

These facts allow to obtain the possible gauge algebras g in these moduli space compo-
nents, but we are also interested in the full gauge groups G. For this we need to compute
the fundamental group π1(G), which we denote by H. If G̃ is the universal cover of G,
then G = G̃/H. In the Narain component it suffices to compute the lattice quotient M/L,
which gives a finite Abelian group isomorphic to H due to the self-duality of ΓN [9]. For
example, if M = L, then G is simply connected. For the CHL component one must do a
more precise analysis [11], but the upshot is that H is given by the quotientM∨/L∨, where
L∨ is the coroot lattice of g embedded in the dual lattice Γ∗M , andM∨ its overlattice which
embeds primitively into Γ∗M . Clearly, this is a generalization of the computation for ΓN .
In both cases H is a subgroup of the center Z(G), specified by a set of elements ki ∈ Z(G).

2.2 Construction of the map in d = 1, 2, 3

To relate the Narain and the CHL constructions just outlined we require some additional
facts. For d = 1, 2, 3, 4, ΓM can be written respectively as [10]

ΓM ' Γd,d ⊕ Λ , Λ =



E8 d = 1
D8 d = 2
D4 ⊕D4 d = 3
D∗8(2) d = 4

, (2.2)

to which we restrict our attention in the following. In each case there is an embedding

ΓM ⊕ Λ ↪→ ΓN , (2.3)

where ΓM ↪→ ΓN and Λ ↪→ ΓN are primitive. Furthermore, the primitive embedding
of Λ into ΓN is unique (up to automorphisms of ΓN ), so that by constructing any such
embedding one may take its orthogonal complement which by necessity is just ΓM . As we
will review, Λ can be interpreted as the K3 frozen singularitiy (or singularities) in the dual
geometric frame both for 8d and 7d, and so we will refer to it as the frozen sublattice in the
heterotic string context. We also use the terms mapping (from Narain to reduced rank)
and freezing interchangeably.

Consider now a lattice1 M ′ primitively embedded into ΓM , with root sublattice L′. It
follows from (2.3) that there is an embedding

M ′ ⊕ Λ ↪→ ΓN (2.4)
1Here we prime the lattice M in the Mikhailov lattice since we will later focus on the map to and not

from the CHL component.
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with M ′ (but not necessarily M ′ ⊕ Λ) primitively embedded into ΓN . The intersection
(M ′ ⊕ Λ) ⊗ R ∩ ΓN gives a lattice M primitively embedded into ΓN , with root sublattice
L. This gives a priori a map ϕ from a gauge algebra gCHL in CHL moduli space to another
gNarain in Narain moduli space, but since we are dealing with the full embedding data for
each lattice, we can also obtain the fundamental group of the gauge group and promote
this map to one at the level of groups,

ϕ : GCHL 7→ GNarain . (2.5)

Consider conversely a lattice M primitively embedded into ΓN , with root sublattice
L, such that Λ is in turn primitively embedded into M (note that primitivity in this case
is guaranteed by the fact that Λ ↪→ ΓN is primitive). It follows that M has a sublattice
of the form M ′ ⊕ Λ, where both M ′ and Λ are primitively embedded into M . Since the
orthogonal complement of Λ in ΓN is just ΓM , it follows that M ′ is primitively embedded
into ΓM , and defines a gauge group GCHL. This gives a map

ϕ−1 : GNarain 7→ GCHL . (2.6)

We note however that the embedding Λ ↪→ M is not necessarily unique so that this map
is generically one-to-many. As we will see, the form of this map has markedly different
qualitative features depending on the value of d. In the following we study explicitly the
cases d = 1, 2, 3, 4.

2.2.1 d = 1

For d = 1, we have that ΓM ' Γ1,1⊕E8 and Λ = E8 are even self-dual. Therefore, eq. (2.3)
can be replaced by a stronger statement (cf. eq. (2.1)),

ΓN ' ΓM ⊕ E8 , d = 1 . (2.7)

In this case, the lattice M ′ that we consider is a root lattice L′, since in nine dimensions all
gauge groups are simply-connected [9]. Therefore we have an embedding L′ ⊕ E8 ↪→ ΓN .
This embedding is primitive, since L′ ↪→ ΓM is primitive and E8 is unimodular, so there
does not exist an even overlattice of L′ ⊕ E8 in ΓN . Moreover, L′ ⊕ E8 is a root lattice
corresponding to a simply connected gauge group in Narain moduli space. We see therefore
that to every gauge group GCHL in the CHL component we can associate another group
GNarain in the Narain component by some map

ϕ : GCHL 7→ GNarain = GCHL × E8 , d = 1. (2.8)

Conversely, consider some root lattice of the form L′ ⊕ E8 in ΓN . Similarly to the CHL
component, all of the associated groups are simply connected. Since the primitive embed-
ding of E8 into ΓN is unique, it follows that L′ is primitively embedded into E⊥8 ' ΓM .
This means that any gauge group of the form G×E8 in the Narain component necessarily
has G = GCHL some group in the CHL component. At the end of the day, the result is
that by taking all gauge groups in the Narain component which contain an E8 factor and
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1 2 3 4 5 6 0 C 0′ 6′ 5′ 4′ 3′ 2′ 1′

7′
8′

7

8 ΓN

1 2 3 4 5 6 0 C

7

8 ΓM

Figure 1. Generalized Dynkin diagrams for the Narain lattice ΓN ' Γ1,17 and the Mikhailov
lattice ΓM ' Γ9,1 in nine dimension.

deleting it one obtains all of the gauge groups in the CHL component. If there are two E8
factors, they are equivalent by an automorphism of ΓN , so that there is no ambiguity in
deleting one or the other.

