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Freezing of hard spheres in confinement
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The influence of confinement on the freezing transition of hard spheres is investigated. Two limiting
cases are considered:~1! large systems, where walls weakly perturb the bulk system, and~2! small
systems where the influence of geometry becomes important. In the first situation, the shift in
coexisting densities is a linear function of the area to volume ratio in the system. This is a
manifestation of the Kelvin equation, and the phenomenon is thermodynamically equivalent to
capillary condensation. A claim~by others! of ‘‘prefreezing’’ of hard spheres at a smooth hard wall
is quantitatively attributed to capillary crystallization. It is shown that the coexistence region
narrows as a function of the area to volume ratio. In the second limit two different confined
geometries are studied. In these limits, widening of the coexistence region is observed, pointing to
an upper and lower critical point at intermediate values of the area to volume ratio, or no critical
point at all. In a slit geometry buckling transitions interfere with the freezing transition. In a box
geometry, at large values of the area to volume ratio, fluctuations become important. These
fluctuations determine the fate of the freezing transition at intermediate values of the area to volume
ratio. © 2001 American Institute of Physics.@DOI: 10.1063/1.1401825#
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I. INTRODUCTION

The understanding of phase transitions and critical p
nomena in some classes of homogeneous bulk systems
triumphs of nineteen and twentieth century physics.1 How-
ever, truly homogeneous bulk systems hardly exist in nat
Most systems are either confined, like porous stone, c
lysts, and biological cells, or are otherwise in contact w
surfaces. These surfaces may either be structured or sm
and will interact with the molecules in the system. The pr
ence of surfaces has been known for a long time to sign
cantly alter the thermodynamics and dynamics of phase t
sitions, a dramatic example being the role of dust in
formation of liquid in supersaturated vapor. Dust partic
lower the free energy barrier of a liquid water nucleus in
supersaturated vapor, leading to nucleation rates that
many orders of magnitude larger than those in a homo
neous system, see, for example, Ref. 2.

Much work has been done on layering transitions
molecular systems at walls, theoretically3 as well as
experimentally.4 Condensation in pores~cylinders, slits!, see
for example Refs. 5, 6, and freezing and melting in pores7,8

have been the subject of intense study, see also Refs. 9
for reviews. In these systems, molecules and walls inte
by both attractive and excluded volume interactions. In
experimental systems it is usually not clear how~i.e., by
what potential! molecules interact with the walls. Moreove
popular experimental model systems such as Vycor and s
xerogel do not have a simple pore geometry. This make
difficult to compare experiments to theory, as was inde
concluded in the recent review paper by Gelb a
co-workers.9

a!Electronic mail: W.K.Kegel@chem.uu.nl
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In this work the question is addressed as to what c
finement does to the freezing transition of hard sphe
where the confining surfaces and the spheres interact by
cluded volume interactions. Hard spheres under thermal
tation have been~and still are! vigorously studied. In bulk
they undergo a first-order phase transition from a fluid to
crystal~referred to as the freezing transition! at number den-
sities significantly below the density where the system
close-packed, as was found by computer simulation11–13 as
well as by experiments on colloids.14 Indeed colloidal sys-
tems can be tailored so as to behave as hard spheres15 In
principle it is possible to design well-defined pore geo
etries with ~super! colloidal size, say on the order of mi
crometers and larger, by using lithographic techniqu
Therefore, predictions made in this work can experimenta
be verified by using colloids in between slits, or in oth
geometries. The surfaces of these geometries should
treated in such a way that only excluded volume interacti
operate between the spheres and the confining walls.

Two limiting cases are considered in this work. In th
first case~Sec. II! walls are treated as small perturbations
a bulk system, i.e., the total free energy of the system is
bulk free energy plus a correction that is linear inA/V, with
A the area of the wall~s! and V the system volume. This
approach leads to a general expression for the shift in co
isting densities of first-order phase transitions of systems
contact with walls, at constant volume. This expression
sentially resembles the Kelvin equation, but here emphas
on density shifts with respect to the bulk, and not on che
cal potential shifts. It will be shown that this result is gene
ally valid for ~effectively! single component systems whe
the range of interparticle interactions is much smaller th
the linear system size. Subsequently, attention is turne
hard spheres in contact with smooth hard walls~Sec. II B!.
8 © 2001 American Institute of Physics
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Depending upon the wall–crystal face~111, 110 or 100! con-
tact, the coexistence region shifts to lower densities or hig
densities as a function of the area to volume ratio in
system. Independent of which crystal face contacts the w
the melting and freezing lines converge. Extrapolation,
yond the limit where the walls act as a weak perturbation
the bulk system, indicates a critical point. In Sec. II C, ‘‘pr
freezing’’ is discussed, i.e., formation of one or more crys
layers at a smooth hard wall at small undersaturations, in
light of the results presented in Sec. II B.

In the other limiting case, treated in Sec. III, the area
volume ratio is large. Two different geometries are cons
ered. The first is a slit~between plates! geometry where the
area to volume ratio may become large, but the numbe
particles still goes to infinity, and the system always is in
thermodynamic limit. Extrapolation of the coexistence
gion in the capillary approximation indicates a critical poin
but computer simulations by others reveal that before
point is reached, buckling transitions come into play. T
second geometry is a box. The analysis is performed in
grand ensemble, concentrating on the properties of the p
of the grand distribution function. It turns out that in th
situation the melting and freezing lines diverge with incre
ing A/V. In this limit, at largeA/V, fluctuations play an
important role. In fact, depending upon how the coexiste
lines cross over from their behavior at smallA/V, to their
behavior at largeA/V, fluctuations may kill the freezing
transition in some interval ofA/V.

II. SMALL AREA TO VOLUME RATIOS:
CAPILLARY LIMIT

The scheme here is to find a relevant reference free
ergy that only depends on bulk properties, subsequently
a surface contribution to it, and then solve for the coexist
densities. This leads to a general relation between the sh
coexisting densities and properties of the system define
bulk-coexistence conditions~Sec. II A!. In Sec. II B, the re-
sults are applied to hard spheres in contact with hard wa
the relevant parameters being extracted from equation
state, theories and~simulation! data from the literature.

