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Cylindrical shells play an important role for the construction of functionally graded materials (FGMs). Functionally graded
materials are valuable in order to develop durable materials. +ey are made of two or more materials such as nickel, stainless steel,
zirconia, and alumina. +ey are extremely beneficial for the manufacturing of structural elements. Functionally graded materials
are broadly used in several fields such as chemistry, biomedicine, optics, and electronics. In the present research, vibrations of
natural frequencies are investigated for different layered cylindrical shells, those constructed from FGMs. +e behavior of shell
vibration is based on different parameters of geometrical material. +e problem of the shell is expressed from the constitutive
relations of strain and stress with displacement, as well as it is adopted from Love’s shell theory. Vibrations of natural frequencies
(NFs) are calculated for simply supported-simply supported (SS-SS) and clamped-free (C-F) edge conditions. +e Rayleigh–Ritz
technique is employed to obtain the shell frequency equation. +e shell equation is solved by MATLAB software.

1. Introduction

A shell is a structure consisting of curved sheets of material.
A shell is the best effective way of consuming the material
and can be very valuable in case of stowage of liquids and
solids. Shells have different structures such as elliptic par-
boiled, hyperbolic parboiled, and circular cylindrical. Shell
structures are generally used structural mechanisms in
manufacturing designs. Vibration of cylindrical shells is a
general field of research in mechanical dynamics. +ese
shells are made from various kinds of materials. +ere are
many types of shells, but CS is most important. +e high
strength, heat resistance, and corrosion resistance of FGM
provide a reliable guarantee for the development of the next-
generation nuclear industry. Nuclear power generation,
nuclear power, and the storage of nuclear weapons are

extremely dangerous. As a high-strength, heat-resistant, and
shielding material, functionally graded materials show great
superiority in the construction materials of nuclear furnaces
and inner wall materials of nuclear furnaces, which greatly
protect the safety of the nuclear industry.

Nowadays, FGMs are applicable in various fields in-
cluding automotive, aerospace, mining, energy, and medical
fields. Cylindrical shells are applicable in different appliances
of mechanics, civil, nuclear, and chemical industries. +ey
have different layers, e.g., single layer, bilayers, and trilayers.
+ese layers are made up of “functionally graded” (FG) and
“isotropic” materials [1]. Functionally graded materials are
mostly utilized in the vast area of engineering and tech-
nology. Functionally graded material is a combination of
more than one material. +ese materials are stainless steel
(SS), zirconia (Zr), and nickel (Ni).+e scientists from Japan
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(1884) purposed the group of materials with the conception
of FGMs. +ese types of materials are manufactured by the
combination of different materials employing the powder
metallurgy method (powder metallurgy method is an in-
dustrial technique for attaining metals, such as powders).
+ey contain vibration in essential fraction volume that
takes to continual transform in the porosity and composi-
tionmicrostructure.+ese results are employed as a gradient
in thermal andmechanical characteristics. Mostly, FGMs are
applicable in the environment of maximum temperature.
FGMs are used to construct the barrier of thermal materials.
+e analysis on FGMs tells that they are massive but mostly
restrained to test the deformation and thermal stress [2].+e
vibrational characteristics of the CS are composed of FGMs.
+ere are multiple uses of FGMs in the industry as they are
the most significant materials. +ey are auspicious materials
and have the ability to continue their presence in a maxi-
mum produced temperature condition. An enormous
amount of research work has been completed on the
functionally graded CS. +e vibration analysis depends on
four clamped conditions employed on both shell ends.+ese
conditions were expressed by Swaddiwudhipong et al. [3].
Rayleigh–Ritz method is an energy variation method that is
used to find the natural frequency (NF). In 1909, Walther
Ritz introduced this method. Rayleigh–Ritz method is also
known as Galerkin’s method. In other words, Rayleigh–Ritz
technique is an integral approach method. It is valuable for
resolving the problems of structural mechanics. It is also
called the variation approach as given by Preumont [4]. Ng
et al. [5] exhibited the construction for the dynamic sol-
idness examination of the FG shell under the periodic axial
loading. By the equation of motion, they produced the
Mathieu–Hill equations and examined their stability by
Bolotin’s method. Rahimi et al. [6] examined the behavior of
the vibrational characteristic of the CS with the supports of
the ring placed at the centre of the shell. +ey utilized energy
functional to get motion’s equation. +ey considered the
“functionally graded cylindrical shell” composed of the
combination of ceramic and metal. Lee and Lu [7] examined
the free vibration of cylindrical shells filled with liquid. +ey
utilized “Donnell’s shell theory” to analyze the vibrations of
cylindrical shells and employed “Hamilton’s principle” to
obtain the function of shell dynamics. To modify the
equations of differential into algebraic, “Galerkin’s method”
was used. Tang et al. [8] established the analytical technique
for the free vibrational analysis of the cylindrical shell with
arbitrary edge condition by reverberation-ray matrix’s
method. +ey utilized the Flugge thin theory to resolve the
motion’s equation and accomplished the exact solutions of
travelling and standing waves from along the direction of
axial and circumferential, respectively. +ey studied the
influence of elastic restraints on the parameters of frequency.
Qin et al. [9] scrutinized the free vibrational behavior of CSs
with random edge conditions. For the calculation of “elastic
strain energy,” they utilized Sander’s theory. Artificial
springs were carried out on the ends of the shells to sym-
bolize the arbitrary edge conditions. A united solution for
three specific sorts of enlargement function was developed
by using the technique of Rayleigh–Ritz. Wang et al. [10]