This same result can be obtained in a more concrete way by considering the GDDs
for the lattices ΓN and ΓM , shown in figure 1. Gauge algebras in the Narain moduli space
can be obtained by deleting two or more nodes of the diagram such that the result is the
Dynkin diagram for an ADE root lattice. The same applies to the CHL component, but the
minimum number of nodes one can delete is one. As we can see, deleting the node 0′ in the
GDD for ΓN gives the GDD for ΓM accompanied by an E8 Dynkin diagram, from which it
follows that the gauge algebras that can be obtained in each moduli space component are
related as deduced above. As commented, all of the relevant groups are simply connected.

2.2.2 d = 2

The map from the Narain to the CHL components of the moduli space for d = 2 was
obtained at the level of the full gauge groups in [11] using more group-theoretical language,
and proven explicitly by projecting the cocharacter lattice, which determines the topology,
from ΓN to ΓM . Here we briefly explain how it can be obtained in the framework of
this paper.

In eight dimensions we have ΓM ' Γ2,2 ⊕ D8 and Λ = D8. We will consider a lattice
M primitively embedded into ΓN , which is the overlattice of a root lattice L, containing
in turn a primitively embedded D8 lattice. This condition restricts L to be of the form

L ' D8+n ⊕N , (2.9)

where n is some non-negative integer and N is some other ADE lattice. The orthogonal
complement of D8 in L is of the form Dn ⊕ N , and has an overlattice M ′ primitively
embedded into ΓM .

The question is if Dn ⊕ N is the maximal root sublattice of M ′, according to the
definition of roots in the CHL moduli space. This can indeed be verified for all points of
symmetry enhancement. The subtlety here is that as lattices, Dn and Cn are equivalent.
The actual contribution to the gauge algebra depends on which vectors correspond to
massless states, and we find that in this case it is actually spn and not so2n. We therefore
write L = Cn⊕N . We have then a simple rule for mapping gauge algebras from the Narain
component to the CHL component of the moduli space. Just take any gauge algebra with
a D8+n factor and replace it with Cn. Since it is possible to have gauge algebras with terms
D8+n ⊕D8+m, with m 6= n, this map is generically one-to-many.
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To promote this map to one at the level of groups we compute the fundamental group
of the gauge group associated to the embeddings L ↪→ ΓN and L ↪→ ΓM using the lattice
methods outlined above, and then see how they are related. Each fundamental group is
specified by a set of elements {ki} of the center of the universal cover, Z(G̃), each one of the
form ki = (k1

i , . . . , k
s
i ), where kj

i denotes the contribution of each of the s simple factors in
G̃ to ki. For D2n factors we write the corresponding contribution as a pair (p, q) ∈ Z2×Z2.
In this case we can separate each ki into the contribution of the D8+n factor to be replaced
and that of the remaining factor given by the lattice N . Let us write ki = (ki

N , ki
S) for

the gauge group in the Narain component and k′i = (k′iN , k′i
S) for the associated one in the

CHL component. We find that for n even,

ki
S = (p, q)→ k′i

S = p+ q mod 2 , (2.10)

while for n odd
ki

S = p→ k′i
S = p mod 2 , (2.11)

while k′iN = ki
N in both cases. If n = 0, one just deletes ki

S .
As an example, consider the gauge group Spin(32)

Z2
× SU(2)2, whose fundamental group

is generated by only one element k = ((1, 0), 0, 0). Using the rules above, the associated
gauge group in the CHL component is Sp(8)

Z2
× SU(2)2 with k = (1, 0, 0). If we had the

gauge group SO(32)× SU(2)2 with k = ((1, 1), 0, 0), it would map to the simply-connected
Sp(8) × SU(2)2. However, SO(2n) factors are not present in the theory so that this last
example does not arise. It’s interesting to note that SO(2n) would map to the same gauge
group as Spin(2n), making the mapping generically many-to-many and not one-to-many.

Note also that the fundamental group of any two groups connected by this mapping
are isomorphic. This is in accordance with the fact that the topology of the gauge groups
in the dual frame of F-theory on elliptically fibered K3 is given by the torsional part of
the Mordell-Weil group [20, 21] which can be obtained from the Weierstrass model for
the fibration (see e.g. [22]), as the mechanism of singularity freezing does not alter the
Weierstrass model itself [15].

2.2.3 d = 3
Let us now review the generalization of the above results to d = 3 [13]. In seven dimensions
we have Λ = D4⊕D4. Each D4 factor can be contained in algebras of D4+n type, in which
case the analysis for d = 2 goes through, including the way in which the contribution of
these factors to the fundamental group transform. The difference now is that we have two
such factors transforming simultaneously, e.g. Dn+4 ⊕ Dm+4 → Cn ⊕ Cm. This is not the
only possibility, however.

It is also possible for D4 to be primitively embedded into E6, E7 and E8. Taking
the orthogonal complement of D4 in each case we obtain the lattices A2(2), 3A1 ' B3 and
D4 ' F4, respectively. Similarly to the previous case, we can look at the points of symmetry
enhancement in the CHL component and determine that the contributions to the algebra
are respectively su3, so7 and f4, hence the use of these lattice isomorphisms. With respect to
the gauge group’s topology, we have that Z(SU(3)) ' Z(E6) ' Z3, Z(Spin(7) ' E7) ' Z2
and Z(F4) ' E8 ' {0}, and that the contributions of these factors to the {ki} remain
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invariant. This means that as for d = 2, the fundamental group of two gauge groups related
by the mapping are isomorphic. As in the previous case, this coincides at the algebra level
with results on the dual geometrical frame’s mechanism of singularity freezing [1, 16, 17],
in this case M-theory on K3 with two D4 frozen singularities. We are not aware of how the
fundamental group of the gauge group is encoded in the M-theory compactification, but it
should in any case be invariant under singularity freezing.