A. Shift of coexisting densities as a function of area to
volume ratio

A first-order phase transition in single~effective! com-
ponent systems can be seen as two branches of the fre
ergy as a function of density having a common tangent at
coexisting densities. In this situation it is always possible
add a linear contribution~in density! to the free energies suc
that the coexisting densities becomeminima of the free en-
ergies. This property will be pursued. First of all we conce
trate on the free energy branches close to coexistence. Lef1

andf2 be the volume fractions of single~effective! compo-
nents in phase 1 and 2~the subscript indicates the identity o
the phase, i.e., solid, liquid, or gas!. Close to the coexisting
~bulk! volume fractions, further denoted asf1* andf2* ~the
asterisk denotes properties of the bulk system!, the reduced
free energies of the two branches are written as
Downloaded 01 Oct 2001 to 131.211.152.108. Redistribution subject to A
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f 15
bF1v

V
5 f 1~f5f1* !1S ] f 1

]f D
f5f

1*
Df1

1
1

2 S ]2f 1

]f2 D
f5f

1*
Df1

21O~Df1!3, ~2.1a!

f 25
bF2v

V
5 f 2~f5f2* !1S ] f 2

]f D
f5f

2*
Df2

1
1

2 S ]2f 2

]f2 D
f5f

2*
Df2

21O~Df2!3. ~2.1b!

In these equationsFa is the Helmholtz free energy of th
branch a, Dfa5fa2fa* , b51/kT with k Boltzmann’s
constant, andT absolute temperature,v5(p/6)s3, with s
defined as therange of intermolecular interactions. In many
cases this is not a well-defined quantity, but for hard sphe
s clearly is the sphere diameter andv the volume of a single
sphere~not the molecular volume!. V is the system volume
The reason for writing the free energy in this~reduced! form
has advantages that will become clear later—it has to
with a proper scaling of the interfacial area—volume rat
Now a linear contribution to Eqs.~2.1a! and ~2.1b! can be
added such that the coexisting densities in the bulk,f1* and
f2* becomeminimaof the free energy. Therefore the releva
reference free energies in the bulk are~for not-too-great
Dfa!,

f 1b5
1

2 S ]2f 1

]f2 D
f5f

2*
Df1

25
1

2
u1bDf2

2, ~2.2a!

f 2b5
1

2 S ]2f 2

]f2 D
f5f

2*
Df2

25
1

2
u2bDf2

2. ~2.2b!

In these equations the first subscript again assigns the i
tity of the phase~1 or 2!, and the second one~‘‘ b’’ ! refers to
properties of the bulk system~i.e., without influence of
walls!. The reference free energies Eqs.~2.2! are shown
schematically in Fig. 1~curves 1 and 2!. Equations~2.2!
imply that the reference bulk system is approximated b
harmonic potential well with a strength given by the reduc
bulk moduli,

uab5S ]2f a

]f2 D
f5f

a*
5S ]m̃a

]f D
f5f

a*
5S 1

f

] p̃a

]f D
f5f

a*
,

~2.3!

with the reduced chemical potential in phasea(a
P$1,2%): m̃a5bma and the reduced pressure of phasea:
p̃a5bpav. The corresponding symbols without tilde refer
the unreduced quantities.

The next step is to add surface contributions to E
~2.2!. The reduced surface free energy is written as

f as5g̃a* av , ~2.4!

where g̃a5bs2ga , ga denoting the interfacial tension be
tween phasea and the wall. The subscript ‘‘s’’ refers to
‘‘surface,’’ while a again refers to one of the coexistin
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phase. The quantityav denotes the reduced area to volum
ratio. It relates to the total area,A, and volume,V, of the
system by

av5
A/s2

V/v
.

This implies thatav}s/L, with L the linear size of the sys
tem. Now av will later be treated as the small paramet
implying that the range of interactions be small compared
the ~linear! system size. The interfacial tension will in ge
eral depend upon density. This dependence is again wr
as a power series inDfa aroundfa* . It turns out that higher
than first order contributions inDfa only show up in the
final result as terms that are quadratic inav and these terms
are neglected as, for example, line and curvature contr
tions to the surface free energy will also lead to orderav

2

terms. Therefore, denotingg̃a* as the interfacial tension o
phasea when its density equalsfa* , we may write

g̃a5g̃a* 1S ]g̃a

]f D
f5f

a*
Dfa5g̃a* 1uasDfa , ~2.5!

with uas5(]ga /]f)f5f
a*
. Adding this contribution to the

bulk free energy, Eq.~2.2!, leads to the free energy branch
of a system in contact with walls,

f 15 1
2u1bDf1

21~ g̃1* 1u1sDf1!av , ~2.6a!

f 25 1
2u2bDf2

21~ g̃2* 1u2sDf2!av . ~2.6b!

These branches are schematically indicated in Fig. 1 as1

and 21. In order to find the shifts in coexisting densitie
Df1 andDf2 we need to find the common tangent of Eq
~2.6a! and ~2.6b! ~also indicated in Fig. 1! which is analo-
gous to solving

m̃15m̃2 and p̃15 p̃2 , ~2.7!

FIG. 1. Schematic view of the two branches of the~reduced! free energy,
and their common tangents. The branches 1, 2 are the bulk reference
energies, Eqs.~2.2!. The linea indicates the common tangent of the refe
ence branches at the coexisting bulk volume fractionsf1* and f2* . The
branches 11, 21 are equal to the branches 1, 2, but with a surface con
butions added. This situation resembles Eqs.~2.6!, with the special situation
that here,u1s5u2s50. The line designated asa1 is the new common tan-
gent at the pointsf15f1* 1Df1 , andf25f2* 1Df2 , where theDf’s are
given by Eqs.~2.10!, being the solutions of Eqs.~2.7!–~2.9!.
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m̃15S ] f 1

]f D
T,f5f1

5u1bDf11u1sav , ~2.8a!

m̃25S ] f 2

]f D
T,f5f2

5u2bDf21u2sav , ~2.8b!

p̃152 f 11f1S ] f 1

]f D
T,f5f1

5
1

2
u1bDf1

21u1bf1* Df11~u1sf1* 2g̃1* !av , ~2.9a!

p̃252 f 21f2S ] f 2

]f D
T,f5f2

5
1

2
u2bDf2

21u2bf2* Df21~u2sf2* 2g̃2* !av , ~2.9b!

for Df1 andDf2 . Equations~2.8! follow from

v
V

m̃5S ] f

]ND
T,V

5S ] f

]f D
T
S ]f

]ND
V

5
v
V S ] f

]f D
T

,

and Eqs.~2.9! from

p̃52S ]~bFv !

]V D
T,N

52S ]~V f !

]V D
T,N

52 f 2VS ] f

]f D
T
S ]f

]VD
N

52 f 1fS ] f

]f D
T

.

For av!1 ~implying s/L!1!, and again neglecting terms o
orderav

2 we get from Eqs.~2.7! to ~2.9!,

Df15S ~ g̃2* 2g̃1* !

u1b~f2* 2f1* !
2

u1s

u1b
D av , ~2.10a!

Df25S ~ g̃2* 2g̃1* !

u2b~f2* 2f1* !
2

u2s

u2b
D av . ~2.10b!