presented the Jacobi–Ritz formulation to explore the free
vibrations of different coupled doubly curved revolt shell
structures with subjective edge conditions. +ey recognized
the multisegment apportioning methodology and Flügge’s
shell theory to set up the theoretic model. By utilizing the
Rayleigh–Ritz strategy, the natural frequencies and mode
shapes of the coupled shell structures are chosen. Trabelsi
et al. [11] inspected the behavior of thermal buckling of FG
cylindrical shells and plates. +e governing equations were
expanded by considering the theory of first-order shear
distortion. To solve the thermal buckling problem, four-
node shell elements were assumed. +e calculation of the
censorious buckling temperature of structures under non-
uniform temperature rise depends on Gaussian numerical
combination. +e impact of material composition, edge
condition, thermal loading, and geometrical parameters of
shells on the thermal buckling conduct of FGM structures
was also examined. Daud and Viswanathan [12] introduced
the vibrational conduct of the symmetric angle-ply layered
circular cylindrical shell filled by calm fluid. +e motion
equation of the cylindrical shell as far as stress and moment
resultants was obtained from the first-order shear distortion
theory. To attain the differential equations with the rota-
tional function and displacements, the relation of “strain-
displacement and stress-strain” was assumed. +e investi-
gation of frequency parameters was examined utilizing the
parameters the thickness and length ratio, angle-ply,
properties of material, and the number of layers with various
edge conditions. Sheng and Wang [13] established a theo-
retic model in the thermal atmosphere to examine the
nonlinear vibration and dynamic stability of the stiffened FG
cylindrical shell. For the modelling of the stiffened FG cy-
lindrical shell, they utilized different techniques and theories
such as Bolotin’s technique, smearing stiffener approach,
and von Karman nonlinear and first-order shear deforma-
tion theory. To achieve the differential equation, modal
analysis and Galerkin’s method were employed. +e influ-
ence of the thermal atmosphere and material features on the
dynamic constancy and temporary and crucial resonance
responses was also observed. Strozzi and Pellicano [14]
analyzed the nonlinear vibration of the FGM cylindrical
shell. +ey applied Sanders–Koiter theory to determine the
finite amplitude of vibration and deliberately supported the
clamped and free boundary conditions. +ey carried out
numerical analysis to depict the nonlinear response by
considering a diversity of axisymmetric and asymmetric
modes. Rawat et al. [15] exhibited the finite element method
(FEM) for the vibration analysis of the circular shell. +ey
employed various shell theories for FEM results to report in
the literature. To investigate the computational efficacy, they
used block “Lanczos and subspace iteration methods.” +ey
investigated model frequencies for various types of closures.
Budak et al. [16] used numerical and experimental ap-
proaches to determine the dynamic characteristics of the
isotropic cylindrical shell. +ey applied the finite element
method with Femar software to accomplish numerical
calculations. In order to observe the interferential pattern of
the vibrational shell, they developed the stroboscopic ho-
lographic interferometry technique. Mat Daud and
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Viswanathan [12] presented the vibrational behavior of the
symmetric angle-ply layered circular shell filled with qui-
escent fluid. +ey derived the equation of motion from the
first-order shear deformation theory and stated the wave
equation. +ey solved the eigenvalue problem for the fre-
quency parameter of spline coefficient and examined the
frequency parameter with different edge conditions. For
further interests, the reader may read [17–21].