2.3 Algebra projection

In the previous constructions we have seen that the root system of the CHL gauge algebra
corresponds to a subset of the orthogonal complement lattice of Λ in the root lattice L′.
This algebra is determined precisely by checking each case algorithmically and the result is
seen to correspond to a simple general rule. Now we give a procedure whose result predicts
this algebra directly, mapping the simple roots of gNarain to those of gCHL. This procedure
gives the correct results for d = 1, 2, 3, 4. We will illustrate it case by case starting with
d = 2, which exhibits the non-trivial features that generalize to larger d.

2.3.1 d = 2
We start by considering a primitive embedding of Λ = D8 into ΓN ' Γ2,2 ⊕ Γ16, where
Γ16 is the weight lattice of Spin(32)

Z2
. This description makes calculations easier because D8

embeds primitively into Γ16 but not into E8 ⊕ E8. A particularly simple embedding is
αi = |0, 0, 0, 0; 0i−1, 1,−1, 015−i〉 , i = 1, . . . , 7 ,
α8 = |0, 0, 0, 0;−1,−1, 014〉 ,

(2.12)

where the first four entries correspond to the Γ2,2 part and the other 16 to Γ16. Suppose the
associated gauge algebra is enhanced to D8+n by adding n simple β1, . . . , βn roots forming
an An chain, with β1 · α7 = −1. For example, take

βi = |0, 0, 0, 0; 0i+6, 1,−1, 08−i〉 , i = 1, . . . , n ≤ 8. (2.13)

We will take the projection of the roots βi along the space orthogonal to D8. The roots
β2, . . . , β8 are obviously invariant under this projection, but β1 gets projected as

β1 → |0, 0, 0, 0; 08,−1, 07〉 . (2.14)

However, this projection is not in ΓN , and so we multiply it by 2 to get a simple root
β′1 = |0, 0, 0, 0; 08,−2, 07〉. We see then that the simple roots of the An chain get projected
into the simple roots of Cn. This construction is represented in figure 2, and applies to any
other primitive embedding of D8 since it is unique up to automorphisms of ΓN .

2.3.2 d = 3
For d = 3 we have Λ = D4 ⊕D4, which has an easily describable primitive embedding into
E8 ⊕ E8, so we use the basis ΓN ' Γ3,3 ⊕ E8 ⊕ E8. This embedding reads

α1 = |0, 0, 0, 0; 1,−1, 06; 08〉 , α2 = |0, 0, 0, 0; 0, 1,−1, 05; 08〉 ,
α3 = |0, 0, 0, 0; 02, 1,−1, 04; 08〉 , α4 = |0, 0, 0, 0;−1,−1, 06; 08〉 ,
α′1 = |0, 0, 0, 0; 08; 1,−1, 06〉 , α′2 = |0, 0, 0, 0; 08; 0, 1,−1, 05〉 ,
α′3 = |0, 0, 0, 0; 08; 02, 1,−1, 04〉 , α′4 = |0, 0, 0, 0; 08;−1,−1, 06〉 .

(2.15)
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(a)

α1 α2 α3 α4 α5 α6 α7 β1 βn

α8

(b)

α1 α2 α3 α4 α5 α6 α7 β′1 β2 βn

α8

Figure 2. (a) Primitive embedding of D8 in Γ2,18 with simple roots αi extended to D8+n by βj

(see eqs. (2.12) and (2.13)). (b) Projection of the roots βj to the orthogonal complement of D8
gives a Cn lattice and associated spn algebra in the CHL component.

As in the previous case, we can extend each D4 to D4+n with an An chain, which gets
projected to the orthogonal complement of Λ as a Cn. However, D4 can also be extended
to E8 passing through D5, E6 and E7. This D5 coincides with that of the generic extension
D4+n with n = 1, and so it gives rise to an A1(2) lattice with simple root, say,

β′1 = |0, 0, 0, 0; 0, 0, 0, 0,−2, 03; 08〉 , (2.16)

which arises from projecting |0, 0, 0, 0; 0, 0, 0, 1,−1, 03; 08〉. Extending D5 to E6 can be done
by adding the root |0, 0, 0, 0; 1

2
8
, 08〉. Its projection multiplied by 2 is

β′2 = |0, 0, 0, 0; 04, 14; 08〉 , (2.17)

and so we see that β′1 and β′2 give rise to an A2(2) lattice, as expected. We can further add
the roots |0, 0, 0, 0; 04, 1,−1, 0, 0〉 and |0, 0, 0, 0; 05, 1,−1, 0〉, extending E6 to E7 and then
E8. Since these roots are orthogonal to Λ, they are invariant under the projection and we
see that they extend A2(2) to B3 and then F4 as predicted.

2.3.3 d = 4

Here we have Λ = D∗8(2). This lattice has a root sublattice LΛ = 8A1 and can be in fact
interpreted as the weight lattice of SU(2)8

Z2
with Z2 diagonal, i.e. k = (1, . . . , 1). A suitable

primitive embedding of this lattice into ΓN ' Γ4,4 ⊕ E8 ⊕ E8 has simple roots

α1 = |0, 0, 0, 0; 1,−1, 06; 08〉 , α2 = |0, 0, 0, 0; 0, 0, 1,−1, 04; 08〉 ,
α3 = |0, 0, 0, 0; 04, 1,−1, 02; 08〉 , α4 = |0, 0, 0, 0; 06, 1,−1; 08〉 ,
α5 = |0, 0, 0, 0; 08; 1,−1, 06〉 , α6 = |0, 0, 0, 0; 08; 0, 0, 1,−1, 04〉 ,
α7 = |0, 0, 0, 0; 08; 04, 1,−1, 02〉 , α8 = |0, 0, 0, 0; 08; 06, 1,−1〉 .

