
Fremont: A System for Discovering
Network Characteristics and Problems

David C. M. Wood, Sean S. Coleman, & Michael F. Schwartz – University of Colorado

ABSTRACT

In this paper we present an architecture and prototype implementation for discovering
key network characteristics, such as hosts, gateways, and topology. The Fremont system uses
an extensible set of modules to discover information, based on a variety of different protocols
and information sources, rather than a single network management protocol. This approach
allows more complete and timely information to be discovered than, for example, using only
one protocol, even one as capable as the Simple Network Management Protocol. The
discovered information is time-stamped and recorded in a database. The contents of this
database are cross-correlated to form an increasingly complete network picture, to direct
further discovery, and to highlight inconsistent information.

Introduction

The Scenario
Everything looked OK on the network monitor

when your boss walked in, complaining that she
couldn’t get to the Ancient History server in the
Classics department. Now you’re in trouble. Every-
thing you normally monitor is obviously up, but the
problem just won’t go away. But no problem, if you
have the tool that will tell you what the route is sup-
posed to be to get to the Classics subnet. You had
heard before that they were on the network, but you
never knew that the connection was via a Sun
workstation / gateway in the Athletics department.
After a quick call, you can report back to your boss
that the coach has plugged his workstation back in,
and the history server should be accessible in ten
minutes.

Well, probably the campus network wouldn’t
really depend on careful administration in the Athlet-
ics department. Nonetheless, tracking changes and
problems in a campus network is difficult, because
authority and responsibility for various network seg-
ments is distributed across multiple organizations.
Even on the segments thatare well controlled, users
(particularly those departing the institution) have no
incentive to report that they are removing their host
from the network. It is usually not an emergency,
but it is useful to find out about such activities, par-
ticularly before one runs out of network addresses on
a segment.
Motivating The Approach

"What’s the big deal?" you ask. "I can use tra-
ceroute[9] to track down this routing problem."
Perhaps. But traceroute really works best when the
network is functioning properly. When there are
problems, traceroute alone may not identify the
problem. There may be multiple paths between a
host and destination; over time the routes may
change. Maybe you are experiencing a performance

bottleneck, rather than a network partition. Observ-
ing that traffic passes across a subnet with a large
number of hosts attached to it may help explain the
problem. Other problems may also arise. For exam-
ple, on any large network occasionally two hosts get
configured with the same IP address. This generally
makes communications impossible for either host.
Detecting this problem is relatively easy if you have
a tool that remembers the IP and Ethernet associa-
tions longer than the usual timeout of the ARP
cache[15].

"Well," you continue, "I can use traceroute to
find the path, and then I can use the Simple Network
Management Protocol (SNMP)[2] to check the
packet arrival rates at each gateway along the way.
That handles the performance problem. For multiple
network addresses I would..."

Sure, you can do it manually, but this is the
sort of thing that computers are supposed do well.
The fragmented nature of the existing network
management tools makes life difficult.

There are two types of problems with current
network management tools. First, each tool takes a
particular perspective, and cannot support network
management functions that require other perspec-
tives. For example, SNMP treats the network as a
set of instrumented devices. It can only retrieve
information from nodes where SNMP agents are run-
ning, and cannot perform active probing tasks (such
as traceroute). Moreover, since it focuses on manag-
ing known devices, it cannot aid in the discovery of
devices or services, and the network manager must
invest significant effort in configuring these tools.

More generally, different sources of network
information have different characteristics with
respect to timeliness of discovered information,
discovery expense, danger of generating network
problems (such as broadcast storms), and complete-
ness of discovered information.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 335



Fremont: Network Discovery System Wood, Coleman, & Schwartz

These differences lead to the second problem:
network managers must manually cross-correlate
information obtained from several tools. The tedi-
ously detailed nature of this information makes it
virtually impossible for a network manager to har-
vest all of the useful information that is potentially
available. Instead, when problems arise the manager
probes the small window of information needed to
solve that problem.

What is needed is a framework for network
management that combines the various tools into an
integrated system. The system should observe many
different aspects of network state, and integrate the
information into a coherent picture. Given such a
picture, the network manager can learn of problems
earlier, and can view a current picture of various
aspects of the network more easily.

System Description

Overview
John Charles Fremont was a nineteenth century

explorer in Colorado, California, and other parts of
the western United States[4]. Inspired by his versa-
tility, we named our network discovery system after
Fremont. The Fremont system architecture is illus-
trated in Figure 1. In this figure, light lines indicate
control flow, and heavy lines indicate data flow.

RIP
Explorer Module

ICMP
Explorer Modules

DNS
Explorer Module

ARP
Explorer Modules

Discovery Manager

Network Interface
Display Program

Network Topology
Display Program

Journal Server

Journal Dump
Program

Figure 1: Fremont System Architecture

The Fremont system is based on an extensible
suite of Explorer Modules, each of which uses a
commonly available, existing network protocol or
information source to uncover network information.
This range of modules supports a broad set of
discovery mechanisms and techniques. Some
Explorer Modules actively probe the network, send-
ing packets out into the network, and watching their
effects. Other Explorer Modules generate no net-
work traffic, and instead quietly observe the network
activity around them. For example, passive packet
monitoring allows routing information to be col-
lected without imposing added processing load on a
gateway. More active, directed probing allows both
local and remote networks to be examined without

the need for installing specialized network monitor-
ing hardware or software.

Just as Fremont the explorer kept a dated jour-
nal of his activities, the Fremont system records
discovered information in a central repository, which
we call the Journal. This Journal is managed by the
Journal Server, which serializes updates, time-
stamps and records the data, and answers queries
from programs that wish to interrogate the Journal.

The activities of any good explorer are heavily
influenced by experiences along the way. The
Fremont system supports this function by way of a
Discovery Manager. The Discovery Manager inter-
rogates the Journal, and compares information
discovered from the various Explorer Modules to
determine a more complete picture of network
characteristics (such as topology), and direct further
discovery. Because every discovered feature is time
stamped with its original date of discovery, its last
change, and its last verification, network changes are
easy to track. The Journal can also be interrogated
by user interface agents, as will be discussed later in
this paper.