This result has clear geometrical significance, see again
1. As for the first terms in Eqs.~2.10!, (g̃2* 2g̃1* ) quantifies
the shift of the reference free energy parabola relative to e
other in the vertical direction in the free energy-dens
plane, i.e., the shift of the curves 1 and 2 to 11, 21 in Fig. 1.
The larger its magnitude~positive or negative!, the greater
the shift in coexisting densities. The shift becomes larger
smaller the curvature of the parabola and/or the smaller
width of the coexistence region. The second terms take
account the distortion of the parabola by the density dep
dence of the interfacial tension between the phases 1 or 2
the wall. If a positive linear contribution is added to one
the parabola~or different linear contributions to both!, the
common tangent points shift to lower densities, the mag
tude of the shift being determined by the ratio of the line
contribution and the curvature of the parabola. The sec
terms resemble theadsorption densities at the wall, G1 and
G2 , since

ree

i-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ga52S ]ga

]ma
D

T

52S ]ga

]f D
T
S ]f

]ma
D

T

52
uas

uab

so that Eqs.~2.10! may also be written as

Df15S ~ g̃2* 2g̃1* !

u1b~f2* 2f1* !
1G1D av , ~2.11a!

Df25S ~ g̃2* 2g̃1* !

u2b~f2* 2f1* !
1G2D av . ~2.11b!

It should be noted that the location of the dividing surfa
may always be chosen in such a way as to make~one of the!
adsorption densities equal to zero~the Gibbs dividing sur-
face!. However, in this case such a choice would be awkw
and unphysical, leading to dividing surfaces that may be
away from the walls.

Equations~2.10!–~2.11! apply to atomic and colloida
systems, and also to metastable equilibria, in the limit t
the range of interactions be small compared to the sys
size, orav goes to zero. This limit will further be referred t
as the capillary limit. Only systems with pathologically lon
ranged interactions will never reach this limit.

In ending this section we note that Eqs.~2.11! are analo-
gous to the Kelvin equation. This equation shows up in
literature in various disguises, see for example, Ref. 16 fo
nice discussion. In its most general form it relates the shif
the chemical potential at coexistence to the mean radiu
curvature of the interface between the coexisting phases
serting Eqs.~2.10! into Eqs.~2.8! for a system in a slit be-
tween two plates separated by a distanceL, and realizing that
the reduced chemical potential Eqs.~2.8! is in fact the nega-
tive of the undersaturation, i.e., m̃5(m2m* )/kT
52Dm/kT ~the asterisk again refers to the bulk syste!
leads to the well-known Kelvin equation,17

Dm5S 22~g2* 2g1* !

~r2* 2r1* !
D 1

L
5S 2g12* cosu

~r2* 2r1* !
D 1

L
. ~2.12!

In this equation ther’s are the number densities in the coe
isting phases, and in writing the last equality use has b
made of Young’s equation for the contact angle,u, at a single
er
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wall g15g21g12cosu. Note thatg1 usually is associated
with the tension of the solid-gas interface,g2 with the solid–
liquid interface, andg12 with the liquid–gas interface. Fo
hard spheres in contact with a wall, the last mentioned t
sion is between the fluid and the crystal phase, and in p
ciple is different for different crystal planes. There is a mu
easier way of obtaining Eq.~2.12! compared to the deriva
tion presented here, see again Ref. 16, where it was der
in just a few steps starting from the grand potential. Can
main result, Eqs.~2.11!, be derived starting from the mor
easily obtainable Eq.~2.12!? The shift in coexisting densitie
immediately follows from Eq.~2.12!, via

Dfa52S ]fa

]m DDm52Dm/uab ,

but this leads to the shift in the bulk reference system@cf. Eq.
~2.17!, the density in the bulk where the confined syste
freezes# and not to the density within the confined~sub-!
system itself. Indeed, this procedure does not naturally~i.e.,
as a consequence of collecting the linear contributions in
area to volume ratio! give rise to the adsorption terms in Eq
~2.11!.

B. Shift of coexisting densities of hard spheres in
contact with hard walls in the capillary limit

In order to predict how the coexisting densities of ha
spheres change with the surface-volume ratio in porous
tems, we need Eqs.~2.10!–~2.11! together with values for
the interfacial tensions of the fluid and the solid with t
wall, the bulk moduliuab , and the linear coefficients tha
take into account how the interfacial tensions vary with v
ume fraction,uas . For the bulk part we take the equations
state by Hall.18 These pressures are in very good agreem
with computer simulations, also at high densities, and
coexisting densities are accurate within the uncertainty ra
of computer simulations, see Ref. 19. These pressures r

p̃f b5
f f~11f f1f f

220.67825f f
32f f

420.5f f
521.7f f

6!

123f f13f f
221.04305f f

3 ,

~2.13!
p̃sb5
fs~11fs1fs

220.67825fs
32fs

420.5fs
526.028fs

6 exp@~y2fs!~7.923.9~y2fs!!# !

123fs13fs
221.04305fs

3 , ~2.14!
of
with y5(p/3&fs)
1/3. From Eqs.~2.13! and ~2.14! we ob-

tain the bulk quantities

uab5S ]2f a

]f2 D
f5f

a*
5S ]m̃a

]f D
f5f

a*
5S 1

f

] p̃a

]f D
f5f

a*

with a5 f ~fluid! or a5s ~solid! listed in Table I.
Surface tensions between the fluid and the wall w

calculated from scaled particle theory~SPT! using the gen-
eral expression,20
e

g̃ f5
29f f

2~11f f !

2p~12f f !
3 1

s3

2
bp5

29f f
2~11f f !

2p~12fp!3 1
3

p
p̃,

~2.15!

where we insert the Hall equation of statep̃ª p̃f b given by
Eq. ~2.13!. This expression yieldsg̃ f51.88 at f f50.494,
being in fair agreement with the value of (1.9960.18) ob-
tained by computer simulation by Heni and Lo¨wen21 at the
same volume fraction. Equation~2.15! was expanded up to
linear order around the bulk freezing volume fraction
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



he
nd
n
ei

e
e

m

th
th
e

i
is
m

the
the
rd

ter-
an

te-
e-

e
of
on,

-

ing
ems,
on-
q.

in
uid
tal
sed

ob-

ns
ti-
rt
-

n—
n

The
its

he
stal

6542 J. Chem. Phys., Vol. 115, No. 14, 8 October 2001 Willem K. Kegel
0.492 21. From this expansion the quantitiesg̃ f* and uf s

5(]g̃ f /]f)f5f
f*

are obtained. These quantities are~implic-

itly ! listed in Table I.
For the interfacial tensions of the crystal faces with t

hard wall, we used a cell theory put forward by Heni a
Löwen.21 Their theory includes that neighboring particles u
dergo collective excursions from their lattice positions. Th
theory, termed ‘‘cell theory with fixed neighbors~CTFN!’’ by
the authors, is indeed in very good agreement with dir
computer simulations by the same authors, in particular n
the melting transition. The relevant expressions read

g̃s,k5
gk2g~22y!