(2.18)

The weight vector extending this root lattice to Λ is just

w = 1
2

8∑
i=1

αi = |0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0; 1, 0, 1, 0, 1, 0, 1, 0〉 . (2.19)

Requiring orthogonality with the roots is enough to get orthogonality with Λ, so we will
not worry about w. However we note that there exists also a primitive embedding of 8A1
into ΓN , which should not be confused with Λ.
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The first thing to note is that the lattice ΛL = 8A1 can be naively extended in many
different ways but not all of them are allowed extensions of Λ itself. For example, no A1
factor can be individually extended to A2 with a root orthogonal to the other A1 factors.
Any attempt to do this is easily seen to fail. The next logical step is to attach a root to
two A1 factors at the same time, e.g. with |0, 0, 0, 0; 0, 1,−1, 05; 08〉, in this case giving an
A3. This vector gets projected to

β = |0, 0, 0, 0; 1, 1,−1,−1, 04; 08〉 , (2.20)

and so we have that A3 freezes to2 A1(2). This is equivalent to D3 → C1, and forms part
of the more general rule D2+n → Cn, or so2n+4 → spn, in analogy with those we have for
d = 2, 3. This is depicted as

α1

α2 β1 βn β′1 β2 βn

(2.21)

The next possibility is to attach n− 1 roots to n A1 factors in pairs such that one gets
an A2n−1 chain. The case A3 → A1(2) above can be generalized e.g. to A5 → A2(2) with
roots

β1 = |0, 0, 0, 0; 1, 1,−1,−1, 04; 08〉 , β2 = |0, 0, 0, 0; 02, 1, 1,−1,−1, 02; 08〉 , (2.22)

and more generally we find the rule A2n−1 → An−1(2), or su2n → sun, depicted as

α1

β1

α2 αn−1

βn−1

αn β′1 β′2 β′n−1

(2.23)

From this rule we can actually get another by simply attaching a root βn to βn−1, namely
D2n → Bn, or so4n → so2n+1,

α1

β1

α2 αn−1

βn−1

αn

βn

β′1 β′2 β′n−1 βn
(2.24)

Finally, we can take the particular case n = 4 and attach a root to β3 to get the rule
E7 → F4, or e7 → f4,

α1 β1 α2 β2 α4

β3

β4

β′1 β′2 β3 β4 (2.25)

2It is more precise to say that A3 ⊕ 6A1 freezes to A1(2), but we are now focusing on the behaviour
under projection of sublattices corresponding to simple algebras and not the whole lattice containing Λ.
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In summary we have found the following freezing rules at the level of the algebras:

so2n+4 → spn

su2n → sun

so4n → so2n+1

e7 → f4

(2.26)

where both the l.h.s. and r.h.s. algebras are at level 1 (the algebras unaffected by the
freezing become level 2). These rules cannot be applied arbitrarily, however. In order for
the l.h.s. algebras to be reduced to those in the r.h.s. , their roots must be connected with
those of Λ as specified in each case above. Any root of Λ left by itself is simply projected
out, su2 → ∅.

2.4 Applying the map in d = 4

Having seen the possible ways in which subalgebras of a gauge algebra in the Narain
component in six dimensions can be transformed when mapping to the CHL component,
we now treat the problem of when these rules are applicable for a given gauge group G.
In the cases d = 1, 2, 3 this problem is trivial because the root lattices associated to Λ are
uniquely embedded, so one always knows for any gauge group if its weight lattice contains
Λ by a simple reading of the algebra. For d = 4, however, the relevant root lattice is 8A1,
which may or may not be associated to Λ. It is necessary therefore to check explicitly, for
each 8A1 sublattice, if it corresponds to Λ or not.

As a simple example let us consider the gauge group Spin(32)
Z2

, ignoring the extra four
U(1) factors for now. It turns out that the weight lattice of this group contains Λ as a
sublattice, whose 8A1 sublattice correspond to the yellow nodes in the diagram

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15

α16

(2.27)

This can be shown explicitly by deleting the white nodes and checking that the weight
vector of the SU(2)8

Z2
weight lattice is in the Narain lattice (cf. eq. (2.19)). At the level of

the algebras, then, we have that so32 goes to so17. This is to be contrasted with the gauge
group Spin(32), which is simply connected and therefore does not contain Λ in its weight
lattice (which is a root lattice in this case). From this we learn that the topology of the
group dictates what are the allowed freezings. Furthermore, we can explicitly compute the
fundamental group of the gauge groups using the methods of [13], which extend to d = 4,
and find that Spin(32)

Z2
gets mapped to Spin(17). In other words, the element k′ = (1, 0)

which generates π1(Spin(32)
Z2

) gets mapped to k = 0 in π1(Spin(17)).
In general, the gauge group to be mapped has more than one nontrivial element in its

fundamental group, which makes things more complicated. Consider for example

G = SU(2)× SU(4)× SU(4)× Spin(12)× E7
Z2 × Z2

, (2.28)
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where the Z2 × Z2 consists of

k1 = (0, 2, 0, (1, 0), 1) , k2 = (1, 0, 2, (1, 1), 1) , k3 = (1, 2, 2, (0, 1), 0) . (2.29)

Any pair of these elements, which generate π1(G), corresponds to two vectors which extend
the root lattice L of G to its weight lattice M . They are inequivalent under translations
in L. One can then delete nodes in the Dynkin diagram of L such that the reduced root
lattice still has a nontrivial weight overlattice which might correspond to Λ, at which point
any other reduction will not contain weight vectors. In this special case, all such reductions
lead to inequivalent embeddings of Λ inM , represented by the yellow nodes in the diagrams

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(2.30)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(2.31)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(2.32)

To each of these embeddings corresponds a different way of mapping G to the CHL
component. Using the rules in (2.26) and computing the fundamental group in each case
we get, respectively,

G → SU(2)× SU(2)× SU(4)× Spin(7)× F4
Z2

, k = (1, 0, 2, 1, 0) , (2.33)

G → SU(4)× SU(2)× Sp(4)× F4
Z2

, k = (2, 0, 1, 0) , (2.34)

G → SU(2)× SU(2)× Spin(7)× E7
Z2

, k = (0, 0, 1, 1) . (2.35)