The Fremont system is intended for a variety of
network environments. Because all modules com-
municate via BSD sockets, there are no restrictions
about the physical location of individual modules.
Moreover, the system can be replicated at multiple
sites, exploring different networks, and sharing infor-
mation among the replicated components.
Explorer Modules

The current Fremont prototype supports 8 dif-
ferent Explorer Modules, based on 4 different infor-
mation sources. For each information source, we
give a brief description of the nature of the source,
what type of information the Explorer Modules can
discover using that source, and a detailed discussion
of how each Explorer Modules operates. The
detailed discussions include the conditions under
which each information source can and cannot suc-
cessfully discover network information, as well as
how the information can be cross-correlated with
other discovered information to provide insight into
the represented networks.

The reader interested only in a high-level
understanding of the Fremont system can read the
first 2-3 paragraphs in each Explorer Module subsec-
tion, and skip the detailed discussions.
Address Resolution Protocol Explorer Modules

The Address Resolution Protocol (ARP) pro-
vides a mapping between Medium Access Control
(MAC) and network layer addresses (e.g., between
Ethernet and IP addresses)[15]. Whenever a host
tries to send a packet to another host on a shared
subnet, the sending host must first look up the Ether-
net address in the local host’s ARP table. If there is
no entry for that IP address, the host must broadcast
an ARP request for the destination Ethernet address.

336 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

The host that claims to have that IP address will
reply to the requester.

Fremont has two Explorer Modules that dis-
cover and record the mappings provided by the
Address Resolution Protocol. This information can
be used in many cases to determine the manufacturer
of the discovered interface1. It can also aid in deter-
mining gateways, locating changes in interface
configurations, and discovering multiple interfaces
with the same network layer address.

Fremont’s ARPwatch Explorer Module pas-
sively monitors ARP message exchanges, and builds
a table of Ethernet/IP address pairs for the directly
attached subnets. Because this module uses the Net-
work Interface Tap (NIT) feature of SunOS, this
module must be run with system privileges.

Fremont also has an EtherHostProbe[12]
Explorer Module, which attempts to send an IP
packet to the UDP Echo port of each host in a range
of addresses. Doing so causes the originating host to
generate ARP requests, the responses for which are
entered into the host’s ARP table, and then read by
the EtherHostProbe Explorer Module. For each
address probed, one ARP request is broadcast. In
addition, if there is a host on the network with the
probed address, it will generate an ARP reply. The
originating host will then send the UDP packet to
the Echo port of the probed host, and the probed
host will, if so configured, reply to that packet. In
summary, there is an ARP request broadcast for each
address probed, and then two or three additional
packets will appear on the network for each respond-
ing host. The module limits the rate of generated
packets to four per second. It does not use the Net-
work Interface Tap and does not require special
privileges.

Fremont has two ARP-based Explorer Modules
because each module has different strengths and
weaknesses. The ARPwatch module requires special
privileges, and will not discover hosts that are not
recipients of traffic from other hosts. This module
generates no network traffic, and can be left to run
for long periods of time. The EtherHostProbe
module generates traffic, and does not require special
privileges. It provides more thorough discovery, and
will finish in an amount of time limited by the
number of addresses probed.

Both modules share some common limitations.
Both are limited to gathering information only about
hosts that are on a directly attached, locally shared
subnet (e.g., hosts on the same Ethernet as the one
on which the Explorer Module is running). Both
modules must ignore "proxy" ARP replies, where a
gateway issues an ARP reply for hosts that are

1Throughout this paper we use the term interface to
refer to a network interface, i.e., a separately addressable
network connection to a machine.

behind the gateway. This is easily done when the
remote hosts are on a different subnet, but some
gateway devices will reply for a set of addresses on
the local subnet. Our solution in these cases is to
recognize the device type when the multiple IP
addresses are reported for a single Ethernet address.
Except for this case, multiple IP addresses for a sin-
gle Ethernet address usually indicates that a system
has been reconfigured. Multiple Ethernet addresses
for a single IP address usually indicates a
misconfigured host, which is using the IP address
assigned to some other host.
Internet Control Message Protocol Explorer

Modules
The Internet Control Message Protocol (ICMP)

provides a variety of network layer information, as
part of the Internet Protocol (IP)[16]. Fremont has
four Explorer Modules based on ICMP. Since ICMP
packets are usually processed at high priority in
router queues, the ICMP Explorer Modules take pre-
cautions not to send them too frequently.

The first two ICMP Explorer Modules are
based on ICMP "Echo Request" and "Echo Reply"
messages. These messages are used by the UNIX
"ping" program, to test if a remote host is reach-
able[14]. The purpose of these two modules is to
identify operational interfaces attached to the net-
work. The first Explorer Module is based on
sequential pings. This module sequences through a
range of addresses, recording when it receives
replies.

The second ICMP Explorer Module is based on
broadcast pings. This module sends an ICMP Echo
Request to the broadcast address of the subnet being
probed. These directed broadcasts tend to be less
successful than sequential pings on a subnet with
many hosts, because closely spaced replies can cause
many collisions. However, if used carefully, broad-
cast ping can be an effective interface discovery tool
for large subnets of class A and B networks. In par-
ticular, it works well if the address space is large but
there are not very many hosts on the individual sub-
nets. In these cases, a sequential search of the
address space would take a long time.

Directed broadcast packets that are broadcast
with a time-to-live field larger than one can cause
severe broadcast storms, due to incorrect networking
software implementations or configurations in even
just one host on a network. To minimize this prob-
lem, the broadcast ping Explorer Module sends pack-
ets with minimal time-to-live values (determined
dynamically, in a fashion similar to the sequential
increase mechanism used by traceroute; see below).
To avoid broadcast storms, many gateways are
configured not to broadcast packets that have a
directed broadcast address as the destination address.
This avoids the problem, but also reduces the effec-
tiveness of the broadcast ping module.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 337



Fremont: Network Discovery System Wood, Coleman, & Schwartz

The third ICMP Explorer Module is based on
ICMP mask request/reply messages for determining
the subnet mask of a network interface. This is not
as widely implemented as the echo request/reply. In
fact, some implementations allow the interface to be
configured not to respond to subnet mask requests, to
avoid problems with hosts configuring themselves
based on incorrect subnet mask replies. Nonethe-
less, Fremont uses this feature of ICMP to discover
and record the subnet masks of all the interfaces that
it has already discovered. Fremont uses the col-
lected subnet masts to aid in determining the net-
work structure. It also uses the gathered information
to detect conflicting subnet masks on different inter-
faces of a subnet.