2gkgby2~y21!
, ~2.16!

where the subscripts again refers to ‘‘solid,’’ andk stands for
the orientation of the crystal to the wall;k5(111), ~100!, or
~110!. The quantities in Eq.~2.16! are given byg51/&;
g1115)/2; g10051.0; g1105&. Equation ~2.16! was ex-
panded up to linear order around the bulk melting volu
fraction of 0.543 859. From this expansion the~three! quan-
tities g̃s,k* and uss,k5(]g̃s,k /]f)f5f

s*
are obtained. These

quantities are~implicitly, that is, they follow fromG anduab!
listed in Table I. The negative adsorption densities in
table are caused by a depletion layer at the surface wi
thickness ofs/2. In Fig. 2 the coexisting density shifts in th
confined system are shown graphically.

In confined systems in contact with bulk~like two plates
hanging in a bulk system, or porous material immersed
bulk fluid!, freezing may occur while the bulk system still
in the fluid state. This situation is thermodynamically co
pletely analogous to capillary condensation.17 In that case it
follows from putting Eqs.~2.8! equal to zero, together with
the definition of adsorption density above Eqs.~2.11!, that
the volume fraction in the bulk,fbulk , is related to the one in
the porous system,fpores, by

TABLE I. Relevant quantities that determine solid–fluid coexistence de
ties; Eqs.~2.11!. The subscript ‘‘av’’ for the solid systems indicates quan
ties that are averaged over the three crystal orientations. In the lower pa
the table the quantitiesDf f ,k stands for the shift in coexisting volume frac
tions between fluid and solid with crystal orientationk5(111),
(100), (110) or ‘‘average.’’

Quantity Fluid Solid Combined

uab 108.836 78.3407
fa* 0.492 21 0.5438 59
g̃ f* 1.444 89
g̃s,111* 2g̃ f* 20.414 89
g̃s,100* 2g̃ f* 10.103 30
g̃s,110* 2g̃ f* 11.084 35
g̃s,av* 2g̃ f* 10.2576
G f 20.083 33
G111 20.100 63
G100 20.155 25
G110 20.258 66
Gav 20.171 515

(Df f ,111)/av 20.1571 20.2032
(Df f ,100)/av 20.0650 20.1297
(Df f ,1a0)/av 10.1096 10.0093
(Df f ,av)/av 20.0375 20.1079
Downloaded 01 Oct 2001 to 131.211.152.108. Redistribution subject to A
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fbulk5fpores2G fav5f f* 1S ~ g̃s* 2g̃ f* !

uf b~fs* 2f f* !
D av . ~2.17!

The first equality of Eq.~2.17!, valid for all fluid densities,
states that the density in the pores being different from
density in the bulk is caused only by adsorbed material in
pores~being negative for hard spheres in contact with ha
walls!. From the second equality of Eq.~2.17!, applicable at
coexistence within the pores, it can be seen that if the in
facial tension between the solid and the wall is smaller th
the one between the fluid and the wall, only then will ma
rial in the pores freeze while the bulk is still in a homog
neous fluid state, as is also obvious from Eq.~2.12!. This is
only the case for the~111! orientation of the crystal along th
wall, see Table I. It is interesting to compare the behavior
confined molecular systems in this respect. Hydrogen, ne
oxygen, and argon confined in Vycor and silica xerogel,7 and
alcohols in between mica surfaces8 and many other molecu
lar systems in porous media9 freeze and melt at significantly
lower temperatures than they do in the bulk. A lower freez
temperature at constant pressure, in most molecular syst
is analogous to a larger freezing density in systems at c
stant volume and temperature. Indeed, it follows from E
~2.12! that for a system confined in a slit of widthL, the shift
in freezing temperature relative to the one in the bulk,DT, is
given by ~for not too great temperature shifts!,

DT

T
5

22~gs* 2g f* !

l~rs* 2r f* !L
, ~2.18!

with l the melting enthalpy in the bulk. This implies that
these molecular systems, the interfacial tension of the fl
with the walls is smaller than the one of all possible crys
faces with the walls. However, in a few cases increa
freezing temperatures in confined systems have been
served, for the first time by Klein and Kumacheva,22 and

i-

of

FIG. 2. Coexistence lines of hard spheres in pores in the volume fractio
~reduced! area to volume ratio,av , plane. In each pair of lines, the ones o
the left indicate freezing, and the ones on the right indicate melting.
situations for fluid–solid coexistence where the solid is oriented with
~111!, ~100!, and~110! face along the walls are indicated in the figure. T
lines indicated as ‘‘average’’ correspond to a situation where all three cry
orientations along the walls are equally distributed in the system.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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later also by others, see Ref. 9, and references therein.
only seems to happen if~components in the! walls strongly
attract the confined fluid molecules.

Now let us get back to our hard spheres. Looking at
densities within the confined system, it follows from the v
ues listed in Table I and from Fig. 2 that depending upon
orientation of the crystal with the walls, the coexisting de
sities may either decrease~111 and 100 orientation! or in-
crease~110 orientation! with the area to volume ratio. From
the three possible orientations, the~111! orientation leads to
the smallest increase in free energy compared to the bulk
energy. Therefore the thermodynamically stable crystal
entation along the walls is along the~111! direction. The
coexisting densities in that case significantly decrease w
the area to volume ratio: down to at least half the width
the bulk coexistence region. When the systems beco
small, then the gain in free energy by the fortunate~111!
orientation will compete with the free energy cost of defe
in the crystal—in most geometries, single crystals with
same orientation along all walls are impossible unless th
are defects in the crystal. Only in some special~although
extensively studied! cases, like a slit geometry, the crysta
wall contact will be along the~111! crystal plane.

C. Capillary crystallization and ‘‘prefreezing’’

It is quite interesting in the light of the previous sectio
to pay a little attention to the phenomenon that was term
‘‘prefreezing,’’ as observed using molecular dynamics sim
lation by Courtemanche and co-workers, see Refs. 23,
Prefreezing is defined by these authors as the formatio
one or more crystal layers of hard spheres at smooth h
walls at pressures below saturation pressure. We claim
this ‘‘prefreezing’’ is a manifestation of capillary crystalliza
tion. Indeed the lowest density where ‘‘prefreezing’’ was o
served in Ref. 24 was at 98.6% below the saturation den
corresponding to a shift of the freezing volume fracti
Df f520.0069. The authors employed a slit geometry w
plate distanceL/s541.51, corresponding toav'0.0482.
Now taking the value in Table I for the fluid branch, w
predict at which volume fraction capillary crystallization o
curs under these circumstances, i.e., atDf f ,111