The first thing to note is that in the resulting gauge group the fundamental group always
reduces by a factor of Z2 (as already happened in the Spin(32)

Z2
→ Spin(17) case above). This

can be understood by noting that one is taking the orthogonal complement of Λ, which
contains weight vectors. These are also weight vectors in M , equivalent under translations
in 8A1, so they can be related to one of the elements in π1(G). For any such weight
vector w, we have that 2w ∈ 8A1 and so the associated k ∈ π1(G) generates a Z2. This is
precisely the factor which is eliminated in mapping G, corresponding respectively to k1, k2
and k3 above.
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Now we need to know how the remaining k’s get transformed in each case. What we
find is that it suffices to mod every k by the one that is eliminated, call it kΛ,

k → k mod kΛ (2.36)

and then project it into the center of the resulting gauge group. In the case of a Spin(4n)
factor, we project the modded k contribution to 1 ∈ π1(Spin(2n + 1)) = Z2 if it is not
(0, 0). Of course, we also have that kΛ → 0 so that this rule applies equally well to all the
k’s of π1(G).

We see then that the only information we require to know how to map a group G

to the CHL component is the embedding of the roots of Λ into the root lattice L of G
and its associated kΛ ∈ π1(G). In fact, however, these two pieces of data are the same.
One can take any k ∈ π1(G) of order 2 in Z(G) and check if it corresponds to Λ in the
following way. For each simple factor in G, if the corresponding entry in k is nonzero,
its Dynkin diagram should be labeled according to one of the diagrams of section 2.3.3.
The only simple factor which contains more than one order 2 element is D2n, in which
case kD2n = (1, 1) corresponds to the diagram (2.21) and kD2n = (0, 1), (1, 0) correspond
to (2.24). Coloring the nodes appropriately lead to those shown in the example above, as
one can easily check. If there are in total eight yellow nodes, this labeling will correspond
to an embedding of Λ into M . With this we can apply the mapping rules to the algebra
and to the fundamental group of G.

We verified all of these statements by applying the procedures outlined above to a rea-
sonably exhaustive list of gauge groups in the Narain component, and checking the results
against a list for the CHL string. In the next section we look at other rank reduced com-
ponents, where the results are similarly verified against lists of symmetry enhancements.
These lists can be obtained in the same way as those of the 7d case in [13], and can be
accessed at [23]. We provide various examples in appendix A.

3 Other rank reduced components

In this section we extend the freezing procedure explained above to other rank reduced
components in the moduli space of heterotic strings which appear in seven dimensions
and below. These correspond to the holonomy triples constructed in [1] and their torus
compactifications. We will focus our attention on the six dimensional case. Before this,
however, let us review that of seven dimensions [13].

3.1 Review of the map in 7d

In seven dimensions there are six connected components in the moduli space of super-
symmetric heterotic strings, including the Narain and the CHL component. They can be
obtained as asymmetric orbifolds of the T 3 compactifications at points in the moduli space
where the Narain lattice exhibits appropriate symmetries. These orbifolds are of order 2 to
6, and they correspond to non-trivial holonomy triples in the target space, hence they are
called Zn-triples with n = 2, . . . , 6. The Z2-triple is equivalent to the CHL string treated
in section 2. Let us then treat the cases n = 3, 4, 5, 6.
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n Momentum lattice Γ Frozen sublattice Λ
1 II3,3 ⊕ E8 ⊕ E8 ∅
2 II3,3 ⊕ F4 ⊕ F4 D4 ⊕D4

3 II3,3 ⊕G2 ⊕G2 E6 ⊕ E6

4 II3,3 ⊕A1 ⊕A1 E7 ⊕ E7

5 II3,3 E8 ⊕ E8

6 II3,3 E8 ⊕ E8

Table 1. Momentum lattices for the moduli spaces of heterotic Zm-triples and their orthogonal
complements Λ in Γ3,19.

For each Zn-triple, the momentum lattice can be obtained as the orthogonal comple-
ment of some other lattice Λ. This data is shown in table 1. For the Z3-triple, we have
Λ = E6 ⊕ E6, which can only be embedded into Ep ⊕ Eq with p, q = 6, 7, 8. For each Ep

factor, we have the algebra mapping

e6 → ∅ , e7 → su2 , e8 → g2 , (3.1)

while the corresponding contribution to any element k of the fundamental group is pre-
served. As with the n = 2 component, we have that the gauge groups related by the
mapping have isomorphic fundamental groups.

For the Z4-triple, we have Λ = E7⊕E7, which embeds only into Ep⊕Eq with p, q = 7, 8.
For each Ep factor we have the algebra mapping

e7 → ∅ , e8 → su2 . (3.2)

Here however, one finds that the resulting group is not simply-connected. If we take, for
example, G = E8 × E8×, it maps to SU(2)×SU(2)

Z2×Z2
' PSO(4), which in particular can be

broken down to SO(3). This is the only instance in which the fundamental groups of gauge
groups connected by the moduli space mapping are not isomorphic.

The Z5 and Z6-triples both have Λ = E8 ⊕ E8 and so the only mapping allowed is
e8 → ∅. All the possible gauge groups involved in this mapping are simply connected so
here again they have isomorphic fundamental groups, namely trivial ones.

3.2 Extension of the freezing map in 6d

Let us now consider the compactifications of the 7d Zn-triples to 6d with n = 3, 4, 5, 6. Not
surprisingly, the mappings that we find here generalize naturally those of the n = 2 case.