The fourth ICMP Explorer Module uses a tech-
nique similar to Traceroute [9], to determine the
route a packet would take from source to destination.
Normally, when a packet is sent towards a destina-
tion, it has a "Time-To-Live" (TTL) field that is set
large enough that the packet may reach its destina-
tion, yet small enough that undue network resources
will not be consumed if the packet gets caught in a
routing loop. As each router along the path receives
the packet, it decrements the TTL field. If a router
decrements the TTL field to zero, that router is sup-
posed to drop the packet and send an ICMP Time
Exceeded packet back to the source of the original
packet. If the TTL is still non-zero, then the router
forwards the packet on to the next router closer to
the destination.

Traceroute takes advantage of this feature to
determine routes by sending a sequence of UDP
packets towards a destination host. The first packet
in this sequence has a TTL of 1. That packet is
dropped by the first router along the path, and that
router sends an ICMP Time Exceeded message back
to the source. The next packet is sent with a TTL of
2, and the second router along the path drops the
packet and returns an ICMP Time Exceeded mes-
sage. This process continues until the TTL of the
packet sent is just large enough for the packet to
reach its destination. The sequence of ICMP Time
Exceeded messages returned to the source provides a
trace of the routers along the path to the destination.
The packets are sent to a port on the destination host
that is unlikely to be used. Thus, when the packet
arrives at the destination, it will typically cause the
destination host to send either an ICMP Protocol
Unreachable or ICMP Port Unreachable message.

Fremont’s Traceroute Explorer Module uses
this mechanism to determine the structure of the net-
work surrounding the host on which the module is
running. It does this by using the traceroute scheme
to identify gateways and the subnets to which those
gateways are connected.

Not all routers perform correctly as described
above. Some hosts send their Unreachable message
back to the source using the TTL field from the

received packet, causing the packet not to arrive
back at the source until the TTL of the original
packet is large enough for an entire round trip. The
Traceroute Explorer Module can handle most of the
common failure modes, and hence provides an excel-
lent means of discovering network topology.

The Traceroute Explorer Module sends packets
towards three host addresses on the destination sub-
net, in an attempt to maximize the amount of infor-
mation discovered. For example, if the module is
sending packets towards subnet 128.138.238 (net-
mask of three bytes), then it sends packets to
128.138.238.0, 128.138.238.1, and 128.138.238.2. If
a host receives a packet that is addressed to host
zero on the subnet, the host is supposed to treat that
packet as though it were addressed to that host. The
module therefore sends to host zero on the destina-
tion subnet to maximize the chance of getting a
reply from a node on that subnet. We send to two
other addresses on that subnet, on the assumption
that although one of those addresses may actually be
the interface address of the gateway that accepted
the packet addressed to host zero, the other address
will not be that same gateway. The gateway should
then send a final ICMP Time Exceeded message as
it decrements the TTL to zero and drops the packet
destined to some other address on the subnet.

The Traceroute module continues to send pack-
ets towards as yet unreached destinations while wait-
ing to timeout packets it has sent to other destina-
tions. It ensures that no more than eight packets per
second appear on the network as a result of this
parallel activity. With a ten second timeout for a
response, this can result in up to 80 outstanding
packets at any one time. However, most of these
packets will have been lost somewhere, and the
module will just be waiting for them to time out.

The Traceroute module is designed to operate
on a local, high-speed network. Although the
module will work across shared, low-speed serial
connections, it stops tracing towards a particular des-
tination if that trace reaches any of several national
backbone networks.

Because it will receive ICMP Time Exceeded
messages from only the single closest interface on
the routers along the traced path, the Traceroute
module will only discover half the interfaces
traversed. Running this module from multiple loca-
tions in the network will acquire more complete
information about the router interface addresses.

The current implementation of this module does
not make any attempts to discover multiple paths,
although the internal data structures are in place to
accommodate this. Alternate routes can be
discovered by running the module from different
points in the network or, in some cases, simply by
running it at different times. For example, if a
lower priority, redundant path exists between two

338 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

locations, that path will be discovered only when the
primary path is down. Since this module, like all of
the other Explorer Modules, stores its information in
the Journal, the Journal will contain more complete
information aggregated from multiple invocations of
this module.
Routing Information Protocol Explorer Module

The Routing Information Protocol (RIP) uses
broadcast messages to advertise routes to particular
networks, subnets, or hosts[7]. Although it has fairly
limited capabilities, RIP is widely used. Each RIP
packet from a router contains a list of network
addresses and metrics. No subnet mask information
is contained in these packets, so routes to networks,
subnets, or hosts are determined by comparing the
subnet mask of the receiving host to the address
being advertised. Subnet advertisements are not pro-
pagated outside of the network to which the subnets
belong.

Unfortunately, not all RIP sources are
trustworthy. Many badly configured hosts "promis-
cuously" rebroadcast all learned routing information
without regard to the subnet from which that infor-
mation was learned. This gives the false impression
that the host may really have a separate route to the
advertised networks. Fremont’s RIP Explorer
Module attempts to identify those RIP sources that
appear to be operating in this erroneous manner.

The RIP module monitors RIP advertisements
on shared subnets, building a list of hosts, subnets,
and networks as they are seen in the advertisements.
The collected data is recorded in the Journal, and
used as clues for further discovery probes.

Like the ARPwatch module, the RIPwatch
module uses the Sun NIT with a packet filter to
watch the RIP packets on the shared subnets. This
means that this module must run with system
privileges, and that the module can see no further
than the directly attached subnets.
Domain Naming System Explorer Module

The Domain Naming System (DNS) stores
name, address, name server, and other information
about interfaces in a distributed, hierarchical data-
base[13]. Names and addresses are both stored in
two distributed tree structures. One tree is organized
to permit easy address lookups given a domain
name. The other tree is organized to permit easy
name lookups given an IP address. This latter tree
is often called the "reverse" domain.