520.1571av'20.0076. These two values of the shift
the freezing volume fraction are within 10% apart. We the
fore believe that ‘‘prefreezing’’ as observed in Refs. 23, 24
a manifestation of capillary crystallization, and not t
equivalent of ‘‘layering’’ or ‘‘prewetting’’ transitions as ob
served in systems where attractive interactions with the w
are present.3 On the other hand, it has recently been obser
by computer simulation that if a~single! wall is not smooth
but patterned, ‘‘surface freezing’’ occurs at larg
undersaturation.25 In a slit ~or any other! geometry this phe-
nomenon may compete with capillary freezing. Which of t
two dominates depends on the interfacial tensions of the fl
and the crystal faces with the patterned substrates. It is
pected that appropriately patterned surfaces@e.g., surfaces
structured in such a way as to fit the~111! crystal face#
significantly reduce the crystal–wall interfacial tension
leading to larger shifts of the freezing density compared
the situation at smooth hard walls.
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III. LARGE AREA TO VOLUME RATIO

In this section two geometries are discussed: a slit
ometry~i.e., two parallel plates!, and a box geometry that i
shaped in such a way as to fit a close-packed crystal. In
first situation the area to volume ratio becomes large, but
system may in principle remain in the thermodynamic lim
In the second situation, not only geometry plays a role,
due to the exceedingly small number of particles in box
with large area to volume ratios, fluctuations also beco
important.

A. Slit geometry

Schmidt and Lo¨wen26 studied hard spheres betwee
plates using both computer simulation and cell theory. Th
looked at very small plate separations: in between one
two sphere diameters, corresponding to area to volume ra
of order one. From a plate distance of 2.0 down to appro
mately 1.86 sphere diameters, at increasing sphere dens
transition from fluid to a crystal of two hexagonally packe
layers is found. This transition is the analog of the bu
freezing transition in this geometry. At even smaller pla
separations, a triple point appears involving a buckled cry
phase. At still smaller plate separations, even a rhom
phase appears and the situation becomes quite complic
For details the reader is referred to Ref. 26.

We took the~two! points from Ref. 26 that correspond t
the transition from fluid to the two hexagonally packed la
ers at the largest plate separation that they studied. Th
points were determined using Monte Carlo simulation. Th
are plotted in Fig. 3, together with the melting and freezi
lines in the capillary limit, Eqs.~2.11! the values in Table I
for the situation that the~111! crystal face contacts the wal
It can be seen from Fig. 3 that if the melting and freezi
lines in the capillary limit are extrapolated to very sma
plate separations, a critical point appears at 2s/L'1.13.

FIG. 3. Coexisting densities of hard spheres in a slit geometry, withL the
width of the slit. Lines correspond to the situation where the~111! crystal
face is along the walls~see Table I!. The left line indicates freezing, and th
right one melting. Dotted lines indicate extrapolation beyond the capill
limit, and are only drawn to indicate that if extrapolation was allowed
critical point appears~i.e., where the lines cross!. The points are data from
computer simulations by Schmidt and Lo¨wen~Ref. 26! and are connected to
guide the eye. Triangles are melting densities, and circles are freezing
sities. At very small plate separations, beyond the dashed horizontal
triple points involving buckling transitions are observed, and fluid–crys
coexistence is moved to much smaller volume fractions.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Continuous transitions and critical points associated w
them are not expected in symmetry breaking ph
transitions27 such as the freezing transition. However,
small plate separations, and perpendicular to the plate
symmetry element is a poorly defined quantity, and true sy
metry breaking along that direction does not occur. Clea
however, Eqs.~2.11! have long ceased to be valid at su
small plate separations. Indeed, at plate separations la
than the ‘‘extrapolated critical point,’’ the trend from th
small plate separations~points in Fig. 3! indicate that the
coexistence region shifts to higher volume fractions, an
slightly seems to widen up, contrary to the trend in the c
illary limit. The crossover from a decreasing~in density! and
narrowing coexistence region to an increasing and widen
one, lies in the broad range of roughly 0.2<2s/L<1.0. It is
quite conceivable, however, that more buckling transitio
interfere in between plate separations of 2 and three sp
diameters, and also in between three and four and e
larger. Therefore the analog of the freezing transition in a
may intermittently appear and disappear with varying~small!
plate separations. In that case the points in Fig. 3 result a
more than a single crossover.

Strictly speaking these results do not rule out the ex
tence of a fluid–crystal critical point. If there is a critic
point, it should appear before the buckling transitions en
the stage, i.e., at 0.2,2s/L,1, see Fig. 3. This is possible
the freezing and melting lines at 2s/L.0.2 converge faste
than in a linear manner. But this scenario implies that th
also is at least one lower critical point in the 2s/L-density
plane, as the freezing transition appears again at least w
2s/L5O(1). This scenario seems highly implausible, but
this point it cannot be ruled out.

B. Box geometry

1. First-order phase transitions of finite systems in
the grand ensemble

In Ref. 28 thermodynamic properties of systems of h
spheres that are confined in small boxes with hard walls
calculated. The experimental equivalent of these systems
finite sized pores. However, in experimental systems at l
one of the sides of the boxes is in direct contact with
~macroscopic! bulk system. In other words, the small sy
tems interact with a bath of constant chemical potent
Here, this interaction is modeled by a smooth hard wall. T
approximation will become worse if the systems get smal
This should be kept in mind if the results presented here
compared to experiments on real pores.

The boxes are shaped in such a way that at a cer
volume they can accommodate a fcc or hcp crystal of 8 or
spheres. Other box geometries were studied in Refs. 29
30.

The volumes of the boxes can be varied isomorphica
The focus in Ref. 28 is on the grand distribution functio
i.e., the probability distribution of finding a box~‘‘pore’’ !
with N spheres,

PN5
zNqN

J
, ~3.1!
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where the reduced activityz5(s3/L3)ebm, with s again the
diameter of a hard sphere,L its thermal de Broglie wave-
length, b51/kT and m is the chemical potential.qN is the
reduced canonical partition function of a system contain
N spheres, andJ5(N50

NmaxzNqN is the grand partition function
with Nmax the maximum number of spheres that can
crammed intoV. Two peaks of the grand distribution func
tion at some value ofz indicate a first-order phas
transition.31 In the Appendix it is proved that the reduce
canonical partition function of a system of hard spheres
exactly given by the recursive relation,

qN5
v0

~N21!

N
qN21 , ~3.2!

independent of the size of the system or its boundary co
tions. In this equation, the reduced available volumev0

(N)

5V0
(N)/s3, whereV0

(N) is the available volume. This quantit
is defined as the configurationally averaged volume in a s
tem of N hard spheres that is available for the center o
(N11)th hard sphere. Equation~3.2! @actually Eq.~A12! in
the appendix from which Eq.~3.2! follows# was first derived
by Speedy32 who used a lattice, and subsequently let t
lattice parameter go to zero. In the appendix we prese
derivation without using a lattice. In the thermodynam
limit, Eq. ~3.2! reduces to the well-known relation betwee
chemical potential and insertion probability that has be
obtained from scaled particle theory,33 and which is also
known as Widom’s insertion theorem.34 This is also shown in
the Appendix.