2. Materials and Methods

Figure 1 shows a cylinder-shaped shell in which R is the
radius, h is the thickness, and L is the length.+e orthogonal
coordinate system (x, θ, z) is established at the central
surface of the CS, where x, θ, and z lie in the axial, cir-
cumferential, and radial directions of the shell, and
(u1, v1, w1) are the displacements of the shell in x, θ, and z
directions, respectively. +e strain energy of a cylindrical
shell is stated as

M �
1

2
∫L
0
∫2π

0
∈{ }T[S] ∈{ }R dθ dx, (1)

where

∈{ }T � e1, e2, c, κ1, κ2, 2τ{ }, (2)

where e1, e2, κ1, κ2, and 2τ represent the strains and curva-
tures’ reference surface relations, respectively. A variety of
shell theories utilized are [17–20]. Love’s shell theory is the
first shell model, and other models were obtained from the
Love shell theory by adding few terms.

According to Love’s shell theory, the strain and curva-
ture displacement relations can be defined as

e1 �
zu1
zx
,

e2 �
1

R

zv1
zθ

+ w( ),
c �

zv1
zx

+
1

R

zu1
zθ
,

(3)

κ1 � −
z2w1

zx2
,

κ2 � −
1

R2

z2w1

zθ2
−
zv1
zθ

( ),
τ � −

1

R

z2w1

zx zθ
−
zv1
zx

( ).
(4)

[S] is defined as

[S] �

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66




, (5)

where [A] is extensional, [B] is coupling, and [D] is
bending stiffness matrices (i, j � 1, 2, and 6). +ey are
defined as

Aij, Bij, Dij{ } � ∫h/2
− (h/2)

Qij 1, z, z2( ) dz. (6)

For isotropic materials, Qij is the reduced stiffness stated
as

Q11 � Q22 �
E

1 − v2
,

Q12 �
vE

1 − v2
,

Q66 �
E

2(1 + v)
,

(7)

where E is Young’s modulus and ] is Poisson’s ratio. For
the isotropic cylindrical shell, Bij (coupling stiffness) is
zero, and for FGM cylindrical shells, Bij becomes non-
zero. With the help of expressions (2) and (5), M can be
written as

M �
1

2
∫L
0
∫2π

0

A11e
2
1 + A22e

2
2 + 2A12e1e2 + A66c

2
+ 2B11e1κ1 + 2B12e1κ2 + 2B12e2κ1

+2B22e2κ2 + 4B66cτ +D11κ
2
1 +D22κ

2
2 + 2D12κ1κ2 + 4D66τ

2


R dθ dx. (8)
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Figure 1: Geometry of the bilayer cylindrical shell.
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By putting (3) and (4) in (8), M attains the following
form:

M �
1

2
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0
∫2π

0
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( )2 + A22
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(9)

+e kinetic energy for a CS can be expressed as

K �
1

2
∫L
0
∫2π

0
ρT

zu1
zt

( )2

+
zv1
zt

( )2

+
zw1

zt
( )2 R dθ dx, (10)

where ρT is the mass density per unit length and is expressed
as

ρT � ∫h/2
− (h/2)