3.2.1 6d Z3-triple

For n = 3, the momentum lattice is

Γ3,3 ⊕ Γ1,1(3)⊕A2 ⊕A2 , (3.3)

which can be shown to be the orthogonal complement of a lattice Λ in Γ4,20 isomorphic to
the weight lattice of SU(3)6

Z3
, with Z3 diagonal. There are two types of root lattices which
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can be obtained by attaching nodes to the Dynkin diagram of this SU(3)6. First, we have
those of the type A3n−1, obtained by adding roots between each pair of A2’s consecutively.
These map to An. For example, we have that A8 → A2,

α1 α2 β1 α3 α4 β2 α5 α6 β′1 β′2
(3.4)

The other possibility is to map E6 to G2,

α1 α2 β1 α3 α4

β2

β′1 β2

(3.5)

A gauge group G in the Narain component can be mapped to this moduli space if π1(G)
contains an order 3 element kΛ such that its entries label exactly 12 nodes in the associated
Dynkin diagram, in a manner completely analogous to the case for the CHL string (see
section 2.4). The procedure for mapping all the elements of π1(G) is the same. For example,
the gauge group E3

6
Z3

with π1 generator k = (1, 1, 1) maps to G3
2, and

SU(3)2×SU(6)2×Spin(10)
Z6

with π1 generator k = (1, 1, 1, 1, 2) maps to SU(2)2×Spin(10)
Z2

with k = (1, 1, 2). Similarly to
the CHL string, the unaltered simple factors correspond to level 3 algebras and the altered
to level 1 ones, so that e.g. the later has algebra (su2 ⊕ su2)1 ⊕ (spin10)3.

3.2.2 6d Z4-triple

For n = 4, the momentum lattice is Γ3,3 ⊕ Γ1,1(4) ⊕ A1 ⊕ A1, whose associated Λ is the
weight lattice of SU(2)2×SU(4)4

Z4
with Z4 generated by k = (1, 1, 1, 1, 1, 1). The roots of this

lattice can be extended in particular to A4n−1 and D2n+3, the later with n = 1, 2. The
algebras are respectively mapped to sun and bn. At the level of groups, however, we have
that Spin(4n + 6) maps to Spin(2n+1)

Z2
. This situation is analogous to the one in 7d where

E8 maps to SO(3), and is required to reproduce the results from compactifying the 7d
Z4-triple to 6d. For example, we have

α1 α2 α3 β1 α4 α5 α6 β2 α7 α8 α9 β′1 β′2 (3.6)
α1

α2
α3 β1 α4 β2 α5 β′1 β′2 (3.7)

In the later case we see that the two A1’s of Λ are used up, so that one cannot extend to
D9 and beyond.

The element kΛ associated to this mapping is of order 4. In particular this means that
2kΛ is an order 2 element, which turns out to be associated to the freezing to the CHL
component of the moduli space. This is reflected in the fact that the frozen sublattice of
this moduli space component contains the one for the CHL component. Indeed, the 2A1
part of LΛ can be extended to Dn and frozen to Cn−2, as for the CHL freezing rule. This
will be the case if kΛ has an order 2 contribution to a Dn factor.
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Algebra Order of kΛ Transforms to Contribution to Λ
Aqn−1 q = 2, 3, 4, 5, 6 An−1 nAq−1

Dn+2 2 Cn 2A1

D2n 2 Bn nA1

E7 2 F4 3A1

E6 3 G2 2A2

D5 4 B1 A1 + A3

D7 4 B2 2A1 + A3

Table 2. Freezing rules for the simple factors in the gauge groups according to the order of the
corresponding entry in the element kΛ of the fundamental group associated to the freezing. In the
first case, the resulting An−1 has roots of length 2q.

3.2.3 6d Z5,6-triples

For n = 5 the momentum lattice is Γ3,3 ⊕ Γ1,1(5), whose associated Λ is the weight lattice
of SU(5)4/Z5 with Z5 generated by k = (1, 1, 1, 1). The only extension allowed here is
A5n−1, which maps to An−1, generalizing the similar freezings in the previous cases.

For n = 6, we have momentum lattice Γ3,3 ⊕ Γ1,1(6), whose Λ is the weight lattice of
SU(2)2×SU(3)2×SU(6)2

Z6
with Z6 generated by (1, 1, 1, 1, 1, 1). Again, the only allowed freezing

here will be from A6n−1 to An−1, associated to an order 6 element in π1(G). However, this
Λ includes the frozen sublattices of n = 2 and n = 3. Similarly to the n = 4 case including
n = 2 freezing rules, here we also have the n = 2 and n = 3 rules which can be realized by
two A1 factors and two A2 factors, respectively.

3.3 Relation with G-bundles over T 2

So far we have shown that depending on the topology of a gauge group G in the Narain
component of the 6d moduli space one can map it to another gauge group G′ in a different
component using a simple set of rules. Associated to every freezing there is an element of
the fundamental group kΛ ∈ π1(G), and depending on the order of its entries with respect
to the center of each simple factor, the associated algebra will transform in a specific way.
This rules are summarized in table 2, where we’ve also indicated the contribution of the
freezing rule to the overall root sublattice LΛ of Λ.

These transformations also appear in a seemingly unrelated problem, namely in the
relation between the moduli space components of flat bundles over T 2 with non-simply-
connected structure group G [19] when G is simply-laced. The transformed group is simply-
connected and describes the so-called topologically non-trivial components of the moduli
space for a certain G. In this sense, what we find in the moduli space of 6d heterotic
strings is a generalization to semisimple lie groups with many factors and more complicated
fundamental groups.3 There is one important difference, however. In the case of D5,7, the
result is not simply-connected but rather has a Z2 quotient, although there is agreement
at the level of algebras since B1,2 ' C1,2. The reason we write Bn instead of Cn is that for

3We are not aware of a treatment of this general problem in the literature.
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n Momentum Lattice Γ Frozen root lattice LΛ π1(GΛ)
1 Γ4,20 ∅
2 Γ3,3 ⊕ Γ1,1(2)⊕D4 ⊕D4 8A1 Z2

3 Γ3,3 ⊕ Γ1,1(3)⊕A2 ⊕A2 6A2 Z3

4 Γ3,3 ⊕ Γ1,1(4)⊕A1 ⊕A1 2A1 ⊕ 4A3 Z4

5 Γ3,3 ⊕ Γ1,1(5) 4A4 Z5

6 Γ3,3 ⊕ Γ1,1(6) 2A1 ⊕ 2A2 ⊕ 2A5 Z6

Table 3. Momentum lattices and corresponding orthogonal complements in Γ4,20, given in terms
of their root sublattices and fundamental group of the associated gauge group.

n = 1 the root is of length squared 2 in the momentum lattice, while its extension to B2 is
due to a root of length squared 4. This enhancement pattern corresponds to a Bn chain.