Fremont’s DNS Explorer Module searches the
appropriate subtree for all addresses in a specified
network. The primary purpose of this module is to
discover network topology by identifying gateways.
This module was derived from the "nslookup" pro-
gram, which is part of the Berkeley Internet Name
Domain server distribution[10]. Nslookup under-
stands how to format queries for all of the different

types of data that the DNS supports, and how to
interpret the results.

The DNS module retrieves the set of all
address-to-name mappings from a domain, using
"zone transfers". It does this by descending recur-
sively into the DNS tree starting from a specific
point, in a manner similar to Ganatra’s Census pro-
gram[6]. This technique creates no more network or
name server load than is caused by a secondary DNS
server.

The DNS module also uses ICMP Mask
Requests to retrieve the subnet mask from one of the
first hosts discovered on the desired network.2 This
is usually one of the name servers, thus increasing
the likelihood that the returned mask is correct.
Using the subnet mask and the information obtained
from the DNS tree, the module tries to determine
which sets of interfaces comprise gateways. It does
this by looking for several different matches. The
most obvious case is when multiple IP addresses
correspond to the same machine name. The DNS
module also looks for multiple names for the same
address, and then looks for matches within those
groups. It further looks for names which differ only
by "-gw" or similar naming conventions.3 This
module also looks for "designated" gateways[13], but
this does not appear to be a widely implemented use
of the DNS.

The DNS module records in the Journal the
number of hosts on each subnet and the highest and
lowest addresses assigned on each subnet. Since the
module has the complete set of name/address pairs
for the network being examined, it could send all of
this information to the Journal. However, because
this information is readily available from the DNS,
we do not record a name/address pair if it is the only
information that we have involving an interface.

Journal
Each Explorer Module collects some subset of

the available network data, depending on where the
module runs and which protocol or information
source it uses for discovery. This information is
recorded in the Journal.

Most recorded data are used to provide a
representation of the network. These data may then
be used to answer user queries about the network
entities and structure. In addition, some of the
recorded data are used as a guide to further

2The DNS module was written before we had a Journal
server. Since it needed the subnet mask in order to know
how to allocate interfaces to subnets, and since we wanted
to make this as automatic as possible, we chose to have
the DNS module invoke the Subnet Mask module.

3In the future we will identify possible gateways using
other weaker heuristics, tagging the resulting entries in the
database with a "questionable quality" flag.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 339



Fremont: Network Discovery System Wood, Coleman, & Schwartz

discovery. For example, the data collected from RIP
packets provide strong indications about the
existence of specific other networks and subnets.
This information is used by the traceroute Explorer
Module to improve its performance.

The Journal data are grouped into records
representing interfaces, gateways, and subnets.
Table 1 shows the primary fields that are maintained
for interface records.

MAC layer address
Network layer address
DNS name
Subnet mask
Gateway to which this interface belongs

Table 1: Interface Fields

Gateways are represented as collections of
interfaces. For gateways, we also record the subnets
to which they are connected. The reason for doing
this is that the Traceroute Explorer Module is able,
in some cases, to determine the subnet to which a
gateway is attached without being able to determine
the address of the interface on that subnet.

For each discovered subnet, we record a list of
gateways attached to that subnet. Note that there are
cases where we may have discovered a subnet, but
do not yet know what gateways are connected to that
subnet.

All data items are stored with the date and time
of initial discovery, last change, and last verification.
This information is useful for observing several net-
work characteristics. For example, we can see when
hosts have been removed from the network. When
this happens, Fremont stops updating the interface
data record (except perhaps via the DNS Explorer
Module). A network manager can observe this, and
then contact the owner of the missing host to verify
that the network address can be reused.

Because it is the shared place where observa-
tions are stored, and because there are several
Explorer Modules recording complimentary findings
there, the Journal is more that just the sum of its
parts. For example, the fact that the same Ethernet
address is observed by two ARP modules running on
different subnets is not significant until that informa-
tion is written into the Journal. Only then, because
of the common storage, can that gateway be
discovered. Similarly, both the Traceroute and DNS
Explorer Modules collect information about gate-
ways, and store that information in the Journal.
Because the two modules use different techniques,
the resulting data in the Journal are more complete
than might be determined by either module acting
alone.

Journal Server
The Journal Server maintains an in-memory

representation of the Journal data, which it writes to
disk periodically and at termination.

As noted in the Journal description, the stored
data are grouped into records representing each inter-
face, gateway, or subnet. Each of record is stored in
a linked list for that type of data. The lists are
ordered by time of last modification, so that the most
recently changed items are at the end of the list.
The data records for interfaces are indexed by three
AVL trees, for lookups by Ethernet address, IP
address, and DNS name. This allows quick access
to individual data records, as well as access to
ranges of records. An AVL tree is also used to
index subnet records by subnet address. Gateways
can be accessed by any one of their interfaces. The
storage requirements are shown in Table 2.

Record Bytes/Record
Interface 200
Gateway 84
Subnet 76

Table 2: Journal Storage Requirements

Note that in a distributed environment, no one
Journal Server would need to store information about
much more than the local network. Hence, storage
requirements are modest. For example, a 25% full
class B network (16k interfaces) with 192 subnets
used (and an equal number of gateways) would
require under four megabytes of memory.

The Journal Server responds to three primary
requests: Store/Update, Get, and Delete. These
requests are supported through a common library of
access and data transfer routines that the Explorer
Modules, Discovery Manager, and data analysis and
presentation programs use. The Get function may
return multiple data records depending on the selec-
tion criteria in the request.
Discovery Manager

The purpose of the Discovery Manager is to
decide what information needs to be collected and
what Explorer Modules should be invoked to collect
those data. The Discovery Manager initializes itself
by reading a startup/history file containing the
address of the Journal Server, and the command
name, invocation frequency, and information about
recent runs for each Explorer Module.4 It then opens
a connection to the Journal Server and retrieves the
data related to the attached subnets. It next adjusts
the schedule for running any particular Explorer
Module, based on the data already collected. The

4The startup/history file was implemented before we had
a Journal server. In the future we will move this data to
the Journal.

340 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

startup/history file records what each Explorer
Module needs for input, and what features it discov-
ers. The current list is shown in Table 3.