ρ dz. (11)

For a cylindrical shell, Lagrangian energy functional∏ is
stated as

Π � K − M. (12)

Axial modal dependence is employed to fulfill the edge
conditions. For the approximation of axial modal depen-
dence, different varieties of functions are adopted. +e ex-
pression for axial, tangential, and radial displacements is
supposed as

u1(x, θ, t) � F
dϕ

dx
cos nθ sin ωθ,

v1(x, θ, t) � Gϕ sin nθ sin ωθ,

w1(x, θ, t) � Hϕ cos nθ sin ωθ,

(13)

where F, G, and H are vibration amplitudes, n is the cir-
cumferential wave number, and ω is the natural frequency
(NF) of the shell. +e axial function ϕ(x) is chosen to be a
beam function as

ϕ(x) � α1cosh
λmx

L
( ) + α2 cos

λmx

L
( )

+ ςm α3sinh
λmx

L
( ) + α3 sin

λmx

L
( )( ).

(14)

+e original formula of the Lagrangian functional is
established as

Π � Kmax − Mmax, (15)

where

Mmax �
πR

2
∫L
0

A11F
2 d2ϕ

dx2
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1
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2ϕ2
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2
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2
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2
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+
4
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(16)
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To obtain the shell frequency equation, the energy
functional is maximized with regard to the unknowns F, G,
and H of the CS. +e following expression is attained as

zΠ
zF

�
zΠ
zG

�
zΠ
zH

� 0. (17)

+e shell frequency is expressed in the eigenform as

C11 C12 C13

C12 C22 C23

C13 C23 C33

 
F

G

H

  � Ω
I2 0 0

0 I4 0

0 0 I4

 
F

G

H

 , (18)

where MATLAB software is used which is a dominant tool
for the quick and converging solution of numerical prob-
lems. +e MATLAB command, e.g., (K, M), is utilized to
extract the eigenvalues and eigenvectors in the procedure of
shell natural frequencies and mode shapes, respectively.

2.1. Functionally Graded Materials (FGMs). Functionally
graded materials are attained by mixing more than one
material. Generally, FGMs are applied in the environment of
maximum temperature. +e material property P is stated as a
function of temperature T, where T is expressed in kelvin [21].

P � P0 P− 1T
− 1
+ 1P1T + P2T

2
+ P3T

3( ), (19)

where P0, P− 1, P1, P2, and P3 are the coefficients of T.
+e material property P of FGM and the volume fraction

of the composing materials are stated as

P �∑k
j�1

PjVfj. (20)

+e summation of volume fraction of all composing
materials must be unity.

∑k
j�1

Vfj � 1. (21)

+e volume fraction for the single-layer CS having
thickness h, made up of two composing materials M1

(stainless steel) and M2 (nickel), can be written as

Vf �
z + 0.5h

h
( )N 0≤N≤∞, (22)

where z is the thickness variable and N is the power law
exponent. E is Young’s modulus, ] is Poisson’s ratio, and ρ is
the mass density, which can be stated for the FGM cylin-
drical shell consisting of two materials:

E � E1 − E2( ) 2z + h

2h
( )Ν + E2,

v � v1 − v2( ) 2z + h

2h
( )N + v2,

ρ � ρ1 − ρ2( ) 2z + h

2h
( )N + ρ2.

(23)

Volume fraction for the bilayer cylindrical shell is
represented by the following three cases.

Case I:

When the inner layer is made of FGM and outer is of
isotropic,

Vf �
2z

h
+ 1( )N 0≤N≤∞. (24)

Case II:

When the inner layer is of isotropic and outer is of
FGM,

Vf �
2z

h
( )N 0≤N≤∞. (25)

Case III:

When both inner and outer layers are of FGM,

Vf �
2z

h
+ 1( )N,

Vf �
2z

h
( )N,

0≤N≤∞.