4 Summary of results and outlook

Let us summarize our results. The connected components of moduli space of the heterotic
string studied in this paper have momentum lattices and corresponding orthogonal com-
plements in Γ4,20 (frozen sublattices) as shown in table 3. Here we have given Λ in terms
of its root sublattice LΛ and the fundamental group of the gauge group associated to Λ.4

The gauge symmetry groups that can be realized in the n = 2, . . . , 6 components can be
obtained by applying a set of “freezing rules” to those of the n = 1 one. To check if one of
these freezings can be done with a certain G, one looks for order n elements kΛ in π1(G)
such that they define an embedding of LΛ into the root lattice L of G. If this is the case,
one applies the rules shown in table 2 according to this embedding, and obtains the fun-
damental group of the resulting gauge group G′ by modding the elements of π1(G) by kΛ
and projecting them onto the center of G′. Lists of gauge groups in these components can
be found at [23], and we give some examples of these freezings in appendix A.

The moduli space components that we have studied are not all. In [1] it was shown that
there is a Z2 × Z2-quadruple in 6d, but, in any case, an exhaustive list of the components
of the moduli space of heterotic strings in 6d with maximal supersymmetry is not known.
However, the map we have obtained is defined in terms of the fundamental group elements
of the gauge groups and seems to naturally extend to many other cases that may correspond
to other moduli space components, some of which require an M-theory description. This
extension is the subject of an upcoming work [24].

On the other hand, the relation between these freezing rules and the problem of non-
simply-connected flat G-bundles over T 2 is not clear, as in the heterotic string we are
considering bundles over T 4. It may be better understood, perhaps, in a dual frame such
as F-theory on K3× T 2 where one can more naturally isolate tori such as the fibers of the
K3. As the former problem is rather high-level, it is tantalizing to think that it may play
a role in constraining the possible theories with 16 supercharges that can be coupled to
gravity (see e.g. [25] for recent results in this direction).

4The LΛ’s correspond to the singularities of K3 × S1 orbifolds of order n in the dual M-theory [1].
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A Examples of gauge group freezings

Here we give some examples of freezings of gauge groups in 6d heterotic strings. For
simplicity we use the A-to-G notation for gauge groups. Whenever the length of an A
factor is not 2, superscript indicates half its length.

a) 2A1 + A11 + D7 with H = Z4 generated by k = (0, 0, 3, 3), with center (2, 2, 12, 4) can
be frozen to

kΛ Singularity L H k Center

(0,0,9,1) 8A1/Z2 2A1 + C2 + A4
2 Z2 (0,0,1,0) (2,2,2,3)

(0,0,6,2) (2A1 + 4A3)/Z4 2A1 + C5 + A2
5 Z2 (0,0,1,3) (2,2,2,6)

b) A3 + A11 + E6 with H = Z6 generated by k = (2, 2, 2), with center (4, 12, 3) can be
frozen to

kΛ Singularity L H k Center

(2,6,0) 8A1/Z2 E6 + A2
1 + A2

5 Z3 (1,0,2) (3,2,6)

(0,4,1) 6A2/Z3 A3 + G2 + A3
3 Z2 (2,0,2) (4,1,4)

(2,2,2) (2A1 + 2A2 + 2A5)/Z6 G2 + A2
1 + A6

1 1 (1,2,2)

c) 3A1+2A4+A9 withH = Z10 generated by k = (1, 1, 1, 4, 4, 1), with center (2, 2, 2, 5, 5, 10)
can be frozen to

kΛ Singularity L H k Center

(1,1,1,0,0,5) 8A1/Z2 2A4 + A2
4 Z5 (4,4,1) (5,5,5)

(0,0,0,3,3,2) 4A4/Z5 3A1 + A5
1 Z2 (1,1,1,1) (2,2,2,2)

d) 2A2 + 2A5 + E6 with H = Z2
3 generated by k1 = (0, 0, 2, 4, 1) and k2 = (1, 2, 0, 2, 1),

with center (3, 3, 6, 6, 3) can be frozen to

kΛ Singularity L H k Center

(0,0,2,4,1) 6A2/Z3 2A2 + G2 + 2A3
1 Z3 (1,1,0,0,0) (3,3,1,2,2)

(2,1,2,2,0) 6A2/Z3 E6 + 2A3
1 Z3 (1,0,0) (3,2,2)

(1,2,0,2,1) 6A2/Z3 A5 + G2 + A3
1 Z3 (2,0,0) (3,3,1,2,2)
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e) 3A1+D10+E7 withH = Z2
2 generated by k1 = (0, 0, 0, 1, 0, 1) and k2 = (1, 1, 1, 0, 1, 0),

with center (2, 2, 2, (2, 2), 2) can be frozen to

kΛ Singularity L H k Center

(1,1,1,1,1,1) 8A1/Z2 C8 + F4 Z2 (1,0) (2,1)

(1,1,1,0,1,0) 8A1/Z2 B5 + E7 Z2 (1,1) (2,2)

(0,0,0,1,0,1) 8A1/Z2 3A1 + B5 + F4 Z2 (1,1,1,1,0) (2,2,2,2,1)

f) 2A1 + 2A2 + A3 + A11 with H = Z12 generated by k = (1, 1, 2, 2, 1, 1), with center
(2, 2, 3, 3, 4, 12) can be frozen to

kΛ Singularity L H k Center

(0,0,0,0,2,6) 8A1/Z2 2A1 + 2A2 + A2
1 + A2

5 Z6 (1,1,2,2,1,1) (2,2,3,3,2,6)

(0,0,2,2,0,4) 6A2/Z3 2A1 + A3 + A3
3 Z4 (1,1,1,1) (2,2,4,4)