As the Discovery Manager runs the various
Explorer Modules, it updates the startup/history file,
which is used to determine what modules to run
next. For example, if the Discovery Manager sees
that 20 of 400 interfaces recorded in the Journal do
not have subnet masks recorded and that this was
true before the "subnet mask" module was last
invoked, then the Discovery Manager will not shor-
ten the interval until the next invocation of that
module. This ensures that the resulting exploration
effort is as fruitful as possible.

Info. Module Inputs Outputs
Source Name
ARP ARP- none Enet. & IP

watch addr. matches
(over time)

Ether- IP addrs. Enet. & IP
HostProbe addr. matches

(immediately)
ICMP Sequential- IP addr. Intf. IP

Ping range addrs.
Broadcast- Subnets or Intf. IP

Ping Nets addrs.
Subnet- IP addrs. Subnet Masks
Masks

Traceroute Subnets, Intfs. per
Nets, or gateway;
nothing gateway-

subnet links
RIP RIP- none Subnets, Nets,

watch Hosts
DNS DNS Network Intfs. per

number gateway

Table 3: Explorer Module Input/Output

When the Discovery Manager starts an
Explorer Module, the Discovery Manager has several
mechanisms for directing the Explorer Module. The
particular mechanism for each Explorer Module is
recorded in the Discovery Manager startup/history
file. Most Explorer Modules, if given no specific
direction, will examine the directly connected net-
works or subnets.
Presentation Programs

The ultimate purpose of Fremont is to provide
some insight into the network being explored. To
this end, we have built three programs for viewing
the data available in the Journal. The first program
simply lists all of the data in the Journal. We used
this for early debugging.

The second program presents the interface data
in three levels of detail, using X window displays.
The first level lists all interfaces in a particular

network, including the network layer address, DNS
name, and time since last verification of existence
(ignoring time of last DNS verification). This gives
an easy indication of when the interface was last
observed on the network. The second level lists all
subnet interfaces, including the MAC layer address
(if available), an indication of whether or not this is
a source of RIP packets, and an indication of
whether this is one interface of a gateway. The third
level lists all of the data items stored in the Journal
for a particular interface. This program is useful for
looking at the state of the network interfaces over
time. With it, a network manager can note which
machines are out of service.

The third program provides an X window
display of the network structure, as represented in
the Journal. This is built from the gateway and sub-
net records stored in the Journal. The program
retrieves the network and gateway entries from the
Journal, and dumps the data in the format expected
by SunNet Manager[24]. We then use SunNet
Manager to display the data, as illustrated in Figure
2 (showing the output for a part of the University of
Colorado network discovered by Fremont). This use
of Fremont provides a significant improvement to
SunNet Manager. While SunNet Manager provides
a discover tool that checks the routing table on the
local machine to find subnets, it does not uncover
the relationships between the subnets. Using SunNet
Manager, the user must enter and maintain network
relationship information manually. Fremont supports
this function automatically.

Figure 2: Discovering Subnets

Analysis Programs
We have two programs that analyze the Journal

data to uncover possible network problems. The first
lists subnet mask conflicts for all of the interfaces in
the same network. With this information we can
identify hosts that are not configured properly for a
subnetted environment.

The second analysis program lists the possible
conflicts between MAC layer and network layer
addresses. In particular, we locate cases where mul-
tiple interface records have the same network layer
address for different media access addresses, or vice
versa. The first case represents either changing
hardware or two different hosts using the same

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 341



Fremont: Network Discovery System Wood, Coleman, & Schwartz

network layer address. The reverse situation may
represent a system configuration change, a gateway
doing proxy ARP, or the multiple interfaces of a
gateway.

Evaluation And Experiences

In this section we present measurements and
comparisons of the various Explorer Modules, to
help evaluate the overall cost and effectiveness of
the Fremont system.
Network and System Load

Table 4 shows the intervals that we have found
appropriate for network discovery, the time required
for completion of each invocation, and estimates of
the network and module host system load resulting
from that module.

Module Min/Max Interval Time to Complete Network Load System Load

ARPwatch 2 hours; 1 week continuous none minimal

EtherHostProbe 1 day; 1 week 1 sec/address 1 - 4 pkts/sec minimal

SeqPing 2 days; 2 weeks 2 sec/address .5 pkts/sec minimal

BrdcstPing 1 week; 4 weeks 30 sec/subnet short storm short high load

SubnetMasks 1 day; 1 week 2 sec/address .5 pkts/sec minimal

Traceroute 2 days; 2 weeks 5 - 20 minutes 4 - 8 pkts/sec moderate

RIPWATCH 2 hours; 1 week 2 minutes none minimal

DNS 2 days; 2 weeks 1 - 5 minutes 10 pkts/sec high

Table 4: Explorer Module Characteristics

Module Interfaces % of Total Reason for loss

34 61 Run for 30 min
ARPwatch

50 89 Run for 24 hours

EtherHostProbe 48 86 Not all hosts up when run

BrdcstPing 42 75 Collisions

SeqPing 38 70 Not all hosts up when run

DNS 56 100 Not necessarily current

Table 5: Discovering Interfaces on a Subnet Results from 1 Run of Each Active Module

Using the intervals specified, network and sys-
tem load is kept reasonable. We have also installed
precautions to ensure that Fremont will not adversely
affect the network on which it is running. For
example, the system stops tracing towards a particu-
lar destination if it detects a routing loop. Also, the
modules that use parallel network activity to
improve performance limit the rate at which packets
are generated. The modules that use the Network
Interface Tap to watch an attached subnet minimize
the load on the host system by packet filtering.

Discovery Effectiveness
Table 5 shows the results of a brief run of

Fremont, exploring one of the subnets in the Com-
puter Science Department at the University of
Colorado. For this run, all active modules were run
once. Results for the one passive-monitoring module
(ARPwatch) are given after the first 30 minutes of
monitoring, as well as after 24 hours. As can be
seen, quite a few interfaces were discovered almost
immediately, and monitoring network traffic for a
day caused most interfaces to be discovered.

To compute the "% of Total" column, we
presume that the DNS data are an accurate reflection
of the network. In the case of the network we tested
this is a reasonable assumption, because the people
who operate that subnet are very conscientious about
keeping the DNS current. In fact, when we scrutin-
ized the DNS records, we found only two entries for
which there were no real machines connected to the
network. From this we concluded that the DNS data
showed slightly more interfaces than actually
existed. We did not find any interfaces on the sub-
net that were not in the DNS.