(26)

Young’s modulus, Poisson’s ratio, and mass density for
the bilayer cylindrical shell can be stated as

E
1

FGM � E1 − E2( ) 2z

h
+ 1( )N + E2,

E
2

FGM � E1 − E2( ) 2z

h
( )N + E2,

v
1

FGM � v1 − v2( ) 2z

h
+ 1( )N + v2,

v
2

FGM � v1 − v2( ) 2z

h
( )N + v2,

ρ
1

FGM � ρ1 − ρ2( ) 2z

h
+ 1( )N + ρ2,

ρ
2

FGM � ρ1 − ρ2( ) 2z

h
( )N + ρ2.

(27)

3. Results and Discussion

To justify the exactness and proficiency of the current results,
simply supported-simply supported cylindrical shells are
matched with [22, 23] (see Table 1) and [24] (see Table 2).
Table 3 is compared with [2]. +ese comparisons show that
the current outcomes are accurate, efficient, and valid. Ritz
technique is utilized to accomplish the current result. +is
technique depends on the regulation of minimization of
energy.
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In the functionally graded (FG) cylindrical shell, FGM is
composed of stainless steel (SS) and nickel (see Figure 2).
Two edge conditions are applied on it, which are given as
simply supported-simply supported and clamped-free.

Table 4 represents the behavior of the NF (Hz) with n for
a type I and II functionally graded C-F and SS-SS cylindrical
shell. Here, SPs are m� 2, L� 20, N� 1, and R� 1. In both
types, natural frequency (NF) rises with an increase in h. +e

natural frequency increases for different ascending values of
h. +ese values decrease from n� 1 to 2 and then start to
decrease with the increasing values of n.+e influence of NFs
in types I and II is the same.

+e bilayer cylindrical shell is composed of two layers. In
case I, the inner layer is made up of FGM, and the outer layer
is of isotropic material. +e FGM layer is made of nickel (Ni)
and stainless steel (SS). In case II, both layers are composed

Table 1: Comparison of frequency parameters (FPs) Ω � ωR
����������
(1 − ]

2)ρ/E
√

for a SS-SS isotropic CS (m� 1, L� 20, R� 1, h� 0.01, and
υ� 0.3).

n [23] Current

1 0.016101 0.016101
2 0.009382 0.009378
3 0.022105 0.022102
4 0.042095 0.042094
5 0.068008 0.068007

Table 2: Comparison of NF (Hz) for the SS-SS isotropic CS (m� 1, L� 20, R� 1, and h� 0.002).

N [24] Current

1 13.548 13.548
2 4.592 4.591
3 4.263 4.262
4 7.225 7.224

Table 3: Comparison of NF (Hz) for the SS-SS FGM cylindrical shell (m� 1, L� 20, R� 1, and h� 0.002).

[2] Current [2] Current

N N� 1 N� 5 N� 1 N� 5 N� 1 N� 5 N� 1 N� 5

1 13.211 12.998 13.211 12.997 13.3210 13.526 13.322 13.506
2 4.480 4.4068 4.4746 4.4047 4.4511 4.5836 4.5142 4.5755
3 4.1569 4.0891 4.1355 4.0900 4.1827 4.2536 4.1892 4.2384
4 7.0384 6.9251 6.9997 6.9326 7.0903 7.2085 7.0995 7.1788
5 11.241 11.061 11.181 11.075 11.3293 11.516 11.342 11.468

CASE-1

TYPE-I

Outer layer

FGM
(Ni, SS)

Inner layer

Isotropic
(Ni)

TYPE-II

Outer layer

FGM
(SS, Ni)

Inner layer

Isotropic
(Ni)

TYPE-III

Outer layer

FGM
(Ni, SS)

Inner layer

Isotropic
(SS)

TYPE-IV

Outer layer

FGM
(SS, Ni)

Inner layer

Isotropic
(SS)

Figure 2: FGM type I and type II of the cylindrical shell.
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TYPE-I

CASE-II

Outer layer

FGM
(Ni, SS)

Inner layer

FGM
(Alumina, SS)

TYPE-II

Outer layer

FGM
(SS, Ni)

Inner layer

FGM
(Alumina, SS)

Figure 4: FGM cylindrical shell case II.