(1,1,0,0,3,3) (2A1 + 4A3)/Z4 2A2 + A4
2 Z3 (2,2,1) (3,3,3)

(0,0,1,1,2,2) (2A1 + 2A2 + 2A5)/Z6 2A1 + A2
1 + A6

1 Z2 (1,1,1,1) (2,2,2,2)

g) A1 + 3A5 + D4 with H = Z2 × Z6 generated by k1 = (0, 0, 3, 3, (1, 1)) and k2 =
(0, 1, 1, 2, (0, 1))), with center (2, 6, 6, 6, (2, 2)) can be frozen to

kΛ Singularity L H k Center

(0,0,3,3,(1,1)) 8A1/Z2 A1 + A5 + C2 + 2A2
2 Z6 (0,5,1,1,2) (2,6,2,3,3)

(0,2,2,4,(0,0)) 6A2/Z3 A1 + D4 + 3A3
1 Z2

2
(0, (1, 0), 0, 1, 1)

(0, (0, 1), 1, 0, 1)
(2,(2,2),2,2,2)

(0,1,1,2,(0,1)) (2A1 + 2A2 + 2A5)/Z6 A1 + C2 + A3
1 Z2 (0,1,1) (2,2,2)

h) 4A1 + A2 + 2A7 with H = Z2 × Z4 generated by k1 = (0, 0, 1, 1, 0, 2, 2) and k2 =
(1, 1, 1, 1, 0, 0, 4), with center (2, 2, 2, 2, 3, 8, 8) can be frozen to

kΛ Singularity L H k Center

(1,1,1,1,0,0,4) 8A1/Z2 A2 + A7 + A2
3 Z4 (0,2,2) (3,8,4)

(0,0,0,0,0,4,4) 8A1/Z2 4A1 + A2 + 2A2
3 Z2

2
(0, 1, 0, 1, 0, 2, 2)

(1, 0, 1, 0, 0, 2, 2)
(2,2,2,2,3,4,4)

(0,0,1,1,0,2,2) (2A1 + 4A3)/Z4 2A1 + A2 + 2A4
1 Z2 (0,0,0,1,1) (2,2,3,2,2)

i) 4A1 + 2A3 + 2D5 with H = Z2 × Z4 generated by k1 = (0, 0, 0, 0, 1, 3, 1, 3) and
k2 = (1, 1, 1, 1, 0, 0, 2, 2), with center (2, 2, 2, 2, 4, 4, 4, 4) can be frozen to

kΛ Singularity L H k Center

(1,1,1,1,2,2,0,0) 8A1/Z2 2D5 + 2A2
1 Z4 (1,3,1,1) (4,4,2,2)

(1,1,1,1,0,0,2,2) 8A1/Z2 2A3 + 2C3 Z4 (1,3,1,1) (4,4,2,2)

(0,0,0,0,2,2,2,2) 8A1/Z2 4A1 + 2C3 + 2A2
1 Z2

2
(1, 1, 1, 1, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 1, 1, 1)
(2,2,2,2,2,2,2,2)

(0,0,0,0,1,3,1,3) (2A1 + 4A3)/Z4 6A1 Z3
2

(1, 1, 1, 1, 0, 0)

(0, 0, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 1)

(2,2,2,2,2,2)
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j) 5A1 + D4 + D5 + D6 with H = Z3
2 generated by k1 = (0, 0, 0, 0, 1, (0, 1), 2, (0, 1)),

k2 = (0, 1, 1, 1, 0, (0, 0), 2, (1, 0))) and k3 = (1, 0, 0, 1, 0, (1, 1), 2, (1, 1))), with center
(2, 2, 2, 2, 2, (2, 2), 4, (2, 2)) can be frozen to

kΛ Singularity L H k Center

(0,0,0,0,1,(0,1),2,(0,1)) 8A1/Z2 4A1 + B3 + C2 + C3 Z2
2

(0, 1, 1, 1, 0, 1, 0)

(1, 0, 0, 1, 1, 1, 0)
(2,2,2,2,2,2)

(0,1,1,1,0,(0,0),2,(1,0)) 8A1/Z2 2A1 + B3 + C3 + D4 Z2
2

(0, 1, 1, 0, (0, 1))

(1, 0, 1, 0, (1, 1))
(2,2,2,2,(2,2))

(0,1,1,1,1,(0,1),0,(1,1)) 8A1/Z2 A1 + C2 + C4 + D5 Z2
2

(0, 0, 1, 2)

(1, 1, 0, 2)
(2,2,2,4)

(1,0,0,1,0,(1,1),2,(1,1)) 8A1/Z2 3A1 + C2 + C3 + C4 Z2
2

(0, 1, 1, 0, 0, 1)

(1, 0, 0, 1, 0, 1)
(2,2,2,2,2,2)

(1,0,0,1,1,(1,0),0,(1,0)) 8A1/Z2 2A1 + B3 + C2 + D5 Z2
2

(0, 0, 1, 1, 2)

(1, 1, 0, 0, 2)
(2,2,2,2,4)

(1,1,1,0,0,(1,1),0,(0,1)) 8A1/Z2 2A1 + B3 + C2 + D5 Z2
2

(1, 0, 1, 0, 2)

(0, 1, 0, 1, 2)
(2,2,2,2,4)

(1,1,1,0,1,(1,0),2,(0,0)) 8A1/Z2 A1 + C2 + C3 + D6 Z2
2

(0, 1, 0, (1, 0))

(1, 0, 0, (0, 1))
(2,2,2,(2,2))
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