2. Shift of coexisting densities in a box geometry

The hard spheres are contained in boxes with smo
hard walls. Their volumes defineV0

(0) . The geometry of the
boxes was chosen in such a way that at certain box volum
eitherNmax58 or Nmax527 spheres can be close packed in
hcp or fcc stacking. This is the situation whenv0

(0)

51/& (Nmax58) or v0
(0)54& (Nmax527). The volumes of

the boxes are expressed relative to the close packed volu
that is, it is defined thata5v0

(0)/1/& if Nmax58, and a
5v0

(0)/4& if Nmax527.
In Ref. 28, it was shown that ifa.1.6, the available

volume monotonically decreases with the number of sphe
However, as soon asa,1.5, v0

(N) goes through a minimum
as a function ofN, the minimum becoming deeper with de
creasinga. It could be shown that the available volume g
ing through a minimum as a function of the number
spheres corresponds to the small-system analog of the fr
ing transition of hard spheres. This freezing transition is p
ticularly obvious from two peaks of the grand distributio
function, Eq.~3.1!, leading to steep changes in the releva
thermodynamic functions that become steeper when the
tem size is increased from 8 to 27 spheres. The grand di
bution functions at the small-system analogs of the freez
transition are shown in Fig. 4. Contrary to the situation in t
thermodynamic limit, there are no discontinuities or sing
larities in the small system thermodynamic functions. T
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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reason is that for singularities to exist in the grand ensem
an infinite number of terms in the grand potential a
required.35

In the geometry discussed above, the~reduced! area to
volume ratio relates toa asav51.624a21/3 for Nmax58, and
av51.112a21/3 for Nmax527; for details on this and othe
box geometries, see Ref. 30. In fact, for the purpose of
culatingav , the boxes described in Ref. 30 were extended
as to accommodate the whole spheres at close packing
not only their centers with part of the spheres sticking o
The volume fraction in the small systems is defined as

f5
N

Nmax
a21

p

3&
, ~3.3!

where the numerical factor corresponds to close packing
fcc or hcp crystal. We tooka51.3 for both Nmax58 and
Nmax527. This value ofa corresponds to the situation th
the systems containing the maximum number of spheres
not close packed, and on the other hand more thanNmax

spheres cannot be inserted into the systems. In other wo
for this value ofa, theNmax need not be considered as add
tional constraints imposed on the systems.

In Fig. 5, the points where the small systems freeze
melt are plotted in the area to volume ratio—density pla
together with the melting and freezing lines in the capilla
limit, Eqs. ~2.11! where the values in Table I for the situatio
that all three crystal faces~111!, ~100!, and~110! contact the
walls in equal amounts. This is a natural choice for a sin
crystal in the geometry described above. In the thermo
namic limit, only the~111! faces will contact the walls. It is
assumed here that on decreasing the system size, defect
arise by ‘‘forcing’’ the crystal to orient along its~111! faces
along the walls of the boxes quickly become more expens
than the cost in interfacial free energy by orienting the cr
tal along two of its nonequilibrium directions. Same as in
slit geometry~Fig. 3!, it is clear from Fig. 5 that the extrapo
lated melting and freezing lines from the capillary limit in
dicate a critical point~see Sec. III A for a short discussion o

FIG. 4. Grand distribution, Eq.~3.1! at coexistence as a function ofN/Nmax

in systems confined in boxes that may contain at most 8~triangles plus
dotted line! or 27 spheres~circles plus solid line!. These two peaks are
observed if ln(z)512.45 (Nmax58) and ln(z)514.5 (Nmax527). In both
casesa51.3. Points are connected to guide the eye. Data from Ref. 28
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critical points in small systems!. This point lies at a signifi-
cantly smaller value of the area to volume ratio than in
slit geometry, i.e., atav50.74 instead of 1.13, but still at a
value beyond the capillary limit. On the other hand, t
fluid-solid coexistence region has become very broad in
small boxes, spanning a volume fraction in between 0.28
0.56 for the smallest system~largestav with Nmax58!. The
crossover from converging phase boundaries to diverg
ones lies in the very broad interval of roughly 0.2<av<1.
Just as in the situation for the slit geometry, in this interv
either an upper and a lower critical point exist or no critic
point at all. Contrary to the slit geometry, fluctuations b
come important due to the smallness of the systems. T
issue is addressed in the next section.

3. Role of fluctuations

At a first order phase transition in the thermodynam
limit, two densities coexist andPN has two delta peaks, bot
centered at the average number of particles in the coexis
phases~at fixed system volume!, further referred to aŝN1&
and ^N2&. In this limit, the variance of the number of pa
ticles can immediately be calculated, with the result

sN
2 5 (

N50

`

N2PN2S (
N50

`

NPND 2

5
1

4
~^N2&2^N1&!2,

so that the relative magnitude of the fluctuations become

sN

^N&
5

u~^N2&2^N1&!u
~^N2&1^N1&!

5
uf22f1u
f21f1

5uDfu/~f11f2!,

~3.4!

since obviously, the average number of particles in the wh
system is given bŷN&5(^N1&1^N2&)/2. Equation~3.4! is
exact in the thermodynamic limit where it is a constant as
two phases contain constant volume fractionsf i .

Now if the systems become smaller, fluctuations w
come into play and the two individual delta peaks will g

FIG. 5. Coexisting densities of hard spheres in a box geometry. Lines
respond to the situation where the~111!, ~110!, and~100! crystal faces are
equally distributed along the walls~see Table I!. The left line indicates
freezing, and the right one melting. Dotted lines indicate extrapolation
yond the capillary limit, just as in Fig. 3. The points correspond to the pe
of PN in Fig. 4; circles indicate freezing and triangles indicate melting.
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finite widths, as in Fig. 4. This width of the individual peak
is quantified bysNa

, being the variance in the number o
particles in phasea, Na . In general,31

sNa
/^Na&5A~f!/ANa, ~3.5!

where A(f)5(] p̃/]f)21/2 only depends upon the volum
fraction of hard spheres in the system. It should be noted
in this equation,̂Na& andNa refer to the number of particle
in one of the coexisting phases in the system, whereas in
~3.4!, ^N& is the average in the whole system. Equation~3.5!
implies that if the system size is reduced in such a way
the volume fraction remains constant, the two individu
peaks broaden as 1/ANa. At some point these peaks wi
overlap, and the two states can no longer be distinguishe
other words, the phase transition is killed by fluctuatio
This is where (sN /^N&)'(sNa

/^Na&).
Does this happen in the systems studied here? It is

vious from Fig. 4 that even in a very small system that co
tains at most 8 spheres, the width of the coexistence re
far exceeds the broadness of the individual peaks,
(sN /^N&)@(sNa

/^Na&). But the width of the coexistenc
region steeply increases on decreasing the system size
Nmax527 to Nmax58. It might thus be possible that fluctua
tions kill the freezing transition somewhere in the bro
range of system sizes in betweenNmax527, and sizes within
the capillary limit. We therefore address the question as
how the width of the coexistence region competes with
widths of the individual peaks, in other words, ho
(sN /^N&) relates to (sNa

/^Na&) as a function of system
size.