Table 4: Behavior of NF (Hz) with n (m� 1, N� 1, L� 100, and R� 1).

FG cylindrical shell

Type I Type II

C-F SS-SS C-F SS-SS

N h� 0.1 h� 0.5 h� 0.1 h� 0.5 h� 0.1 h� 0.5 h� 0.1 h� 0.5

1 114.551 117.506 48.4992 49.1025 114.859 117.721 48.5028 49.0785
2 98.5711 333.031 66.9496 315.299 99.1923 336.551 67.6230 318.867
3 189.957 883.406 181.411 872.264 191.869 8933.21 183.357 882.139
4 349.727 1660.62 346.023 1647.30 353.435 1679.25 349.747 1665.50
5 560.698 2410.81 558.370 2407.14 566.702 2417.94 564.384 2414.93
6 819.952 2893.14 818.135 2895.47 828.761 2901.69 826.952 2904.08
7 1126.81 3375.37 1125.22 3378.12 1138.94 3385.35 1137.36 3388.12
8 1481.07 3857.60 1479.60 3860.25 1497.03 3869.01 1495.56 3871.66
9 1882.64 4339.82 1881.23 4342.29 1902.94 4352.65 1901.54 4355.12
10 2331.47 4822.04 2330.10 4824.32 2356.64 4836.30 2355.27 4838.58

TYPE-I

TYPE-II

External surface

Stainless steel

Internal surface

Nickel

External surface

Nickel

Internal surface

Stainless steel

Figure 3: FGM cylindrical shell case I.

Table 5: Behavior of NF (Hz) with n (m� 1, h� 0.1, N� 1, and R� 1).

FG and isotropic bilayer cylindrical shell

Type I Type II

C-F SS-SS C-F SS-SS

N L� 40 L� 60 L� 60 L� 80 L� 40 L� 60 L� 40 L� 60

1 29.1607 19.4438 1.48602 0.83728 29.3944 19.5996 3.36069 1.50074
2 65.8666 64.2879 63.0416 63.0214 65.8841 64.2876 63.0840 63.0246
3 178.846 178.450 178.186 178.163 178.808 178.410 178.209 178.144
4 341.894 341.681 341.568 341.542 341.816 341.603 341.561 341.490
5 552.552 552.388 552.316 552.290 552.427 552.264 552.266 552.192
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of functionally graded material. In FGM, one layer is made
up of nickel (Ni) and stainless steel (SS), while the other is of
alumina (Al) and stainless steel (SS) (see Figures 3 and 4).

Table 5 shows the behavior of the NF (Hz) with n for
type-I, II, III, and IV functionally graded and isotropic
bilayer cylindrical shells with both edge conditions (C-F and
SS-SS). +e NF decreases when the value of L rises. +e
natural frequency (NF) obtained from different values of L
increases when the circumferential wave number n rises in
all four types.

Table 6 represents the behavior of the NF (Hz) with n for
a type I and II FG bilayer CS. +e NF rises when the value of
power exponentN increases.+eNF obtained from different
values of power exponent N rises when n increases in both
types.

4. Conclusion

In this work, vibration analysis of natural frequencies is
made for the bilayered cylindrical shell. +e shell layers are
constructed from functionally graded materials (FGMs).
Different FGMs are used to compose the bilayered cylin-
drical shell such as SS, Ni, and Al. +e present analysis is
performed under different boundary conditions. +e shell
vibration is based on different parameters of geometrical
material. +e Lagrangian functional in the Rayleigh–Ritz

technique has been used to solve the problem. In the current
case, the axial mode is examined with the help of the
characteristic beam function. Vibration of NFs is calculated
for simply supported-simply supported and clamped-free
edge conditions. Love’s theory and Rayleigh–Ritz technique
are applied to obtain the shell frequency equation. However,
natural frequencies are examined with the effect of the
volume fraction law. It is noticed that natural frequencies
become high with the increase in thickness-to-radius ratios.
+e converse outcome is obtained with the increase of L/R
ratios. Natural frequencies are increased with the increase in
power law exponent N.