Table 6 shows measurements of discovering the
subnets of the campus network. We have assigned
about 114 subnets, but several of those are not in use
at this time. The RIPwatch module discovered 111
subnets. This can be treated as the exact number of
subnets since, if we cannot find a route to a subnet
on campus, then effectively it is not connected to the
campus network. The DNS module found 93

342 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

subnets. This is because not all subnet managers
enter their interface addresses into the name service.
The DNS module further found 31 gateways con-
necting 48 of those subnets. Note that each of
Tables 5 and 6 showed only the modules relevant to
their discovery task (interfaces for Table 5, subnets
for Table 6). Not all modules are used for both
tasks.

% ofModule Subnets Total Comments

Traceroute 86 77 Gateway
software
Problems

RIPwatch 111 100 Nearly all
subnets
advertized

DNS 93 84 Not all hosts
name served

DNS 48 43 Subnets with
gateways
identified

Table 6: Discovering Subnets Results from 1 Run
of Each Active Module

Observations

In the following paragraphs, we offer observa-
tions from our experiences with the various Explorer
Modules. In particular, we address such features as
reliability, completeness, time to completion, and
network and system resource consumption.

The Sequential Ping Explorer Module is the
simplest and most reliable of the modules, because
virtually every host implements the ICMP Echo
Request/Reply protocol. The load presented to the
network is low, because request packets are sent
only once every two seconds. This will result in one
reply packet for each existing host. If the module
receives no response to a packet after issuing one
request to each destination address, it sends one
more request packet to each destination that did not
respond. The second request rarely succeeds on a
local network unless either the network or the
remote host are heavily loaded. Running this on a
class C network takes between 9 and 18 minutes.
Running this on an entire class B network address
space would take between 36 and 72 hours.

The Broadcast Ping Explorer Module presents a
brief flood of ICMP Echo Reply packets. On a net-
work with many hosts, this can provide a stress test
of collision handling implementations, and usually
results in lost packets, including both ICMP Echo
Replies and normal traffic. Therefore, the reliability
of this module suffers. The tradeoff is that this
module completes in 20 seconds on a directly
attached network.

On our networks, the ARPwatch and RIPwatch
Explorer Modules consume minimal system
resources on the hosts running those modules. Nei-
ther module generates any traffic, and both use the
NIT to reduce the resource demands on the machine
running those modules. Similarly, the EtherHost-
Probe and Subnet Mask modules offer only minor
loads to the network and the machine running those
modules. Like the Sequential Ping Explorer Module,
these modules can take a long time to examine a
large address space.

The Domain Name System Explorer Module
operates in two phases. During the first phase, the
module makes DNS requests of a name server for
the network being examined. The network load is
noticeable while the module does "zone transfers",
as required to descend the DNS tree below the
desired network. This activity takes about half of
the time used by this module. During the second
phase, the module searches the collected information
for gateways. This is CPU intensive, particularly
during the search for names with suffixes indicating
possible gateways.

The Traceroute Explorer Module is modest in
the demands that it places on either the network or
the host system. This is mainly because we under-
stood that traceroute activity might have significant
impact on the network. We therefore were careful
to impose limits on the load presented by this
module. This conservative approach expands the
time that it takes for this module to complete its
exploration. We recommend that this module only
be used to explore high speed networks (Ethernets or
faster). The module has command line parameters
that allow it to be slowed down more than the
default value, as should normally be done when used
on a slower network.

We did not implement an SNMP module in the
current prototype because SNMP was running on
only a few machines in our local internet when we
started this project. Furthermore, SNMP requires
knowledge of community names, which limits its
ease of use. We plan to implement an SNMP
Explorer Module (see the Future Work section).

In the DNS Explorer Module, we looked for
distinguished gateways, as described in RFC
1035[13]. While this information could be useful for
discerning network topology, we found that it is
rarely supplied in the deployed DNS databases.
Many other types of information are similarly una-
vailable or incorrect, such as lists of Well Known
Services (WKS) and host and operating system type
information.

Why is some information (like host names,
addresses, and mail exchange records) available and
reasonably up-to-date in the DNS, while other data
is notoriously bad? The answer is that the data that
must be correct in the Domain Naming System for

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 343



Fremont: Network Discovery System Wood, Coleman, & Schwartz

proper operation in a networked environment gen-
erally will be correct. If a host system can function
on the network without some particular piece of
information being correct, current, or complete in the
DNS, then it is quite likely that this information will
be none of these. For example, the fact that a par-
ticular Well Known Service is running on a machine
is more directly available in the distributed collec-
tion of /etc/inetd.conf files (which provide a list of
the program locations for each service that is actu-
ally available on each machine). This is precisely
why the WKS field in the DNS was deprecated in
RFC 1123[1]. Network service information can also
be determined by attempting to connect to a service,
in the case of virtual-circuit based services[19].
Because of this, systems administrators rarely keep
the WKS entries in the DNS up to date. These
observations indicate that a name service works best
for managing data needed for correct network opera-
tion, and that other types of data are better provided
by a dynamic discovery process.

Related Work

A number of network management tools have
been built using existing protocols[11, 17, 23].
However, these tools use only one or two sources of
such information, and do not cross-correlate the data
as Fremont does. Multiple information sources and
existing protocols have been used to support
resource discovery in other contexts as well, includ-
ing Netfind (which discovers Internet user directory
information)[20] and archie (which discovers files
available via anonymous FTP)[5].

Robertson has built a system called netdig[18]
that can discover network topology using SNMP.
Several commercial network management stations
also provide this capability. However, as with any
use of SNMP, it is necessary to know the commun-
ity name for every router in the network being
examined. Most manufacturers’ SNMP network
management stations also offer some simple tools
for drawing networks. The xnetdb program[3] does
this at minimal cost, but it does no topology
discovery, beyond connecting together hosts and
gateways on the same subnet.

Future Work

We are currently extending Fremont to provide
support for large internets, by caching data and sup-
porting predicate-based queries to limit exchanged
data to the parts that are needed. As a first step, we
are making our software freely available, and
encouraging people to set up Journal Servers
throughout the Internet.