In the capillary limit, we just use Eq.~3.4! together with
the information on the average crystal orientation as liste
Table I. This is equivalent to transforming the lines in Fig
into a single line. In calculating the individual peakwidth
only the fluid branch is considered, i.e., (sNf

/^Nf&) is cal-
culated, as the bulk moduli of fluid and solid are of the sa
order of magnitude. First of all we eliminateNf in Eq. ~3.5!.
For this purpose use is made of Eq.~3.3!. Subsequently we
relateNmax to the area to volume ratio of the particular g
ometry studied here. This relation, for fixeda51.3 reads30

Nmax'27.44av
23, so that Nf'48.17av

23f. The quantity
A(f)5(] p̃/]f)21/2 in Eq. ~3.5! is extracted from the fluid
branch of the Hall equation of state, Eq.~2.13!, expanded up
to first order aroundf f* with the result thatA(f)'0.137
20.67(f2f f* ). Combining all this leads to

sNf
/^Nf&5A~f!/ANf'~0.13720.67~f2f f* !!

3S 48.17f

av
3 D 21/2

, ~3.6!

where it is again emphasized that the numerical factor in
last term in this expression depends upon geometry. Su
tuting Eq. ~2.11! for f5f f* 1Df, and making use of the
quantities in Table I finally leads to the relation between
width of the individual fluid peak in the grand distribution
and the area to volume ratio of the system. Equations~3.4!
and ~3.6! are plotted in Fig. 6, again for the situation whe
all crystal faces are equally distributed along the walls. T
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point at which they cross indicate where the phase transi
is ‘‘killed’’ by fluctuations. First of all it is obvious from Fig.
6 that fluctuations only become significant beyond the ca
lary limit, i.e., whenav.0.2. If extrapolation beyond this
limit was allowed, the lines would cross atav'0.6; it should
be noted that the solid line has already been drawn bey
the capillary limit. This value is significantly smaller than th
~also extrapolated! value of av'0.74, where the two phas
boundaries cross in Fig. 5. We also plotted the values
sN /^N& and sNf

/^Nf& obtained from the systems in th

small boxes. The first quantities were calculated usingsN
2

5(N50
NmaxN2PN2((N50

NmaxNPN)2. It is worth mentioning that these
values are in very good agreement with Eq.~3.4! ~within
10%!, see again Fig. 6. They clearly are much larger than
ones that are extrapolated from the capillary limit, whi
already is obvious from Fig. 5. The widths of the individu
peaks ofPN in Fig. 4 were calculated by cutting them off a
N56 (Nmax58) and N524 (Nmax527). As can be seen in
Fig. 6, they are in good agreement with the ones calcula
by Eq. ~3.6!. We also calculatedsNf

/^Nf& substituting the
observed freezing volume fractionsf50.43 andf50.28
into Eq. ~3.6! for the systems withNmax527 andNmax58,
respectively. These results are also shown in Fig. 6~as filled
symbols!. Clearly in the first case quantitative agreement
observed, but in the second case Eq.~3.6! predicts too large
a value for the fluctuations.

We conclude from this analysis that fluctuations in the
small systems play no significant role in the capillary lim
They become important whenav is larger than roughly 0.2
Whenav is of order 1, phase boundaries diverge while in t
capillary limit they converge. On the other hand, numb
fluctuations within the coexisting phases are in very go
agreement with predictions using the macroscopic Hall eq
tion of state together with the capillary limit Eqs.~2.11!. If
the phase boundaries had not widened at large values ofav ,
the freezing transition would have been killed by fluctuatio

FIG. 6. Fluctuations in the coexistence region of the freezing transit
where the hard spheres are confined in boxes~see text!. The solid line are
the fluctuations within the capillary limit, i.e., Eq.~3.4! together with Eqs.
~2.11! and Table I for the average crystal orientation~see text!. Circles
correspond to the small systems. The dotted line are the fluctuations o
individual fluid peaks, Eq.~3.6! together with Eq.~2.11! and Table I. Open
diamonds are extracted from the widths of the fluid peaks in Fig. 4. S
diamonds are calculated using Eq.~3.6!, but using the volume fractions o
the fluid peaks that correspond to the ones in Fig. 5.
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whenav'0.6, see Fig. 6. This number corresponds to a s
tem that can contain approximately 127 spheres. Now
pending upon howsN /^N& crosses over from decreasin
linearly with av ~capillary limit! to steeply increasing whe
av becomes of order 1, there are two scenarios. The firs
thatsN /^N& crossessNf

/^Nf&, so that the freezing transitio
is killed by fluctuations. This might in principle happen
the interval of roughly 0.6<av<0.9, corresponding to sys
tems that may contain in between approximately 40 and
spheres. The second scenario is that this crossover se
before roughlyav'0.6. In that case the~small system analog
of the! freezing transition will take place in the whole rang
of macroscopically large systems down to the very sm
ones as studied here.

IV. CONCLUDING REMARKS

In this work we have addressed the question as to w
confinement does to the freezing transition of hard sphe
We have provided an answer to this question in the capil
limit, as well as in the limit that systems are very small.
the first case, we showed that hard spheres in confining
ometries will freeze at densities significantly below the bu
freezing density. This implies that if a porous system is
contact with bulk, the part of the system in the pores w
freeze, while the bulk remains fluid. In the second limit t
answer necessarily cannot be general as geometry becom
determining factor. The question remains what happen
between these limits, as in this range critical points m
occur, and fluctuations may kill the phase transition. This
not a simple question to answer using classical statist
thermodynamics. The existence of the expansion of the
energy in powers of the area to volume ratio@i.e., Eqs.~2.6!#
already is questionable if terms of quadratic order need to
taken into account. It will definitely not exist for even high
order. The physical reason for this is that the bulk refere
free energy, i.e., the zeroth-order term in the area to volu
ratio, av , will become itself a function of system size an
geometry. Therefore, one should either look for another
erence state, or rely on direct computer simulation or den
functional techniques in order to study the intermedi
range ofav . The latter technique was applied to study w
ting behavior of molecular fluids in pores, see Ref. 5 fo
review.