MATLAB software has been used for the simplification
of the equation of eigenvalues. +e current study can be
prolonged to analyze the cylindrical shell (CS) submerged in
the fluid and multilayered FGM cylindrical shell.

Abbreviations

CS: Cylindrical shell
FGM: Functionally graded material
SS-SS: Simply supported-simply supported
C-F: Clamped-free
NF: Natural frequency
E: Young’s modulus
N: Power law exponent

Table 5: Continued.

FG and isotropic bilayer cylindrical shell

Type I Type II

C-F SS-SS C-F SS-SS

N L� 40 L� 60 L� 60 L� 80 L� 40 L� 60 L� 40 L� 60

Type III Type IV
C-F SS-SS C-F SS-SS

N L� 40 L� 60 L� 40 L� 60 L� 40 L� 60 L� 40 L� 60
1 29.8517 19.9045 3.41217 1.52373 30.0899 20.0633 3.44566 1.53869
2 67.5753 65.9602 64.7473 64.6848 67.5938 65.9607 64.7284 64.6683
3 183.501 183.095 182.892 182.823 183.465 183.056 182.850 182.783
4 350.787 350.567 350.524 350.450 350.712 350.492 350.448 350.375
5 566.916 566.746 566.748 566.671 566.796 566.627 566.628 566.552

Table 6: Behavior of NF (Hz) with n (m� 1, h� 0.2, L� 100, and R� 1).

FG bilayer cylindrical shell

Type I Type II

C-F SS-SS C-F SS-SS

N N� 6 N� 12 N� 6 N� 12 N� 6 N� 12 N� 6 N� 12

1 24.3969 309.190 1.11827 1.41774 24.2473 30.7109 1.11218 1.40889
2 141.887 138.307 141.001 136.874 139.381 135.502 138.492 134.062
3 398.705 387.262 398.516 386.976 391.617 379.314 391.429 379.027
4 763.947 741.974 763.864 741.862 750.364 726.736 750.282 726.625
5 1235.14 1199.70 1235.09 1199.64 1213.19 1175.06 1213.13 1174.99
6 1811.63 1759.78 1811.59 1759.73 1779.43 1723.64 1779.39 1723.59
7 2493.15 2421.98 2493.11 2421.94 2448.83 2372.24 2448.80 2372.20
8 3279.54 3186.18 3279.50 3186.15 3221.26 3120.75 3221.22 3120.72
9 4170.70 4052.34 4170.66 4052.30 4096.59 3969.12 4096.56 3969.09
10 5166.52 5020.40 5166.48 5020.36 5074.73 4917.31 5074.70 4917.27
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Π: Lagrangian energy functional
SPs: Shell parameters
ρ: Mass density
R: Radius
h: +ickness
n, m: Wavenumbers
Ω: Frequency parameters
K: Kinetic energy
Ni: Nickel
SS: Stainless steel
Al: Alumina
Zr: Zirconia
Aij: Extensional
Bij: Coupling
Dij: Bending stiffness
]: Poisson’s ratio
L: Length
e{ }: Strain vector
σ{ }: Stress vector
Zr: Zirconia
M: Strain energy
[Q]: Reduced stiffness matrix
ϕ(x): Axial function
Mx, Mθ, Mxθ: Moment resultants.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Authors’ Contributions

R. Anwar provided the methodology, investigated the study,
and reviewed and edited the article. M. Ghamkhar super-
vised, investigated, and conceptualized the study, provided
the methodology, and edited the article. M. Imran and
M. Zafar supervised, investigated, and conceptualized the
study, provided the methodology, and wrote the article.
R. Safdar, W. Jamshed, M. Prakash, and E. K. Akgül pro-
vided software, validated the study, and reviewed and edited
the article.

Acknowledgments

+is work was supported by the University of Agriculture
Faisalabad, Pakistan.

References

[1] S.-R. Li, X.-H. Fu, and R. C. Batra, “Free vibration of three-
layer circular cylindrical shells with functionally graded
middle layer,” Mechanics Research Communications, vol. 37,
no. 6, pp. 577–580, 2010.