Another set of extensions in progress is adding
Explorer Modules to use the two other protocols in
their explorations. The first is SNMP. Although
using SNMP requires knowledge of community
strings, it is popular and powerful enough to allow

improved topology discovery (as done by
Columbia’s netdig system). The second is Cisco
Systems’ Gateway Discovery Protocol (GDP).
While not widely deployed, supporting GDP would
help fill in some of Fremont’s discovery gaps. A
"promiscuous" mode network traffic monitor would
be able to discover all communicating machines in a
network. We will use this to extend our system into
the discovery of network services.

We are also expanding our work with existing
protocols. For example, beyond monitoring RIP
advertisements, we plan to use directed probes to
discover routing information, via the RIP Request
and RIP Poll queries. The major advantage of doing
so is that these requests and replies can be routed
through a network, thus providing access to routing
information on subnets other than just the local sub-
net. A problem, however, is that not all routers use
RIP or respond properly to RIP Request or RIP Poll
queries. Nevertheless, we expect to be able to iden-
tify some routers, and even some alternate paths
using RIP queries [8].

Another area of Future work involves running
the Traceroute Explorer Module from multiple points
in a network. This is easy to do manually now, but
will require remote execution capabilities in the
Discovery Manager. We also plan to use "loose
source routing", to look for multiple paths in the net-
work. This feature of IP can allow the module to
specify an intermediate router through which the
traced path will be routed. We also plan to branch
further from the local network, while continuing to
minimize network impact. For example, if the net-
work to be traced is only reachable through node G,
and if G is exactly and always (for the duration of
the traceroute run) H hops away from the host run-
ning the Traceroute module, then all traces can start
with a TTL of H+1 rather than 1, because every
packet will follow the same path from for the first H
hops, and there is no need to continually re-trace the
initial H hop path.

The data recorded in the Journal need to incor-
porate a more flexible notion of information quality.
Currently we treat information discovered by some
protocols as being of better quality than that
discovered by other protocols. For example, data
gathered using the ARP protocol are generally timely
and correct, whereas DNS data are older and often
subject to data entry errors. Thus, if the only indica-
tion of the existence of an interface is its record in
the DNS, we would not add it to the Journal unless
it appears to be part of a gateway. Similarly, we
would like to have a flag to prevent continually
retrying discovery of some datum that we know is
unavailable. This would be similar to the negative
caching concept that has been suggested for the
DNS, in which the absence of an entry in the DNS
could be locally cached to avoid unnecessary
expense of future failed queries.

344 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

We plan further to examine the feasibility of
extending the discovery processes to other protocols,
particularly DECnet and OSI.

Our initial user inquiry agents focus primarily
on rudimentary debugging tools with few graphical
capabilities. We would like to have several tools
that could provide real-time observation of the
explorations and the discovered information, and a
graphical visualization of the structure of the net-
work as it is discovered. In the future, a more
sophisticated interface could be integrated, perhaps
from one of the commercial network management
packages.

A final area of future work involves extending
Fremont’s graphical display mechanism to support
dynamic updates, as new information is discovered.

Summary

The complexity of modern data communication
networks has led to a situation in which network
administrators must use a number of different tools
to track changes and uncover problems in their net-
works. Because of no one tool provides a complete
picture of the network, network managers have been
forced to cross-correlate information obtained from
several tools manually, often losing important infor-
mation among the details.

The Fremont system provides a framework for
network management that can combine many dif-
ferent tools into an integrated system. This approach
represents an extension to the traditional network
management paradigm, which treats the network
only as a collection of instrumented devices (as in
the case of SNMP). In addition to this paradigm,
our approach supports passive traffic monitoring,
active network probes, and information gleaned by
cross-correlating data discovered from multiple
sources. Because of this cross-correlation, Fremont
provides more complete and useful information than
any single network management system. It can also
flag potential network problems based on incon-
sistencies in the discovered data. Fremont performs
these functions without undue consumption of net-
work or host system resources.

Table 7 summarizes the network characteristics
that the current prototype discovers, based on the 8
different Explorer Modules we have implemented.
This information is sufficient to provide detailed net-
work maps, including topology maps (as illustrated
in Figure 2), and tables showing the names and
addresses of each host on each network, the local
gateways used by each host, etc. In the future we
expect to add route discovery capabilities to
Fremont, at which time routing maps could also be
produced.

Interfaces Ethernet Address
IP Address
Name
Subnet Mask
Gateway Membership

Gateways Interfaces on GW
Subnets connected
(topology)

Subnets Gateways on Subnet
(topology)

Table 7: Characteristics Discovered by Prototype

Table 8 summarizes the network problems that
Fremont uncovers. The uncovered information can
help network administrators solve a number of prob-
lems, such as those discussed in the Introduction
section of this paper.

IP Addresses No Longer in Use
Hardware Changes
Inconsistent Network Masks
Duplicate Address Assignments
Promiscuous RIP Hosts

Table 8: Problems Uncovered by Prototype

In summary, the Fremont system provides an
integrated framework for assisting a network
manager in discovering network characteristics and
trouble-shooting network problems. Because it
makes use of many different information sources and
network management tools, Fremont can form a
more complete network picture than any one tool.
Prototype Software Availability

The Fremont software is available by
anonymous FTP from ftp.cs.colorado.edu, in the
directory pub/cs/distribs/fremont.

Acknowledgements

This material is based upon work supported in
part by the National Science Foundation under grant
NCR-9105372, and a grant from Sun Microsystems’
Collaborative Research Program.

We thank Barb Dyker, Darren Hardy, Susan
Smith, and the USENIX program committee for their
helpful comments on this paper.

The Fremont system is based in part on the
preliminary architecture described in[21]. This work
is part of the Networked Resource Discovery Project
at the University of Colorado[22].

References

1. R. Braden, ‘‘ Requirements for Internet Hosts –
Application and Support,’’ Internet Request For
Comments 1123, October 1989.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 345



Fremont: Network Discovery System Wood, Coleman, & Schwartz

2. J. D. Case, M. Fedor, M. L. Schoffstall & C.
Davin, ‘‘ Simple Network Management Proto-
col,’’ Internet Request For Comments 1157,
May 1990.