In small systems, but probably also in the capillary lim
it may become exceedingly expensive for the system to h
two coexisting phases within the same pore. For this rea
it is expected that at coexistence, in a collection of pores
of them will contain ~single phase! fluid, while the other
fraction contains~single phase! crystal. Within a single pore
the system may oscillate between the fluid and crystal
state.

In order to compare to experiments, the question of th
modynamic equilibrium should be addressed. In system
bulk hard sphere colloids, quenched nonequilibrium sta
may only very slowly relax, see, for example Refs. 36, 37
is expected that these relaxations will become even slowe
confined systems. Therefore metastable states may conf
the scenarios as sketched in this work.
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When pores become small, their detailed geometry
expected to be important. A pore geometry that may be p
ticularly interesting is one that is just slightly deformed wi
respect to the ones that were studied under the ‘‘box ge
etry,’’ Sec. III B. In a particular case, freezing was observ
to occur in two steps.30 It would be intriguing to see this
scenario verified in real systems.
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APPENDIX: RECURSIVE RELATION BETWEEN
PARTITION FUNCTION AND AVAILABLE VOLUME FOR
HARD SPHERES

The probability that a sequence ofN randomly~and uni-
formly! generated coordinates of hard sphere centers
volumeV ~defined here as the volume available for a sin
sphere center!, have a configuration such that none of t
hard spheres overlap, and where one sphere center is indr1

at r 1 , a second is indr2 at r 2 ,..., and anNth is in drN at
r N , is the insertion probability of such a configuration.
reads

Pins~r 1 ,...,r N!5
~) i , jd~ r̃ i j !!dr1¯drN

*V¯*dr1¯drN
, ~A1!

with

r̃ i j 5
ur i2r j u

d
, ~A2!

whered denotes the diameter of a sphere. Furthermore,

d~ r̃ i j !50~ r̃ i j ,1!,

d~ r̃ i j !51~ r̃ i j >1!. ~A3!

The insertion~or acceptance! probability averaged over al
sets of coordinates withinV is

^Pins~N!&5
*V¯*~) i , jd~ r̃ i j !!dr1¯drN

*V¯*dr1¯drN
5

ZN

VN , ~A4!

with ZN the configuration integral ofN hard spheres in vol-
umeV. This is easily proved as follows.

A general expression for the configuration integral ofN
particles in a volumeV is

ZN5E
V
¯E e2bU~r 1¯r N!dr1¯drN , ~A5!

whereU(r 1 ,...,r N) denotes the potential energy of the sy
tem, which, for hard spheres, is rigorously pairwise additi
i.e.,

U~r 1 ,...,r N!5(
i , j

u~ r̃ i j !, ~A6!

with the pair potential,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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u~ r̃ i j !5`~ r̃ i j ,1!,
~A7!u~ r̃ i j !50~ r̃ i j >1!,

so that,

e2bU~r 1¯r N!5e2m( i , j u~ r̃ i j !5)
i , j

d~ r̃ i j !, ~A8!

which completes the proof.
In principle, by measuring the average insertion pro

ability Eq. ~A4!, the configuration integral follows. Howeve
even for moderately dense, and still rather small syste
^Pins(N)& rapidly goes to zero. Fortunately^Pins(N)& can be
factored as

^Pins~N!&5^Pins~1!Pins~2u1!Pins~3u1,2!¯

3Pins~Nu1,2,...,~N21!!&, ~A9!

where Pins( j u1,2,...,(j 21)) is shorthand for the probability
of accepting particlej at r j provided that (j 21) sphere cen-
ters are at$r1¯r ( j 21)%. The next step is the crucial one. F
hard spheres, the average of all possible insertion seque
equals the sequence of averages,

^Pins~1!Pins~2u1!¯Pins~Nu1,2,...,~N21!!&

5^Pins~1!&^Pins~2u1!&¯^Pins~Nu1,2,...,~N21!!&.

~A10!

On the right-hand side~rhs! of Eq. ~A10!, the terms are av-
erages over all possible configurations, in other words,
insertion probabilitŷ Pins(Nu1,2,...,(N21))& is the insertion
probability of theNth sphere into a system containing (N
21) spheres, averaged over all possible configurations o
(N21) spheres. The terms on the rhs of Eq.~A10! relate to
the available volume via

V0
~N!5^Pins~N11u1,2,...,N!&V, ~A11!

that is, the insertion probability of an (N11)th sphere cente
into a system ofN hard spheres is just the ratio of the ava
able volume of the system ofN hard spheres and the ava
able volume for a single sphere without any others prese

Combining Eqs.~A9!–~A11! with Eq. ~A4! gives

ZN5 )
J50

N21

V0
~J! , ~A12!

with V0
(0)5V in our definition. Equation~A12! has for the

first time been obtained by Speedy,32 who used a lattice and
subsequently let the lattice parameter go to zero.

Equation~A12! can be written as a recursive relation,

ZN5V0
~N21!ZN21 , ~A13!

and via the definition of the canonical partition function,

QN5
ZN

L3NN!
, ~A14!

with L the thermal De Broglie wavelength, it is easily se
that the partition function may also be written as a recurs
relation, i.e.,

QN5
V0

~N21!

L3N
QN21 . ~A15!
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With qN5(L3/s3)QN , Eq. ~A15! is seen to resemble Eq
~3.2!. It should be noted that no assumptions have been m
regarding the size or shape of the system of hard spheres
the above equations therefore apply to hard sphere sys
of arbitrary size, and with arbitrary boundary conditions@im-
plicit in the available volume of ‘‘empty’’ space,V, which
resembles hereV0

(0)#.
We will now show that, starting from Eq.~A15! we re-

cover a well-known relation by scaled particle theory,33 and
by Widom34 between insertion probability and chemical p
tential. It is shown that the latter relation only holds for
system in the thermodynamic limit.

Equation~A15! may be written as

V0
~N!

L3~N11!
5

QN11

QN
, ~A158!

or,

lnS V0
~N!

L3~N11!
D 5 ln QN112 ln QN5b~FN2FN11!,

~A16!

with FN the Helmholz free energy of a system containingN
hard spheres. The chemical potential is defined as

m5S ]F

]ND
TV

. ~A17!

Comparing Eqs.~A17! and ~A16!, and noting that

lim~FN112FN!/1S ]F

]ND
TV

N→`, ~A18!

we immediately identify

bm52 lnS V0
~N!

L3~N11!
D @N→`#. ~A19!

With negligible error, in the limitN→`, Eq. ~A19! can be
written as

bm52 lnS V0
~N!

L3ND . ~A20!

This relation follows from scaled particle theory.33 Since the
insertion probability of an (N11)th hard particle in a system
of N hard particles isPins5V0

(N)/V, Eq. ~A20! can be seen to
resemble the well known general expression of the chem
potential obtained by Widom.34 Clearly, it is an asymptotic
relation that does not apply to small systems.
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