[2] C. T. Loy, K. Y. Lam, and J. N. Reddy, “Vibration of func-
tionally graded cylindrical shells,” International Journal of
Mechanical Sciences, vol. 41, no. 3, pp. 309–324, 1999.

[3] S. Swaddiwudhipong, J. Tian, and C. M. Wang, “Vibrations of
cylindrical shells with intermediate supports,” Journal of
Sound and Vibration, vol. 187, no. 1, pp. 69–93, 1995.

[4] A. Preumont, Twelve Lectures on Structural Dynamics,
Springer, Berlin, Germany, 2013.

[5] T. Y. Ng, K. Y. Lam, K. M. Liew, and J. N. Reddy, “Dynamic
stability analysis of functionally graded cylindrical shells
under periodic axial loading,” International Journal of Solids
and Structures, vol. 38, no. 8, pp. 1295–1309, 2001.

[6] G. H. Rahimi, R. Ansari, and M. Hemmatnezhad, “Vibration
of functionally graded cylindrical shells with ring support,”
Scientia Iranica, vol. 18, no. 6, pp. 1313–1320, 2011.

[7] L. T. Lee and J. C. Lu, “Free vibration of cylindrical shells filled
with liquid,” Computers & Structures, vol. 54, no. 5,
pp. 997–1001, 1995.

[8] D. Tang, G.Wu, X. Yao, and C.Wang, “Free vibration analysis
of circular cylindrical shells with arbitrary boundary condi-
tions by the method of reverberation-ray matrix,” Shock and
Vibration, vol. 2016, Article ID 3814693, 18 pages, 2016.

[9] Z. Qin, F. Chu, and J. Zu, “Free vibrations of cylindrical shells
with arbitrary boundary conditions: a comparison study,”
International Journal of Mechanical Sciences, vol. 133,
pp. 91–99, 2017.

[10] Q. Wang, K. Choe, D. Shi, and K. Sin, “Vibration analysis of
the coupled doubly-curved revolution shell structures by
using Jacobi-Ritz method,” International Journal of Me-
chanical Sciences, vol. 135, pp. 517–531, 2018.

[11] S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, “A modified
FSDT-based four nodes finite shell element for thermal
buckling analysis of functionally graded plates and cylindrical
shells,” Engineering Structures, vol. 178, pp. 444–459, 2019.

[12] N. I. Mat Daud and K. K. Viswanathan, “Vibration of
symmetrically layered angle-ply cylindrical shells filled with
fluid,” PLoS One, vol. 14, no. 7, Article ID e0219089, 2019.

[13] G. G. Sheng and X. Wang, “+e dynamic stability and
nonlinear vibration analysis of stiffened functionally graded
cylindrical shells,” Applied Mathematical Modeling, vol. 56,
pp. 389–403, 2018.

[14] M. Strozzi and F. Pellicano, “Nonlinear vibrations of func-
tionally graded cylindrical shells,” Jin-Walled Structures,
vol. 67, pp. 63–77, 2013.

[15] A. Rawat, V. A. Matsagar, and A. K. Nagpal, “Free vibration
analysis of thin circular cylindrical shell with closure using
finite element method,” International Journal of Steel Struc-
tures, vol. 20, no. 1, pp. 175–193, 2020.

[16] V. D. Budak, A. Y. Grigorenko, M. Y. Borisenko, and
E. V. Boichuk, “Natural frequencies and modes of noncircular
cylindrical shells with variable thickness,” International Ap-
plied Mechanics, vol. 2, no. 53, pp. 164–172, 2017.

[17] A. E. H. Love, “+e small free vibrations and deformation of a
thin elastic shell,” Proceedings of the Royal Society of London,
vol. 43, no. 258–265, pp. 352-353, 1888.

[18] J. L. Sanders Jr, An Improved First-Approximation Jeory for
Jin Shells, NASA, Washington, D.C., USA, 1959.
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