3. H. Clark, Xnetdb Software, Ohio State Univer-
sity, June 1990. Available by anonymous FTP
from thor.oar.net: /pub/xnetdb

4. F. Egan, Fremont, Explorer for a Restless
Nation, Doubleday, Garden City, New York,
1977.

5. A. Emtage & P. Deutsch, ‘‘ Archie – An Elec-
tronic Directory Service for the Internet,’’
Proceedings of the USENIX Winter Conference,
pp. 93-110, San Francisco, California, January
1992.

6. N. K. Ganatra, Census Software, Department
of Computer Science, University of California,
Santa Cruz, June 1992. Available by
anonymous FTP from ftp.cse.ucsc.edu:
pub/csl/census.tar.Z

7. C. Hedrick, ‘‘ Routing Information Protocol,’’
Internet Request For Comments 1058, Rutgers
University, June 1988.

8. J. C. Honig, RIPQUERY Software, Cornell
Theory Center, Cornell University, August
1991. Available as part of the gated distribu-
tion, by anonymous FTP from
gated.cornell.edu: pub/gated/gated-2.1.tar.Z.

9. V. Jacobsen, Traceroute Software, Lawrence
Berkeley Laboratories, December 1988. Avail-
able by anonymous FTP from ftp.ee.lbl.gov:
pub/traceroute.tar.Z

10. M. Karels & J. Wood, Nslookup Software,
University of California, Berkeley, September
1990. Available as part of the BIND distribu-
tion, by anonymous FTP from
okeeffe.cs.berkeley.edu: /4.3/bind.4.8.3.tar.Z

11. K. Kislitzin, ‘‘ Network Monitoring by
Scripts,’’ Lisa IV, October 1990.

12. P. E. McKenney, EtherHostProbe Software,
SRI International, July 1988. Available by
anonymous FTP from phloem.uoregon.edu:
/pub/src/etherhostprobe/etherhostprobe.tar.Z

13. P. Mockapetris, ‘‘ Domain Names – Implemen-
tation and Specification,’’ Internet Request For
Comments 1035, University of Southern Cali-
fornia Information Sciences Institute, November
1987.

14. M. Muuss, Ping Software, U. S. Army Ballis-
tic Research Laboratory, December 1983.
Available by anonymous FTP from
uunet.uu.net: /bsd_sources/src/ping

15. D. C. Plummer, ‘‘ An Ethernet Address Resolu-
tion Protocol – Or – Converting Network Proto-
col Addresses to 48.bit Ethernet Address for
Transmission on Ethernet Hardware,’’ Internet
Request For Comments 826, November 1982.

16. J. Postel, ‘‘ Internet Control Message

Protocol,’’ Internet Request For Comments 792,
University of Southern California Information
Sciences Institute, September 1981.

17. W. C. Reissig, ‘‘ Dynamic Network Manage-
ment Using the Simple Network Management
Protocol (SNMP),’’ Technical Report 90-08-04,
Computer Science Department, University of
Washington, Seattle, Washington, 1990. M.S.
Thesis

18. S. Robertson, Netdig Software, Center for
Telecommunications Research, Columbia
University, August 1991. Available by
anonymous FTP from ftp.ctr.columbia.edu:
/pub/net/netdig.3.5.shar.Z

19. M. F. Schwartz, ‘‘ A Measurement Study of
Changes in Service-Level Reachability in the
Global TCP/IP Internet: Goals, Experimental
Design, Implementation, and Policy Considera-
tions,’’ Internet Request For Comments 1273,
November 1991.

20. M. F. Schwartz & P. G. Tsirigotis, ‘‘ Experi-
ence with a Semantically Cognizant Internet
White Pages Directory Tool,’’ Journal of Inter-
networking: Research and Experience, vol. 2,
no. 1, pp. 23-50, March 1991.

21. M. F. Schwartz, D. H. Goldstein, R. K.
Neves & D. C. M. Wood, ‘‘ An Architecture
for Discovering and Visualizing Characteristics
of Large Internets,’’ Technical Report CU-CS-
520-91, Department of Computer Science,
University of Colorado, Boulder, Colorado,
February 1991.

22. M. F. Schwartz, ‘‘ Internet Resource Discovery
at the University of Colorado,’’ To appear,
IEEE Computer Magazine, Revised October
1992.

23. ‘‘ FYI on a Network Management Tool Catalog:
Tools for Monitoring and Debugging TCP/IP
Internets and Interconnected Devices,’’ Internet
Request For Comments 1147, SPARTA, Inc.,
April 1990.

24. SunNet Manager 1.1 Installation and User’s
Guide, Sun Microsystems, Inc., 1991.

Author Information

David Wood holds a B.S. in Electrical
Engineering from the Massachusetts Institute of
Technology and a M.S. in Electrical Engineering
from the University of Colorado. He is the manager
of wide-area and campus-wide networking at the
University of Colorado. He is also a Ph.D. student
at the University of Colorado. He can be reached at
Computing and Network Services, University of
Colorado, 3645 Marine Street, Boulder, CO 80309-
0455, or via electronic mail at
dcmwood@spot.colorado.edu.

Michael Schwartz received his PhD in Com-
puter Science from the University of Washington.

346 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Wood, Coleman, & Schwartz Fremont: Network Discovery System

He is currently an Assistant Professor of Computer
Science at the University of Colorado - Boulder.
His research focuses on issues raised by international
networks and distributed systems, with particular
focus on resource discovery and network measure-
ment. Schwartz chairs an Internet Research Task
Force Research Group on Resource Discovery and
Directory Service, and is on the editorial boards for
IEEE/ACM Transactions on Networking and for
Internet Society News. He can be reached at the
Computer Science Department, University of
Colorado, Boulder, CO 80309-0430, or via elec-
tronic mail at schwartz@cs.colorado.edu.

Sean Coleman received his B.S. in Engineering
Physics at the University of Colorado. He is
currently an M.S. student in Computer Science at the
University of Colorado. He is also a system
administrator for a network of Suns. He can be
reached at the Computer Science Department,
University of Colorado, Boulder, CO 80309-0430, or
electronically at coleman@cs.colorado.edu.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 347



348 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA


